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Heat Wave Resilient Systems 
Architecture for Underwater Data 
Centers
A. A. Periola*, A. A. Alonge & K. A. Ogudo

The need to design computing platforms with low water footprint and enhanced energy efficiency 
makes non-terrestrial computing platforms attractive. Large scale computing platforms in non-
terrestrial environments are increasingly receiving attention. In this regard, underwater data centers 
(UDCs) are considered to have operational benefits due to their low cooling cost. Underwater data 
centers experience challenges due to marine heat waves. The occurrence of marine heat waves 
limits the amount of ocean water available for UDC cooling. This paper proposes a mechanism to 
detect marine heat waves, and ensure continued UDC functioning. The proposed mechanism utilizes 
reservoirs to store water and ensure continued functioning of underwater data center. In addition, the 
proposed research presents the reservoir as a service (RaaS) for ensuring UDC cooling. Furthermore, 
the presented research also describes modular form factor approach for UDC development. This is 
being done with the aim of enhancing UDC adoption and use in capital constrained contexts. The 
underwater data center operational duration is investigated. Evaluation shows that the proposed 
solution enhances the operational duration by an average of (5.5–12.3) % and (5.2–11.5) % given that 
marine heat waves span 10 epochs and 15 epochs during an operational phase, respectively.

Future computing relies significantly on data centers and needs to evolve to meet the demands of having 
enhanced power efficiency. In addition, data centers are expected to have reduced operational costs and low 
carbon emissions into the environment. These requirements can be met via underwater data center adoption. 
The development of underwater data center technology is beginning to receive significant attention by technol-
ogy  companies1, national  authorities2 and  startups3. In comparison to conventional terrestrial data centers, the 
use of underwater data centers is appealing due to the reduced cooling  costs4,5, and reduced latency for coastal 
network  subscribers4,6. The use of underwater data centers differs from the existing use of terrestrial data centers. 
This is due to the change from the terrestrial plane to the sub-marine environment. The change to the marine 
environment necessitates the design of mechanisms for robust functioning of underwater data centers.

However, cold water may not be available at all times due to marine heat wave occurrence. The ocean also 
hosts energy constrained sensors in underwater internet of  things7–10. However, sensors have low power con-
sumption and do not generate significant heat. Therefore, it is important to ensure underwater data center 
maintain their functionality when a marine heat wave reduces the amount of available cold water. This is not 
considered  in6.

Akbari et al.11 also note that the mesopelagic zone (suitable zone for hosting underwater data centers) has 
a rapidly changing temperature. Hence, the effect of varying temperature on underwater data centers in the 
mesopelagic zone should be considered.

The temperature increase in the ocean becomes intolerable to underwater server farms when the ocean’s warm 
water temperature is unsuitable for cooling. The use of warm water server cooling is an important concept that is 
important in this regard. Existing work  in12 have considered the use of warm water for cooling. However, warm 
water cooling is unsuitable for underwater data  centers12 as high exit temperatures pose a threat to marine life.

The consideration of the design of solutions that address the challenge posed by marine heat waves to the 
functioning of underwater data centers is yet to be addressed. Instead, an implicit assumption  in1–3 implies that 
underwater data centers will be placed where marine heat waves do not occur. In addition, the adoption and use 
of underwater data centers is still at a nascent stage. Hence, it is important to consider how marine heat waves 
influence the performance of deployed underwater data centers. The occurrence of marine heat waves can reduce 
the effective operational duration of underwater data centers. Therefore, it is important to design solutions ena-
bling underwater data centers to achieve cooling during the occurrence of marine heat waves. This is because 
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uptime is an important performance metric for data center infrastructure. It is important to address the identified 
operational challenge associated with marine heat waves for underwater data centers. This is because of the usage 
of underwater data centers in enabling low latency content access for the use case of a coastal  subscriber13. In 
addition, underwater data centers have been found to be useful for scientific experiment  applications14.

Contribution. The sub-marine location is recognized to be a suitable location for hosting underwater data 
centers in this regard. The use of underwater data centers is important in Industry 5.0. However, placing data 
centers in the maritime environment subjects them to new environment challenges. Hence, underwater data 
centers require robust mechanisms to support their functionality. The discussion proposes robust underwater 
data centers that are capable of executing data storage and processing i.e. computing tasks in the ocean. The 
occurrence of marine heat waves poses challenges to underwater data centers (UDCs) executing computing 
tasks. A mechanism enabling the continued cooling and functioning of UDCs in the event of the occurrence of 
marine heat waves is proposed. Marine heat waves have been observed to result in a significant perturbation and 
disruption of marine ecosystems as seen  in15.

