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Diagnostic performance 
of convolutional neural networks 
for dental sexual dimorphism
Ademir Franco1,2,6, Lucas Porto3, Dennis Heng1, Jared Murray1, Anna Lygate1, 
Raquel Franco4, Juliano Bueno5, Marilia Sobania6, Márcio M. Costa7, Luiz R. Paranhos4*, 
Scheila Manica1 & André Abade8

Convolutional neural networks (CNN) led to important solutions in the field of Computer Vision. 
More recently, forensic sciences benefited from the resources of artificial intelligence, especially in 
procedures that normally require operator-dependent steps. Forensic tools for sexual dimorphism 
based on morphological dental traits are available but have limited performance. This study 
aimed to test the application of a machine learning setup to distinguish females and males using 
dentomaxillofacial features from a radiographic dataset. The sample consisted of panoramic 
radiographs (n = 4003) of individuals in the age interval of 6 and 22.9 years. Image annotation was 
performed with V7 software (V7labs, London, UK). From Scratch (FS) and Transfer Learning (TL) 
CNN architectures were compared, and diagnostic accuracy tests were used. TL (82%) performed 
better than FS (71%). The correct classifications of females and males aged ≥ 15 years were 87% and 
84%, respectively. For females and males < 15 years, the correct classifications were 80% and 83%, 
respectively. The Area Under the Curve (AUC) from Receiver-operating Characteristic (ROC) curves 
showed high classification accuracy between 0.87 and 0.91. The radio-diagnostic use of CNN for sexual 
dimorphism showed positive outcomes and promising forensic applications to the field of dental 
human identification.

Several techniques used in forensic sciences rely on subjective operator-dependent  procedures1. The decision-
making process behind these procedures requires experience and may lead to error rates with a significant impact 
in  practice2. Important contributions of forensic dentistry to forensic sciences emerged from radio-diagnostic 
procedures, such as dental charting for human  identification3–5, and dental staging for age  estimation6–10. Com-
puter-based tools were developed to create a man–machine interface and reduce bias from the operator’s side. 
Software like KMD PlassData DVI™ (KMD s/a, Ballerup, Denmark) added quality control procedures to the 
reconciliation process, made disaster victim identification less time-consuming, and guaranteed more straight-
forward human  identifications11. In dental age estimation, promising automated techniques abbreviated the 
number of manual interactions needed to allocate developmental stages to teeth examined on  radiographs12. 
While dental charting has a fundamental role in comparative human identification, dental age estimation con-
tributes indirectly as a reconstructive factor.

Among the reconstructive factors, sex plays a fundamental part in narrowing lists of missing  persons13. When 
biological/physical sex-related parameters are available they may lead to binary segregation of the victims (into 
males and females) and limit the number of required antemortem (AM) and postmortem (PM)  comparisons14. A 
recent systematic literature review with over a hundred eligible studies highlighted the importance of dentomax-
illofacial features in the process of sexual  dimorphism15. According to the authors, the existing techniques for 
sexual dimorphism based on teeth can be biochemical (e.g. from the analysis of dental tissues), metric (namely 
measuring teeth), and non-metric (e.g. relying on dental morphology)15. Biochemical techniques seem to be more 
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 accurate15 and represent the current state-of-the-art when it comes to dental analyses. However, the application 
of these techniques in practice is restricted because they require advanced facilities and tools that are not usually 
available in most medicolegal institutes, especially in developing countries.

