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Determining the potential 
distribution of Oryctes monoceros 
and Oryctes rhinoceros 
by combining machine‑learning 
with high‑dimensional 
multidisciplinary environmental 
variables
Owusu Fordjour Aidoo1,6, Fangyu Ding2,3,6, Tian Ma2,3, Dong Jiang2,3, Di Wang2,3*, 
Mengmeng Hao2,3*, Elizabeth Tettey4, Sebastian Andoh‑Mensah4, Kodwo Dadzie Ninsin1 & 
Christian Borgemeister5

The African coconut beetle Oryctes monoceros and Asiatic rhinoceros beetle O. rhinoceros have 
been associated with economic losses to plantations worldwide. Despite the amount of effort put in 
determining the potential geographic extent of these pests, their environmental suitability maps have 
not yet been well established. Using MaxEnt model, the potential distribution of the pests has been 
defined on a global scale. The results show that large areas of the globe, important for production 
of palms, are suitable for and potentially susceptible to these pests. The main determinants for O. 
monoceros distribution were; temperature annual range, followed by land cover, and precipitation 
seasonality. The major determinants for O. rhinoceros were; temperature annual range, followed by 
precipitation of wettest month, and elevation. The area under the curve values of 0.976 and 0.975, 
and True skill statistic values of 0.90 and 0.88, were obtained for O. monoceros and O. rhinoceros, 
respectively. The global simulated areas for O. rhinoceros (1279.00 ×  104  km2) were more than that 
of O. monoceros (610.72 ×  104  km2). Our findings inform decision‑making and the development of 
quarantine measures against the two most important pests of palms.

The African coconut beetle Oryctes monoceros (Olivier) and the Asiatic rhinoceros beetle O. rhinoceros (L.) are 
sap-sucking coleopteran pests of palms. The rhinoceros beetles are, economically, the greatest threat to the palm 
 industry1. The two species have similar biology and  ecology2. Adult beetles bore into the apical section of the 
palm through the basal parts of the leaves and enter the heart of the unfolded leaves, inflicting physical damage 
at the growing point of the infested palm. The damage may lead to the subsequent death of the  palm3. In tropical 
Africa, O. monoceros can cause up to 40% damage to  coconut2. The estimated losses of O. rhinoceros to coconuts 
in India and Indonesia are approximately 10%, while losses to oil palm have been estimated to be as high as 25% 
in Malaysia and the South Pacific  regions1,4–6.
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Oryctes monoceros and O. rhinoceros attack over 30 palm species, among which the most economically impor-
tant ones are oil palm, coconut, and date  palms7. Apart from palms, the rhinoceros beetles also attack  sugarcane8. 
Management strategies for the two pests include chemical pesticides, old fishing nets for trapping adults, removal 
of adults with the metal hook, and destruction of breeding sites which include dead logs, cow dung, and organic 
manure. Biological control using the entomopathogenic fungus Metarhizium anisopliae has been proved useful 
in reducing the population of O. rhinoceros in the Philippines and  Indonesia9,10. The entomopathogenic Oryctes 
rhinoceros nudivirus (previously known as Baculovirus oryctes) has provided control of invasive populations of 
O. rhinoceros in the Pacific  islands6 and has also been tested in Tanzania with less  success11.

Oryctes monoceros undergoes a complete metamorphosis. Its breeding sites are found in rotten logs, compost, 
and decaying vegetation. Adults lay eggs in these organic materials and subsequently hatch into 1st instars, the 
latter taking about 10–13 days. The 1st larval stage may take 9–20 days to develop into the 2nd  instar12, and 
about 34–54 days thereafter to move into the 3rd instar. The final stage where pupae develop into adults requires 
about 20–30 days, depending on food availability and prevailing environmental conditions. O. monoceros may 
live for up to six  months12,13. Similarly, O. rhinoceros, undergoes a complete metamorphosis. Its eggs hatch 
in 8–12 days, and after that, the larvae spend their whole larval stage inside the breeding medium. The larva 
requires 80–200 days to develop: the first instar takes 10–21 days, the second instar 12–21 days, and the third 
instar 60–125 days. The beetle then goes through an 8–13-day prepupal stage before pupating in a pupal chamber 
built out of the feeding substrate. Pupae last for 17–30 days, after which they emerge as adults that can live for 
up to 6 months or  longer14–16.