The most common techniques debated in the current scientific literature fall within the group of metric 
analyses, in which linear measurements (mesiodistal width and intercanine distance) and volumetric assessments 
can be performed ex-vivo or through 2D (radiographic/photographic) 3D (tomographic scan)  imaging16. In this 
context, examiner reproducibility is a drawback since millimetric measurements and volumetric analyses require 
extensive calibration and training. In order to reduce operator-dependent interactions, artificial intelligence 
could figure as an option to enhance diagnostic performances of sex estimation techniques. Machine learning 
algorithms are known to learn underlying relationships in data and support the decision-making process (or 
even make decisions without requiring explicit instructions)17. In 1989, the concept of a Convolutional Neural 
Network (CNN) was introduced and demonstrated enormous potential for tasks related to computer vision. 
CNNs are among the best learning algorithms for understanding images and have demonstrated exemplary 
performance in tasks related to image segmentation, classification, detection, and  retrieval18. One of the most 
outstanding features of CNNs is their ability to explore spatial or temporal correlation in the data. The CNN 
topology is divided into several learning stages that consist of a combination of convolutional layers, non-linear 
processing units, and subsampling  layers19. Since the late ’90 s, several improvements in the learning architecture 
of CNNs were made to enable the assessment of large, heterogeneous, complex, and multiclass  datasets19. The 
proposed innovations included the modification of image processing units, optimization for the assessment of 
parameters and hyperparameters, new “design” patterns, and layer connectivity 18,20,21.

In this scenario, artificial intelligence could find productive grounds for the use of radiographic datasets and 
could be challenged for sexual dimorphism. However, given the existing scientific literature and the morpho-
logical parameters currently known to be dimorphic (e.g. the maxillary  sinuses22), testing the performance of 
machine learning algorithms to estimate the sex of adults would be merely confirmatory. In order to propose 
a real challenge to artificial intelligence, sexual dimorphism could be performed with a sample of children and 
juveniles—a population in which anthropological indicators of sex are not well-pronounced or at least not fully 
expressed.

In country-specific jurisdictions, the admissibility of evidence in Court depends on several technical aspects, 
including the knowledge about the error of the method (factor including in Daubert’s rule, for instance). With 
that in mind, testing forensic solutions developed with artificial intelligence, and investigating the accuracy of 
the method (and inherent error) are initial steps prior to implementing computer-aided tools in practice. This 
diagnostic study aimed to use a radiographic dataset in a machine learning setup to promote an automated 
process of sexual dimorphism based on dentomaxillofacial features of children and juveniles.

Materials and methods
Ethical aspects and study design. This was a diagnostic study with retrospective sample collection. The 
methodological architecture was based on a medical imaging dataset to feed machine learning within the con-
text of artificial intelligence. Informed consent was waived because the study was observation and required 
retrospective sampling from a pre-existing image database, but ethical approval was obtained from the Eth-
ics Committee in Human Research of Faculdade Sao Leopoldo Mandic. The Declaration of Helsinki (DoH), 
2013, was followed to assure ethical standards in this medical research. The sample was collected from a pre-
existing institutional image database. Hence, no patient was prospectively exposed to ionizing radiation merely 
for research purposes. All the images that populated the database were obtained for diagnostic, therapeutic, or 
follow-up reasons.

Sample and participants. The sample consisted of panoramic radiographs (n = 4003; 1809 males and 
2194 females) collected according to the following eligibility criteria: Inclusion criteria—radiographs of male 
and female Brazilian individuals with age between 6 and 22.9 years. Exclusion criteria—panoramic radiographs 
missing patient’s information about sex, date of birth, and date of image acquisition; visible bone lesions and ana-
tomic deformity; the presence of implants and extensive restorative materials; severely displaced and/or super-
numerary teeth. The radiographs were obtained from a private oral imaging company in the Central-Western 
region of Brazil. The images were imported to an Elitebook 15.6" FHD Laptop with i5 (Hewlett-Packard, Palo 
Alto, CA, USA) for analysis.

The annotations were accomplished by three trained observers, with experience in forensic odontology, 
supervised by a forensic odontologist with 11 years of practice in the field. A bounding-box tool was used to 
annotate the region of interest in Darwin V7 (V7 Labs, London, UK) software  package23. Vertically (y-axis), 
the box was positioned covering the apical region of the most superior teeth whilst the lower limit covered the 
apical region of the most inferior teeth. Laterally (x-axis), the box ended right after the third molars, bilaterally. 
The final selection of the region of interest was represented by a rectangular box covering all the teeth visible in 
the panoramic radiograph. The images were anonymized for annotation, hiding age and sex information. The 
software registered the annotations that were later tested for association with sex.

Pre-processing and training approach. The full dataset of panoramic radiographs was initially divided 
into the age groups “under 15 years" (n = 2,254) and “equal or older 15 years" (n = 1,749). This division was justi-
fied to challenge the network regarding the sexual dimorphism. In children, sexual dimorphism is more difficult 
because the expression of external sexual features is not pronounced. Hence, the age of 15 years represents a 
transitional point to a fully developed permanent dentition (except for the third molars)8. Normally, all the per-
manent teeth will have fully developed crowns around this  age8. The roots, if not developed, will present a late 
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stage of  formation16. In each age group (< 15 years vs. ≥ 15 years) a single problem was established: sexual dimor-
phism, and a binary outcome was expected regarding sex (male vs. female), and age (< 15 years vs. ≥ 15 years). 
Hence, four classes were considered in this study: under 15 males vs. under 15 females; and over 15 males vs. 
over 15 females (Fig. 1).

Next, the images were pre-processed preserving high-level of detail and signal-to-noise ratio while avoiding 
photometric nonlinearity and geometric distortion. Initially, in this study, we used eight CNNs architectures 
namely DenseNet121, InceptionV3, Xception, InceptionResNetV2, ResNet50, ResNet101, MobileNetV2, and 
VGG16. DenseNet121 was selected in this study because this is one of the most successful models of recent times, 
and is available from open sources (e.g. Pytorch, TensorFlow and Keras API). Additionally, it must be noted 
that DenseNet121 outperformed the other architectures during a pilot study that we performed with 100 epochs 
(Table 1). Table 2 shows the characteristics of the architecture models used in this study.

In this study, we evaluated the DenseNet121 architecture using two training approaches: From Scratch (FS) 
and Transfer Learning (TL). With FS the network weights are not inherited from a previous model but are ran-
domly initialized. It requires 1) a larger training set, 2) the risk of  overfitting`1`28 is higher since the network 
has no experience from previous training sessions, and 3) the network needs to rely on the input data to define 
all inherent weights. However, this approach allows the creation of a network topology that can work towards a 
specific problem/question. TL is a method that reuses models applied to specific tasks as a starting point for new 
domains of interest. Consequently, the network borrows data (with original labels) or extracts knowledge from 
related fields to obtain the highest possible performance in the area of  interest24,25. As per standard practices, TL 
can be applied using a base neural network as a fixed feature extractor. This way the images of the target dataset 
are fed to the deep neural network. Later, the features that are generated as input to the final layer classifier are 
 extracted26. Through these features, a new classifier is built, and the model is created. Specifically for the base 
network (last layer), a fine-tuning strategy is added, and the weights of previous layers are also modified. We used 
pre-trained weights based on the ImageNet  model27 and implemented transfer learning to best fit our dataset.

To avoid overfitting and improve the generalizability of the evaluated models (due to the quantitative restric-
tion of images in the data set) we used a computational framework  (Keras29) for pre-processing layers to create 
a pipeline augmentation layers of image data—which can be used as an independent pre-processing code in 
non-Keras30 workflows. These layers apply random augmentation transformations to a batch of images and are 
only active during  training30. Table 3 presents each layer with its respective implemented parameters.

A stochastic optimization algorithm (SGD) was used to optimize the training process. We initially set a 
base learning rate of 1 ×  10−3. The base learning rate was decreased to 6 ×  10−6 with increased iterations. In the 
validation process, we used the k-fold cross-validation  method31,32. The dataset was divided into 5 (k) mutu-
ally exclusive subsets of the same size (five sets of 20% of the sample). This strategy creates a subset (20%) to be 
used for the tests and the remaining k − 1 (80%) is used to estimate the parameters (training). The five sets were 
dynamic over five repetitions for each of the architectures (TL and FS). It means that all the training samples had 
a different (randomly selected) dataset built from the original sample. Hence, images used during the training 
process were not used in the subsequent validation stage within the same k-fold training-test. After this process 
quantification of the model accuracy is feasible.