Oryctes monoceros is distributed throughout the tropical regions of Africa and has been recently reported in 
 Yemen17. In contrast, O. rhinoceros is indigenous only to South and Southeast  Asia6 which may be due to lack of 
a contiguous land mass. Its major pathways of transmission have been the transportation of host materials by 
humans, floating logs carried with ocean currents, and the shipment of wartime  equipment18. For instance, the 
spread of O. rhinoceros has been associated with the transport of the pest on commercial soil  products19. At vari-
ous possible entry points in the United States of America, live adults of O. rhinoceros have been intercepted five 
times, originating once from China, Malaysia, Sri Lanka, and twice from  Indonesia7, highlighting the potential 
for dispersion of the beetle outside its native range.

Advancements in geographic information systems (GIS) and remote sensing technology, as well as quick 
advances in relative statistical modeling and analysis, have offered new indicators for biogeographical stud-
ies on  pests20. Ecological niche models are commonly employed in forecasts of climate change to quantify its 
potential impacts on regional ecology and  biogeography21. The models are a group of approaches that combine 
species occurrence records with environmental data to create a correlative model of the environmental vari-
ables that can meet a species’ ecological requirements and predict its potential  habitat22. The models have been 
used to obtain the following outputs: (a) to assess the relative suitability of habitats known to be occupied by the 
species, (b) to evaluate the relative suitability of habitats in geographic areas not known to be occupied by the 
species, (c) to predict changes in the suitability of habitats over time given a specific scenario for environmental 
change, and (d) to estimate the species  occurrence23,24. Bioclimatic Prediction and Modeling System (BIOCLIM), 
Genetic Algorithm for Rule-set Prediction (GARP), CLIMEX model, Random Forest (RF), Booted Regres-
sion Trees (BRT) and the maximum entropy (MaxEnt) are applied as the main ecological niche models. The 
latter is a machine learning algorithm that employs the theory of maximum  entropy25–27. This model relies on 
known occurrence records of a species and corresponding environmental variables to analyze and predict the 
geographical distribution of the species when the entropy reaches the highest point under limited  conditions27. 
There is a risk of over-fitting and bias in the present locations for MaxEnt modeling, and this can limit the 
model’s  performance28,29. However, the model has several advantages including the use of presence only records 
because species absence records are rarely available or reliable, the model results are continuous, which allows 
classification of levels of suitability in different areas, and the model uses a generative approach by incorporating 
environmental data from the study area thereby avoiding the need for absence  data25,27,30. MaxEnt has a high 
simulation accuracy, and has been widely used in the prediction of favorable locations for insects such as Dal-
bulus maidis (DeLong) (Hemiptera: Cicadellidae)31, (Coleoptera: Cerambycidae)32,33, Lycorma delicatula White 
(Hemiptera: Fulgoridae)34, Daktulosphaira vitifoliae Fitch (Homoptera: Phylloxeridae)35, and Planococcus ficus 
Signoret (Hemiptera: Pseudococcidae)36.

Climate change and global warming will have a significant impact on species distribution and abundance, as 
well as the extent of pest losses, affecting crop output and food  security37. Research has shown that increased tem-
peratures, rising  CO2 levels in the atmosphere, and changing precipitation patterns all have a substantial impact 
on agricultural production and agricultural insect  pests38. Given that climate change will lead to a rise in pest 
outbreaks and changes in pest behavior and risk of  invasion37,39, it is essential to understand how climate change 
influences the geographical distribution of agricultural pests such as O. monoceros and O. rhinoceros, which is a 
prerequisite for developing ecological friendly integrated pest management (IPM)  strategies40. Previous studies 
on O. monoceros and O. rhinoceros have mainly focused on management strategies, biological characteristics, 
and environmental factors that influence the population dynamics and  abundance10,41. However, risk maps for 
surveillance and monitoring are quite insufficient at this  moment7. Therefore, in this study, for the first time, 
we have used the MaxEnt model and ArcGIS software to quantify and map the geographical distribution of O. 
monoceros and O. rhinoceros.

Methods
We divided the analysis process into four steps: (1) acquisition of occurrence records; (2) preparation of environ-
ment variables; (3) MaxEnt modeling; and (4) production of the potential distribution maps for O. monoceros 
and O. rhinoceros. The technical flow chart of our study is depicted in Fig. 1.
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Occurrence records of O. monoceros and O. rhinoceros. A 3-year nationwide survey to collect field 
data was conducted in palm plantations in Ghana for O. monoceros. The locations where O. monoceros was 
found were geolocated using a handheld GPS device. The presence of any of the developmental stages (i.e., eggs, 
larvae, pupae, and adults) and damaged symptoms were considered the existence of the pest. Since it is critical 
to have enough data points for accurate modelling, the field data were enriched by an extensive scientific litera-
ture search utilizing online databases such as Web of Science, Science Direct, Google, Google Scholar, PubMed, 
and MEDLINE (Supplemental information Table S1). The locations of occurrence O. rhinoceros were obtained 
from scientific literature by an extensive article search utilizing online databases such as Web of Science, Science 
Direct, Google, Google Scholar, PubMed, and MEDLINE (Supplemental information Table S1) by searching 
online using keywords, i.e., Oryctes rhinoceros and O. rhinoceros. East longitudes and north latitudes were trans-
formed to positive values, while west longitudes and south latitudes were converted to negative  values27,33,42. The 
latitudes and longitudes were proofread for accuracy using Google Earth. Duplicate records, fuzzy records, and 
neighboring records were all eliminated based on MaxEnt’s  requirements43. Overall, 322 and 304 occurrence 
records for O. monoceros and O. rhinoceros, respectively, were used for mapping the global geographical distribu-
tion of the two pests (Fig. 2).

Environmental variables. Environmental variables affect the habitat and ecological niche of  species27. 
These variables, together with the occurrence records, were used to model and map the spatial distribution of 
the two pests. The environmental variables consisted of climatic variables, as well as human, and geographical 
factors (Table 1).

The bioclimatic variables used for the mapping were obtained from the Global Climate Data website (Version 
2.0, http:// www. world clim. org/), spanning 30 years from 1970 to 2000. The NASA Surface Meteorology and 
Solar Energy (https:// eosweb. larc. nasa. gov/) global mean annual relative humidity datasets were transformed 
from a shape file to a raster layer as one of our input data, and 2.5 arc minutes with a spatial resolution of 5 km. 
As for the geographical factors, previous work showed that vegetation affected infestations of O. rhinoceros in 
young oil palms replanting in  Malaysia44. It was also observed that some insects are limited to a small range of 
altitudes, whereas others are found in a large range of  elevations45. Thus, we included vegetation and elevation 
as the geographical factors in the mapping of the two pests. In a series of four studies, researchers observed that 
cover crops reduced the abundance of the  beetles44. Moreover, Normalized Difference Vegetation Index (NDVI) 
are commonly used to represent the development of plant  canopy21,46–49. Therefore, NDVI dataset with a 5 × 5 km 
spatial resolution and a 15-day interval temporal resolution, obtained from Mapping Studies (GIMMS) group 
(http:// glcf. umd. edu/), were used as a substitute of vegetation for this work. We computed the mean yearly NDVI 

Figure 1.  Technical flow chart of study.

http://www.worldclim.org/
https://eosweb.larc.nasa.gov/
http://glcf.umd.edu/
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using these datasets from 1982 to 2015 and used it as one of the input layers for machine learning  models21. 
Land cover also affects the diversity and distribution of  pests50. Because thermal accumulation drives develop-
ment in many ectothermic species, elevated urban temperatures have the most pronounced consequences on 
 ectotherms51,52. In this study, we used Pearson correlation to remove collinearity among predictor variables and 
those with correlation coefficients |r|≥ 0.7 were excluded from the final model (Table 2). As a result, we were able 
to select 10 environmental variables for the final simulation (Table 3).