Diagnostic metrics. To evaluate the (radio-diagnostic) classification performance of the proposed archi-
tecture, the loss, overall accuracy, F1-scores, precision, recall, and specificity were selected as the accuracy per-
formance metrics (Table 4). In the training stage, the internal weights of the model are updated during several 
iterations. We supervised each iteration in the training period, registering the weights with the best predictive 
power of the model determined by the overall accuracy metric.

Additionally, this study quantified the performance of the CNN into a confusion  matrix33 for FS and TL. 
The matrix contains information about true (real) and predicted classifications accomplished the CNN. This 

Figure 1.  Model structured for this study showing the workflow from sampling, image processing, annotation, 
cross-validation, training/validation to classification.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17279  | https://doi.org/10.1038/s41598-022-21294-1

www.nature.com/scientificreports/

Table 1.  Summarized results of the metrics of the seven models evaluated in a pilot test to support the 
decision-making process for the selection of a network. CNN convolutional neural network using transfer-
learning architecture.

CNN model Architecture K-fold 5 Loss

Metrics

Accuracy F1-score Precision Recall Specificity

DenseNet121
100 epochs
Batch size=32

TL

Fold 1 0.7780 0.8327 0.8193 0.8203 0.8185 0.9213

Fold 2 0.6892 0.8227 0.7920 0.7920 0.7920 0.9112

Fold 3 0.6635 0.8114 0.7804 0.7808 0.7800 0.9121

Fold 4 0.7392 0.8162 0.8159 0.8169 0.8149 0.9320

Fold 5 0.6757 0.8262 0.8242 0.8261 0.8224 0.9334

Average 0.7091 0.8218 0.8064 0.8072 0.8056 0.9220

InceptionV3
100 epochs
Batch size=16

TL

Fold 1 0.8517 0.7640 0.7608 0.7649 0.7573 0.9037

Fold 2 0.5928 0.7640 0.7564 0.7615 0.7524 0.8953

Fold 3 0.7088 0.7503 0.7437 0.7464 0.7414 0.8988

Fold 4 0.6979 0.7712 0.7673 0.7715 0.7637 0.9095

Fold 5 0.6236 0.7599 0.7588 0.7679 0.7512 0.9043

Average 0.6950 0.7619 0.7574 0.7625 0.7532 0.9023

Xception
100 epochs
Batch size=32

TL

Fold 1 0.9429 0.7852 0.7749 0.7758 0.7740 0.9084

Fold 2 0.7903 0.8039 0.7732 0.7736 0.7728 0.9071

Fold 3 1.0323 0.7702 0.7603 0.7610 0.7596 0.9034

Fold 4 0.8688 0.8087 0.8079 0.8083 0.8075 0.9312

Fold 5 0.9424 0.7875 0.7871 0.7882 0.7862 0.9233

Average 0.9154 0.7911 0.7807 0.7814 0.7800 0.9147

InceptionResNetV2
100 epochs
Batch size=32

TL

Fold 1 0.9598 0.7915 0.7618 0.7629 0.7608 0.9053

Fold 2 0.9619 0.8127 0.8007 0.8024 0.7992 0.9142

Fold 3 0.9329 0.8064 0.7950 0.7955 0.7944 0.9132

Fold 4 0.8800 0.7962 0.7965 0.7968 0.7962 0.9272

Fold 5 0.7088 0.8324 0.8324 0.8336 0.8312 0.9387

Average 0.8886 0.8078 0.7973 0.7982 0.7964 0.9197

CNN model Architecture K-fold 5 Loss

Metrics

Accuracy F1-score Precision Recall Specificity

ResNet50
100 epochs
Batch size=32

TL

Fold 1 0.9303 0.7915 0.7626 0.7645 0.7608 0.9041

Fold 2 1.0381 0.8002 0.7881 0.7903 0.7860 0.9118

Fold 3 0.8592 0.8177 0.7872 0.7872 0.7872 0.9109