Modeling analysis. MaxEnt is a machine learning algorithm that employs the theory of maximum 
 entropy25–27. This model relies on known occurrence records of an organism and corresponding environmental 
variables to analyze and predict the geographical distribution of the organism when the entropy reaches the 
highest point under limited  conditions27. The entropy formula can be defined as:

ln this natural logarithm, π as the unknown probability distribution over a finite set of pixels X within the 
study area is approximated by π̂ . For each x, π̂ must be assigned a non-negative probability, when the integration 
of all the probabilities must equal one.

In this study, MaxEnt software version 3.4.1 was used to quantify the potential global distribution of O. 
monoceros and O. rhinoceros. The model has the advantage of being user-friendly for only requiring a small 
sample size to make accurate  predictions53,54. In this study, 100 repetitions of the ten-fold cross-validation were 

(1)H
(
π̂
)
= −

∑

x∈X

π̂(x)lnπ̂(x)

Figure 2.  Occurrence records of O. monoceros and O. rhinoceros. ESRI ArcMap 10.2.2 (https:// suppo rt. esri. 
com/ en/ Produ cts/ Deskt op/ arcgis- deskt op/ arcmap/ 10-2- 2# downl oads).

https://support.esri.com/en/Products/Desktop/arcgis-desktop/arcmap/10-2-2#downloads
https://support.esri.com/en/Products/Desktop/arcgis-desktop/arcmap/10-2-2#downloads
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performed for O. monoceros and O. rhinoceros in MaxEnt, respectively, and every model was run for 500 iterations 
to reduce model uncertainty. The area under the curve (AUC) and true skill statistic (TSS) were used to quantify 
the accuracy of the  approach55,56. The AUC value lies from 0 to 1, with a value closer to 1 indicating higher model 
prediction accuracy, whereas an AUC value greater than 0.7 corresponds to better  performance55. The TSS value 
ranges from − 1 to 1, and the closer the value is to 1, the better the prediction is, with ranges between 0.6 and 
1 indicating a higher model  accuracy56. The model estimates the contribution of the different environmental 
variables to the geographical distribution of the pests, and the mechanism by which the variables specifically 
affect the distribution is presented through the marginal response curve. To quantify the areas suitable for both 
O. monoceros and O. rhinoceros, we employed ArcGIS software’s inbuilt Tabulate Area tool (version 10.1)57,58.

Ethical approval. This article does not contain any studies with human participants or animals performed 
by any of the authors.

Results
Prediction accuracy of the MaxEnt model. The projected spatial distribution results and the actual 
distribution of O. monoceros and O. rhinoceros have a high degree of overlap, indicating that the results can be 
applied to the appropriate regionalization of these species (Fig. 2a and b). The MaxEnt model performance was 
determined using the distribution points of O. monoceros and O. rhinoceros, and 10 environmental variables. The 
test data of AUC for O. monoceros and O. rhinoceros were 0.976 and 0.975, respectively (Fig. 3a and b). The TSS 
value for O. monoceros was 0.90, whereas 0.88 was obtained for O. rhinoceros.

Global potential distribution of O. monoceros and O. rhinoceros. The simulated suitable areas for 
O. monoceros and O. rhinoceros covered the present-day known occurrence records of the pests (Fig. 4a and b). 
The model predicts overlaps of highly suitable areas for O. monoceros and O. rhinoceros, especially in parts of the 
north and east coasts of South America; west, south, and east coasts of Africa; south and east coasts of Asia; and a 
few suitable areas scattered in the coastal regions of Northern Oceania. The mapping shows that parts of Ghana, 
Nigeria, Tanzania, Mozambique and Côte d’Ivoire in Africa; Indonesia, India, Malaysia, Thailand, and the Phil-
ippines in Asia; Brazil, Venezuela and Colombia in the Americas; and Papua New Guinea in Oceania, that pro-
duce large quantities of palms are also suitable for the two pests. However, the results show that suitable global 
areas for O. rhinoceros (1279.00 ×  104  km2) are greater than that of O. monoceros (610.72 ×  104  km2) (Table 4).

The response curves of the three most important environmental variables with regard to their suitability for 
the prediction of O. monoceros and O. rhinoceros global distribution are shown in Fig. 5. The response curve for 
temperature annual range shows that there is less chance of O. monoceros colonisation when temperature annual 
range increases (Fig. 5a). The predictive probability of the O. monoceros to the land cover variable demonstrates 

Table 1.  Nineteen (19) variables used for mapping the global distribution of O. monoceros and O. rhinoceros 
with the code and units.

Categories Environmental variables Code/unit Data source

Climatic factors

Annual mean temperature Bio1 (°C)

WorldClim version 2

Mean diurnal range (mean of monthly (max 
temp–min temp)) Bio2 (°C)

Isothermality (Bio2/Bio7) (× 100) Bio3 (°C)

Temperature seasonality (standard devia-
tion × 100) Bio4 (°C)

Max temperature of warmest month Bio5 (°C)

Min temperature of coldest month Bio6 (°C)

Temperature annual range (Bio5-Bio6) Bio7 (°C)

Mean temperature of warmest quarter Bio8 (°C)

Mean temperature of coldest quarter Bio9 (°C)

Annual precipitation Bio10(mm)

Precipitation of wettest month Bio11 (mm)

Precipitation of driest month Bio12 (mm)

Precipitation seasonality (coefficient of 
variation) Bio13 (mm)

Precipitation of wettest quarter Bio14 (mm)

Precipitation of driest quarter Bio15 (mm)

Geographical factors
Elevation (m) Shuttle radar topography mission (SRTM)

Vegetation Global inventory modelling and mapping 
studies (GIMMS) group

Human factors
Land cover International geosphere-biosphere pro-

gramme (IGBP)

Urban accessibility European Commission Joint Research Center



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17439  | https://doi.org/10.1038/s41598-022-21367-1

www.nature.com/scientificreports/

that the closed shrublands is the most critical class determining the geographic suitability for O. monoceros occur-
rence (Fig. 5b). Moreover, the predictive probability of the presence of O. monoceros colonisation was high when 
precipitation seasonality ranged between 40 and 80 mm (Fig. 5c). With O. rhinoceros, the predictive probability 
of its geographic suitability decreased when temperature annual range increases (Fig. 5d), while probability of 
colonisation increases with an increase of precipitation in wettest month (Fig. 5e). The response curve obtained 
for elevation showed that the predictive probability of O. rhinoceros colonisation was high at elevations ranging 
between 0 and 2000 m (Fig. 5f).

Table 2.  Correlation between environmental variables for the final model of O. monoceros and O. rhinoceros. 
The depth-colored shading reflects the level of correlation between variables below 0.7 (blue) and more than 0.7 
(including 0.7) (red).