Fold 4 0.9334 0.8062 0.8066 0.8071 0.8062 0.9297

Fold 5 0.7910 0.8062 0.8072 0.8082 0.8062 0.9304

Average 0.9104 0.8043 0.7903 0.7915 0.7893 0.9174

ResNet101
100 epochs
Batch size=32

TL

Fold 1 0.9598 0.8014 0.7712 0.7721 0.7704 0.9064

Fold 2 0.8728 0.8102 0.7977 0.7987 0.7968 0.9175

Fold 3 0.9338 0.7952 0.7819 0.7827 0.7812 0.9110

Fold 4 0.8091 0.7962 0.7968 0.7989 0.7950 0.9229

Fold 5 0.8373 0.8075 0.8064 0.8067 0.8062 0.9308

Average 0.8826 0.8021 0.7908 0.7918 0.7899 0.9177

MobileNetV2
100 epochs
Batch size=32

TL

Fold 1 0.7950 0.7990 0.7682 0.7710 0.7656 0.9043

Fold 2 1.0042 0.7777 0.7501 0.7516 0.7487 0.8989

Fold 3 1.0015 0.7865 0.7752 0.7752 0.7752 0.9075

Fold 4 0.8395 0.7837 0.7838 0.7838 0.7837 0.9228

Fold 5 0.6802 0.8075 0.8086 0.8098 0.8075 0.9248

Average 0.8641 0.7909 0.7772 0.7783 0.7761 0.9117

VGG16
100 epochs
Batch size=32

TL

Fold 1 0.6843 0.8064 0.7769 0.7775 0.7764 0.9071

Fold 2 0.6431 0.8439 0.8125 0.8125 0.8125 0.9197

Fold 3 0.5552 0.8064 0.7949 0.7954 0.7944 0.9105

Fold 4 0.5840 0.7362 0.7376 0.7509 0.7262 0.8727

Fold 5 0.6014 0.7024 0.6990 0.7064 0.6924 0.8725

Average 0.6136 0.7791 0.7642 0.7685 0.7604 0.8965
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approach helps on finding and reducing bias and variance issues and enables adjustments capable of producing 
more accurate results. Another approach used in this study was the Receiver Operating Characteristic (ROC) 
 curve34, which is a diagnostic tool to enable the analysis of classification performances represented by sensitivity, 
specificity, and area under the curve (AUC). Visual outcomes were illustrated with gradient-weighted class activa-
tion mapping (Grad-CAM) to indicate the region on the panoramic radiograph that was more activated during 
the machine-guided decision to classify females and males. The study was performed with a Linux machine, 
with Ubuntu 20.04, an Intel® Core(TM) i7-6800 K processor, 2 Nvidia® GTX Titan Xp 12 GB GPUs, and 64 GB 
of DDR4 RAM. All models were developed using TensorFlow API version 2.535 and Keras version 2.5 29. Python 
3.8.10 was used for algorithm implementation and data  wrangling36.

Results
The performance of DenseNet121 architecture tested with FS and TL approaches showed that the former had an 
overall accuracy rate of 0.71 with a specificity rate of 0.87. With TL, the overall accuracy increased to 0.82 with 
a specificity rate of 0.92—between K-folds 1–5 TL accuracy floated between 0.81 to 0.83. All the other metrics 
quantified in this study confirmed the superior performance of TL over FS (Table 5).

A deeper look at FS and TL considering the metrics of loss and accuracy per epoch was presented in Figs. 2 
and 3, respectively. In both architectures, loss (which is the combination of errors after iterations) decreases 

Table 2.  Specifics of the CNN architectures applied and tested in this study. CNN Convolutional Neural 
Network, MB MegaBytes, M Million Parameters, SGD Stochastic Gradient Descent.