Bio1 1  

Bio2 0.49  1  

Bio3 0.82  0.34  1  

Bio4 
−

0.81  

−

0.16  

−

0.89  
1  

Bio5 0.89  0.68  0.57  
−

0.46  
1 

Bio6 0.97  0.32  0.88  
−

0.92  
0.75 1 

Bio7 
−

0.70  
0.06  

−

0.83  
0.97  

−

0.31 

−

0.86 
1 

Bio8 0.93  0.60  0.62  
−

0.54  
0.99 0.81 

−

0.41 
1 

Bio9 0.98  0.39  0.88  
−

0.91  
0.78 0.99 

−

0.83 
0.84 1 

Bio10 0.38  
−

0.25  
0.58  

−

0.56  
0.12 0.49 

−

0.61 
0.19 0.46 1 

Bio11 0.44  
−

0.12  
0.58  

−

0.57  
0.21 0.52 

−

0.58 
0.28 0.50 0.90 1 

Bio12 0.08  
−

0.33  
0.26  

−

0.26  

−

0.10 
0.19 

−

0.34 

−

0.04 
0.15 0.71 0.40 1  

Bio13 0.34  0.47  0.25  
−

0.18  
0.39 0.25 

−

0.06 
0.37 0.30 

−

0.15 
0.17 

−

0.51  
1 

Bio14 0.44  
−

0.14  
0.59  

−

0.57  
0.20 0.52 

−

0.59 
0.27 0.50 0.92 0.99 0.44  0.13 1 

Bio15 0.11  
−

0.34  
0.29  

−

0.28  

−

0.09 
0.21 

−

0.37 

−

0.02 
0.17 0.75 0.43 0.99  

−

0.51 
0.47 1 

Elevation 
−

0.04  
0.34  0.11  

−

0.08  

−

0.08 

−

0.04 
0.00 

−

0.12 

−

0.01 

−

0.11 

−

0.05 

−

0.15  
0.26 

−

0.06 

−

0.15 
1 

Vegetation 0.45  
−

0.01  
0.52  

−

0.48  
0.30 0.49 

−

0.47 
0.34 0.47 0.72 0.66 0.44  

−

0.11 
0.68 0.47 − 0.10 1 

Land cover 0.01  0.12  
−

0.14  
0.01  0.03 

−

0.01 
0.03 0.03 0.01 

−

0.42 

−

0.35 

−

0.33  
0.20 

−

0.37 

−

0.35 
0.05 − 0.56 1 

Urban 

accessibility 

−

0.54  

−

0.38  

−

0.29  
0.22  

−

0.64 

−

0.44 
0.13 

−

0.63 

−

0.45 

−

0.12 

−

0.17 
0.02  

−

0.14 

−

0.16 
0.01 − 0.04 − 0.43 0.20 1 

Table 3.  The environmental variables for modeling.

Categories Environmental variables

Climatic factors

Bio2

Bio7

Bio8

Bio11

Bio12

Bio13

Geographical factors
Elevation

Vegetation

Human factors
Land cover

Urban accessibility
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Figure 3.  Receiver operating characteristics (ROC) curves and area under the curve (AUC) values of the 
MaxEnt models: (a) O. monoceros; (b) O. rhinoceros.

Figure 4.  Global potential distribution maps generated by MaxEnt for: (a) O. monoceros; (b) O. rhinoceros. 
MaxEnt 3.4.1 (https:// biodi versi tyinf ormat ics. amnh. org/ open_ source/ maxent/) and ESRI ArcMap 10.2.2 
(https:// suppo rt. esri. com/ en/ Produ cts/ Deskt op/ arcgis- deskt op/ arcmap/ 10-2- 2# downl oads).

https://biodiversityinformatics.amnh.org/open_source/maxent/
https://support.esri.com/en/Products/Desktop/arcgis-desktop/arcmap/10-2-2#downloads
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Contribution of environmental variables. Our results showed that the temperature annual range (Bio7, 
47.2%) contributed most to the O. monoceros model, followed by land cover (31.2%), precipitation seasonality 
(Bio13, 6.1%), and precipitation of wettest month (Bio11, 5.5%) (Table 5). The cumulative contribution of the 
four variables was 90%. For O. rhinoceros, temperature annual range (Bio7, 33.6%) contributed most to the 
model, followed by precipitation of wettest month (Bio11, 28.6%), elevation (14.2%), and land cover (8.8%). The 
four factors contributed 85.2% in total to the O. rhinoceros model (Table 5).

Table 4.  The suitable area (ten thousand  km2) of O. monoceros and O. rhinoceros by continent.

Continent Suitable area (ten thousand  km2)

O. monoceros

Asia 137.09

South America 150.24

Africa 269.80

North America 32.98

Australia 9.94

Oceania 2.84

Europe 7.83

Antarctica 0.00

Total 610.72

O. rhinoceros

Africa 223.58

Antarctica 0.00

Asia 610.63

Australia 15.40

Europe 6.59

North America 70.13

Oceania 13.36

South America 339.32

Total 1279.00

Figure 5.  Response curves of the most significant environmental variables in mapping suitable areas of O. 
monoceros (a–c) and O. rhinoceros (d–f). Note: In part b, 1–16 means evergreen needleleaf forests, evergreen 
broadleaf forests, deciduous needleleaf forests, deciduous broadleaf forests, mixed forests, closed shrublands, 
open shrublands, woody savannas, savannas, grasslands, permanent wetlands, croplands, urban and built-up 
lands, cropland/natural vegetation mo-saics, permanent snow and ice, and barren, respectively.
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Discussion
Ecological niche modeling has provided insight into identifying areas suitable for species and estimating the 
potential impact of environmental variables on their geographical  distribution55. It has been quite helpful for 
mapping the niche shifts of plant  diseases59,60,  pests61, and  plants62,63. In the present study, we conducted eco-
logical niche modelling by combining MaxEnt with elevation of O. monoceros and O. rhinoceros, the two most 
harmful pests to worldwide palms.