Model Size (MB)
Parameters 
(M) Depth Image size

Hyperparameters

Optimization 
algorithm Batch size Momentum

Weight 
decay

Learning 
rate

DenseNet121 33 8.1 121 224 × 224

SGD 32 0.9 1e-4 ~ 1e-6

Base 
Ir = 0.001
Max 
Ir = 0.00006
Step 
size = 100
Mode: 
triangular

ResNet50 98 25.6 107 224 × 224

ResNet101 171 44.7 209 224 × 224

Xception 88 22.9 81 299 × 299

InceptionV3 92 23.9 189 299 × 299

Inception-
ResNetV2 215 55.9 449 299 × 299

VGG16 526 138.4 16 224 × 224

MobileNetV2 14 3.5 105 224 × 224

Table 3.  Image data augmentation layers and parameters.

Layer Parameter

RandomTranslation height_factor = 0.1, width_factor = 0.1, fill_mode = ’reflect’

RandomFlip mode = ’horizontal_and_vertical’

RandomRotation factor = 0.1, fill_mode = ’reflect’, interpolation = ’bilinear’

RandomContrast factor = 0.1

Table 4.  Diagnostic metrics used to evaluate the performance of the investigated CNN architectures. CNN 
convolutional neural network.

Metrics Description

Loss
A loss function indicates how well the model assimilates the dataset. The loss function will output a higher value if the predic-
tions are off the actual target. Since our problem/question relies on a multi-class classification, we used cross-entropy within 
our loss function

Accuracy
The accuracy of a machine learning classification algorithm is one way to measure how often the algorithm classifies a data 
point correctly. This can be understood as the number of items correctly identified as either true positive or true negative out 
of the total number of items

F1-score Represents the average of precision and recall and measures the effectiveness of identification when recall and precision have 
balanced importance

Precision Agreement of true class labels with machine’s predictions. It is calculated by summing all true positives and false positives in 
the system, across all classes

Recall Effectiveness of a classifier to identify class labels. It is calculated by summing all true positives and false negatives in the 
system, across all classes

Specificity Known as the true negative rate. This function calculates the proportion of actual negative cases that have gotten predicted as 
negative by our model



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17279  | https://doi.org/10.1038/s41598-022-21294-1

www.nature.com/scientificreports/

progressively with the epochs, while accuracy increases, both during training and validation setups. TL, however, 
shows a more evident reduction of loss over time—within a shallow curve that ends close to zero by the end of 
the 100 epochs. This phenomenon is not observed in FS. Additionally, the accuracy of TL is represented by a 
more curvilinear improvement that starts over 0.5 increasing to nearly 1. In FS, the accuracy curve starts over 
0.6 (initially better) and stabilizes when it reaches 0.9. These outcomes show that TL had better improvement 
over sequential iterations.

Figure 4 shows the confusion matrix for the performance of DenseNet121 to classify males and females in the 
age groups below and above (or equal) 15 years. In the older group, FS approach reached 0.83 and 0.72 for the 
correct classification of females and males, respectively. In the younger group, the classification rates decreased 
to 0.79 and 0.53, respectively. With TL, the correct classification of females and males in the older group reached 

Table 5.  Quantified performances of DenseNet121 with FS and TL architectures. FS from scratch, TL transfer 
learning.

CNN model Architecture K-fold 5

Metrics

Loss Accuracy F1-score Precision Recall Specificity

DenseNet121
100 epochs
Batch size = 32

FS

Fold 1 0.6835 0.7215 0.7104 0.7272 0.6959 0.8705

Fold 2 0.6175 0.7166 0.6863 0.6916 0.6814 0.8627

Fold 3 0.6203 0.7141 0.7093 0.7133 0.7055 0.8719

Fold 4 0.6174 0.7200 0.7200 0.7284 0.7124 0.8840

Fold 5 0.7234 0.7099 0.7061 0.7187 0.6949 0.8844

Average 0.6524 0.7164 0.7064 0.7159 0.6980 0.8747

TL

Fold 1 0.7780 0.8327 0.8193 0.8203 0.8185 0.9213

Fold 2 0.6892 0.8227 0.7920 0.7920 0.7920 0.9112

Fold 3 0.6635 0.8114 0.7804 0.7808 0.7800 0.9121

Fold 4 0.7392 0.8162 0.8159 0.8169 0.8149 0.9320

Fold 5 0.6757 0.8262 0.8242 0.8261 0.8224 0.9334

Average 0.7091 0.8218 0.8064 0.8072 0.8056 0.9220

Figure 2.  Graphs representing the loss and evolutionary accuracy of the training process and learning 
validation with From Scratch (FS) architecture in DenseNet121.
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0.87 and 0.84, respectively, while in the younger group the classification rates decreased to 0.80 and 0.83, respec-
tively. The optimal performance of TL over FS within DenseNet121 is visualized in Fig. 5.

ROC curves for FS showed AUC of 0.87 and 0.82 for the classification of females and males above (or equal) 
the age of 15 years, and 0.79 and 0.74 for females and males below the age of 15 years. The AUC obtained with 

Figure 3.  Graphs representing the loss and evolutionary accuracy of the training process and learning 
validation with Transfer Learning (TL) architecture in DenseNet121.

Figure 4.  Normalized Confusion Matrix with the classification frequencies for each group set in the 
learning model. Outcomes presented for DenseNet121 using From Scratch (FS) and Transfer Learning (TL) 
architectures.
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TL reached 0.91 and 0.90 for females and males in the younger age group, and 0.87 for both sexes in the younger 
age group.

Finally, Fig. 6 shows the gradient-weighted class activation mapping (Grad-CAM) in which stronger signals 
(reddish) were observed around the crowns of anterior and posterior teeth. Weak signals (blueish) were observed 
in root and bone regions.

Discussion
Sexual dimorphism is a crucial step in the anthropological process of building the biological profile of the 
 deceased37. In general, sex-related differences between males and females are expressed as changes in the shape 
and size of anatomic  structures38. Puberty is a biological landmark that triggers more evident differences between 
males and  females39. Over time, these differences will manifest especially in the pelvic bones and the  skull40. 
Teeth, however, are known for their resistance to environmental effects (extrinsic factors) and systemic health 
conditions (intrinsic factors); and are available for forensic examination in most cases. Moreover, the radiographic 
visualization of dental anatomy is optimal given the highly mineralized tissues of crown and root(s). This study 
proposed the use of artificial intelligence for the radio-diagnostic task of sexual dimorphism from human teeth.

A preliminary challenge proposed to test the artificial intelligence in this study was the inclusion of anatomi-
cally immature individuals in the sample. This is to say that the human skeleton is not fully influenced by the 
hormonal changes early in life and that the maxillofacial bones are still similar between males and females in 
childhood. More specifically, the age limits of the addressed population were 6 and 22.9 years—an interval that 
covers children, adolescents, and young adults. Deciduous and some permanent teeth, on the other hand, will 
express full development in childhood. The permanent mandibular first molar, for instance, shows apex closure 
around the age of 7.5 years. Aris et al.39, explain that teeth that fully develop long before puberty may have 
observable dimorphic features that can be explored even before the expression of skeletal dimorphism. Hence, 
the rationale at this point was to test the performance of the artificial intelligence within a scenario in which the 
mandible, maxillae, and other skulls bones would not play a major role in sexual dimorphism, giving the chance 
to teeth to express their dimorphic potential.

The radiographic aspect of the present study differs from the (physical) anthropological assessment of Aris 
et al.39, because our study has the preliminary and fundamental scope of screening teeth (or tooth regions) 
that can play a more important part to distinguish males and females. In a future step, teeth and tooth regions 
detected as dimorphic in the present study could be tested and validated by means of physical examination (i.e. 
studies ex vivo). Among the main advantages of the radiographic approach is the visualization of dental anatomy, 
including the internal aspect of the crown and roots (namely the pulp chamber and root canals, respectively), and 
the possibility of retrospective dataset sampling from existing databases—which is hampered in observational 
anthropological/archaeological studies.