We obtained the global potential distribution maps of O. monoceros and O. rhinoceros from the MaxEnt 
modeling. The prediction accuracy for the two pests based on AUC and TSS was  good61,64, suggesting that the 
quantification of the geographical distribution was reliable and could provide critical guidance for policy formu-
lation and mitigation measures, especially in regions where the pests have not emerged yet. We also generated 
the predicted global distribution map of the two pests using aeronautical reconnaissance coverage geographical 
information system. The tool has been applied in mapping the geographical distribution of pests, such as Spo-
doptera frugiperda (J.E.Smith) (Lepidoptera: Noctuidae) in central  Asia65, Bactrocera dorsalis Hendel (Diptera: 
Tephrididae) in  China66, and Episimus utilis Zimmerman (Lepidoptera: Tortricidae) in  Brazil67.

Climate change, playing a significant role in the dispersal and outbreaks of agricultural pests, has been 
associated with the rise in  temperature68. Recent climate models predict a 1 °C increase in global mean annual 
temperatures by 2025 and a potential 3 °C rise by the end of the  century69. As a result, the anthropogenically 
induced climatic change caused by increased quantities of the earth’s atmospheric greenhouse gases is projected 
to impact agricultural pests  considerably70. Our study analyzed the important environmental variables that 
influence the distribution of O. monoceros and O. rhinoceros based on the MaxEnt model. Our models’ predic-
tions identified temperature annual range, followed by land cover, and then precipitation seasonality as the most 
important environmental variables that determined the distribution of O. monoceros. In contrast, Aidoo et al.58 
reported that annual temperature variation, followed by seasonality of temperature, then isothermality, were 
the main environmental variables determining the distribution of O. monoceros based on Boosted regression 
tree (BRT) model.

According to the response curve, closed shrublands were the most important land cover variable affecting 
the distribution of O. monoceros. The presence of dead woods and dead palm trunks serve as a breeding site for 
the pest, whereas cover crops serve as a barrier preventing the beetles from identifying breeding  sites10. For O. 
rhinoceros, temperature annual range contributed most to the prediction, followed by annual precipitation, sug-
gesting that the temperature condition is more important than rainfall condition in defining the distribution of 
the pest. In contrast, minimum temperature of coldest month, followed by precipitation of wettest month were 
reported by Hao et al.57 as the main drivers of the global distribution of O. rhinoceros based on BRT model. Xu 
et al.71 reported that the precipitation of the wettest month was the most important driver of the potential distri-
bution of O. rhinoceros. The variation in the modeling results could be associated with the modeling technique, 
environmental variables and the number of O. rhinoceros distribution points. Nevertheless, previous studies have 

Table 5.  Environmental variables considered in Oryctes monoceros and O. rhinoceros niche models and mean 
percentage contribution of environmental variables in the models; values were averaged over ten repeated runs.

Environmental variables Relative contribution (%)

O. monoceros

Bio7 47.2

Land cover 31.2

Bio13 6.1

Bio11 5.5

Vegetation 3.8

Bio12 2.8

Bio2 2.4

Elevation 0.5

Bio8 0.4

Urban accessibility 0.1

O. rhinoceros

Bio7 33.6

Bio11 28.6

Elevation 14.2

Land cover 8.8

Bio8 4.8

Bio2 3.8

Urban accessibility 2.8

Vegetation 1.6

Bio12 1

Bio13 0.8
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shown that temperature affects the biology of O. rhinoceros, and the preferred temperature for the development 
and survival of O. rhinoceros ranges from 27 to 29 °C and relative humidity ranging from 85 to 95%72,73.

Temperature is one of the most important abiotic factors affecting the growth, development, reproduction, 
and survival of  insects74. In this study, we found that temperature annual range was the most critical environmen-
tal variable for both beetles. The impact of temperature on insect growth varies with the species, but it is quite 
certain that lower temperatures usually result in a slower rate of  development75. More than that, temperature 
affects a variety of biological properties of insects, including the sex  ratio76, adult lifespan, survival, fecundity, 
and  fertility77, leading to a significant impact on insect colonization, distribution, abundance, behavior, life his-
tory, and  fitness78,79.