DenseNet121 architecture running with TL training approach in 100 epochs led to the best performance for 
sexual dimorphism. Particularly, the training accuracy maintained high (above 80%) between epochs 19–100, 
while the validation accuracy was between 70–83% after epoch 31. Consequently, the average accuracy of TL 

Figure 5.  Receiver Operating Characteristic (ROC) curves to MultiClass analyses using DenseNet121 with 
From Scratch (FS) and Transfer Learning (TL) architectures.
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was 82%, with average specificity of 92% in the total sample. Authors  claim41 that when the entire skeleton is 
available for anthropological assessment, the accuracy of sexual dimorphism can reach 100%. This phenom-
enon is justified by the contribution of pelvic bones and skull to the analyses. Studies solely based on teeth 
present much lower estimates. Paknahad et al.42, for instance, performed a study with bitewing radiographs and 
reported an accuracy of 68% for sexual dimorphism based on odontometric assessments of the deciduous second 
molars (mandibular and maxillary). In our study, the higher accuracy rates are possibly justified by the integral 
assessment of dental anatomy (all the visible bidimensional dental features of the teeth were considered) in the 
process of sexual dimorphism—instead of specific linear measurements. In the study of Paknahad et al.42, only 
the width of the enamel, dentin, and pulp space were considered. Moreover, our study assessed radiographs of 
4003 individuals, while the previous  authors42 sampled only 124 individuals. In practice, a preliminary overall 
accuracy of 82% (specificity of 92%) corroborates DenseNet121 with TL approach as a proper tool for radio-
graphic sexual dimorphism.

The purpose of the present study, however, was to challenge to artificial intelligence even more. To that end, 
the sample was divided into males and females below and above the age of 15 years. ROC curves obtained during 
the analyses per age category showed AUC between 0.90–0.91 for males and females over the age of 15, respec-
tively, while in the younger group the AUC was 0.87 for both the males and females. These outcomes confirm 
that, in fact, sexual dimorphism is more challenging among children (in this case, between 6 and 14.9 years). 
In both groups, however, the AUC was considered excellent for diagnostic accuracy  tests43. Consequently, the 
features assessed from panoramic radiographs in the present study had enough discriminant power to distinguish 
males and females with accurate performance.

Figure 6.  Samples of images representing the four classes used for the classification process with the 
representation of the Gradient-weighted Class Activation Mapping (Grad-CAM) and the scaled representation 
of the heatmap.
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The Grad-CAM images obtained in our study showed a similar region of activation in both age groups. In 
general, the activation region was more centralized and horizontal – surrounding the crowns of anterior and 
posterior teeth. These outcomes are corroborated by studies that show the dimorphic value of  canines44,45 and 
 incisors41 between males and females.

This is a preliminary study to understand the discriminant power of dental morphology to distinguish males 
and females using panoramic radiographs. At this point, these outcomes should not be translated to practice 
since they currently serve to screen regions of teeth that may weigh more for sexual dimorphism. A few cases 
in the scientific literature reported the use of postmortem panoramic radiographs for human  identification46,47. 
In these cases, the current findings could have a more tangible application. For anthropological practices in 
single cases and mass disasters, more comprehensive knowledge of radiographic sexual dimorphism is needed, 
especially when it comes to the effects of age on dental morphological features.

Conclusion
The dentomaxillofacial features assessed on panoramic radiographs in the present study showed discriminant 
power to distinguish males and females with excellent accuracy. Higher accuracy rates were observed among 
adolescents and young adults (older group) compared to children (younger group). DenseNet121 architecture 
with TL approach led to the best outcomes compared to FS. The regions with stronger activation signals for 
machine-guided sexual dimorphism were around the crowns of anterior and posterior teeth.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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