The risk map of O. monoceros shows a potential expansion to suitable areas outside its current known distrib-
uted areas, notably in Latin America and Asia. Similarly, the simulation of potential areas suitable O. rhinoceros 
also covers areas outside the current distribution of the pest. These areas include parts of West and East Africa, 
Oceania, and Latin America. The globalization of the international horticulture plant trade has increased the 
risk of inadvertent spread of leaf beetles from their original geographic locations to uninfected  areas80. The 
unintentional transport of plant materials on agricultural equipment such as farm machinery and tools may be 
the most likely mode of spread to areas that the pest has not yet arrived. The record of O. monoceros in  Yemen17 
suggests that the pest can invade new regions, including Asia and other regions as same as we predicted in our 
study. An earlier study associated with the spread of O. rhinoceros from South and Southeast Asia to Guam to the 
transport of commercial soil  products19. It is therefore imperative for stakeholders and plant regulatory services 
and NGOs to take an interest in safeguarding the oil palm, coconut, and date palm industry to stay alert for 
the pests as well as devising countermeasures for the control and prevention of O. monoceros and O. rhinoceros, 
especially in uninvaded areas.

Our findings showed that the total areas suitable for O. monoceros was 610.72 ×  104  km2. Of this area, the 
percentage of suitable area in the native range was slightly lower than that of the predicted habitat suitability. 
Specifically, our simulation results show that about 55.8% of the predicted suitable areas were found outside the 
native range of O. monoceros. In general, the global suitable areas for O. monoceros, as simulated in this study, 
was slightly lower than that of Aidoo et al.58. The observed variation may be that the present study included 
human, climatic and geographic factors in the present simulation, while Aidoo et al.58 considered only climatic 
and geographic factors. Notwithstanding, there also some similarities in the areas predicted to be suitable for 
O. monoceros in both studies. The simulation for O. rhinoceros using the BRT model show that there are suit-
ability in the major palm producing  countries57 which is consistent with MaxEnt modeling, as suitable areas are 
found in Indonesia, Malaysia, Tanzania, India, Philippines and Brazil. In the present study, suitable areas for O. 
rhinoceros was found to be 1279.00 ×  104  km2 with about 52.3% habitat suitability outside its native range. These 
predicted areas are less than that of Hao et al.57, and the variations could be associated with the input data, such 
as land cover, urban accessibility and vegetation. It could also be due to the modeling approach used for the dif-
ferent studies. Previous studies showed that different modeling methods affected ecological niche predictions 
of species  differently81,82.

In this study, urban accessibility was the least (0.1%) important variable influencing the distribution of O. 
monoceros, while the same variable ranked seventh (2.8%) among the most important variables determining 
the distribution of O. rhinoceros. The results showed that the relative contribution of elevation to O. monoceros 
and O. rhinoceros models were 0.5 and 14.2%, respectively. While the relative contribution of vegetation to O. 
moncoeros model was 3.8, 1.6% was obtained for O. rhinoceros. Moreover, the relative contribution of urban 
accessibility for O. monoceros differed from that of O. rhinoceros, with the latter contributing to 2.8% of its model. 
This, however, suggests that the two species responded differently to these human and geographical factors and 
had a significant influence on the extent of the geographical distribution of the two species, as illustrated in the 
risk maps. The effects of land cover, urban accessibility, elevation, and NDVI could also influence host distribu-
tion through their effects on host food and habitats. For example, species’ habitat requirements are likely to be 
influenced by the presence of nearby  bushes83. Moreover, vegetation on the ground, the effect of cover crops 
like natural, legume, or grass, and the presence of bare ground all have an impact on the number of beetles in 
their breeding  sites84.

Conclusions
For the first time, we have combined MaxEnt with elevation, vegetation, urban accessibility, land cover, and biocli-
matic variables to determine the potential geographical distribution of O. monoceros and O. rhinoceros. Our study 
has created risk maps for the two major pests of palms to facilitate decision-making and the timely launching of 
preventive measures. The risk maps identify suitable areas outside the currently distributed regions of the pests. 
In this study, we found that thermal conditions were the most important factors governing the spread of pests.

Data availability
All data generated or analysed during this study are included in this published article and the supplementary 
information files.
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