In this case, UDCs experiencing marine heat waves are located in the mesopelagic zone. Marine heat waves 
result in unexpected and anomalous increase in ocean temperature. The use of ocean water for cooling during 
a marine heat wave results in exit water having a high temperature that is dangerous to aquatic life. The pro-
posed mechanism enables the UDC to determine the onset of ocean warming and store water in a reservoir for 
continued service delivery. In addition, the discussion evaluates how the proposed mechanism improves UDC 
functioning. This is done by formulating the UDC operational duration. The presented research also evaluates 
UDC operational duration for different reservoir operational efficiencies. Furthermore, the discussion in the 
research being presented also presents a case where the cooling of UDCs is addressed in the broad context of the 
blue economy initiative. In this case, UDCs are recognized to benefit from reservoir as a service (RaaS) offering. 
Furthermore, it is important that capital constrained maritime organizations (CCMOs) are able to adopt the 
use of UDCs in future computing. This is beneficial as the use of UDCs by more organizations reduce future 
carbon emissions.

The research is structured as follows: Section “Background and existing work”  focus on existing work. Sec-
tion “Problem description” describes the problem being addressed. Section “Proposed solution: architecture 
and associated mechanisms” presents the proposed solution. Section “Accelerated adoption: UDC technology” 
focuses on the performance model. Section “Performance formulation” presents novel approach intended to 
enhance UDC adoption in capital constrained contexts. Section “Performance evaluation and benefit” describes 
the results on performance benefits. Section “Conclusion” concludes the research.

Background and existing work
This section has five parts. The first part discusses work on underwater communications and computing. The 
related work in this aspect has been considered to evaluate the existing research in underwater communications 
and related applications. This review demonstrates that existing underwater communications and related appli-
cations necessitate using underwater computing platforms. The second part describes work on the interaction 
between underwater applications and internet access. This discussion is important as it evaluate the existing 
research in the aspect of integrating underwater applications with the internet. The third part examines existing 
work in the use of warm water cooling and evaluates the suitability of this technique for cooling underwater data 
centers in the marine environment. In this case, the existing work is examined to determine if state of the art of 
the research has considered using the warm water cooling approach with respect to underwater data centers. 
The fourth part discusses the marine heat wave as an event that should be considered in the deployment and 
environment friendly operation of UDCs. The relevance of the presented discussion in this regard is that it shows 
research consideration for the occurrence and influence of marine heat waves on the operation of underwater 
computing platforms. The fifth part focuses on the perspective of the proposed solution.

Underwater communications and applications. This aspect of the literature review focuses on discus-
sion work focusing on underwater applications requiring access to computing platforms and resources.

Ali et al.16 note that the increased need to conduct coastal surveillance necessitates the use of underwater wire-
less communications. The discussion  in10 provides a review of the different challenges that need to be addressed 
in realizing underwater communications in the context of internet of underwater things. The discussion  in16 
incorporates fifth generation network technologies such as generalized frequency division multiplexing and filter 
bank multicarrier in underwater networks. A survey that highlights research efforts to address physical layer 
challenges in underwater wireless networking is presented  in17.

Underwater communications is used in internet of underwater things applications for ocean monitoring via 
underwater wireless sensor networks. An underwater sensor network comprises entities such as acoustic sensors, 
autonomous underwater vehicles and hinges on advances in mobile technology.

Cai et al.18 designs a data collection scheme that utilizes the mobile edge computing model. The scheme 
reduces the unbalanced energy associated with underwater data collection. The data collection is realized via 
autonomous underwater vehicle path selection methods. Data aggregation and processing involved in the data 
collection scheme incorporates mobile edge computing. Mobile edge computing reduces data transfer latency 
associated with processing the data acquired by deployed edge nodes.  In18, the autonomous underwater vehicles 
are the data acquisition entities. However, edge computing is not intended to process large data volumes. The use 
of large scale computing platforms can address this challenge. However, this has not been explicitly considered.

Gregor et al.  in19 describes the use of underwater gliders to acquire underwater data. They also recognize 
that there is the challenge of realizing the higher-order underwater data processing. The data acquired by the 
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underwater glider is sent to a processing center via a satellite link. The use of gliders is beneficial due to their 
low power consumption and compact design. The focus  in17 is the design and development of GliderTools, an 
open source package for high order data processing. The discussion examines the usefulness of the open source 
GliderTools and does not focus on determining the entity that hosts the proposed GliderTools. In comparison 
 to14,16,17, the discussion  in19 does not focus on the design of the network for realizing underwater data processing.

Huang et al.20 present research addressing the challenge of data uploading. The data is acquired by underwater 
sensor nodes. The underwater sensor nodes have the challenge of power and computing resource limitation. The 
challenge of ensuring that additional computing resources can be accessed to process the acquired data neces-
sitates transmitting to an onshore base station via satellite. Data transmission between underwater sensor nodes 
is realized via a hop to hop link. The use of compression is proposed due to resource constraints on underwater 
sensor nodes. The discussion also presents mechanisms that enable data transfer between underwater sensor 
nodes for delivery to the onshore computing facility. The use of an offshore computing facility is beneficial 
because it allows underwater sensors to allocate more energy for data acquisition. However, the use of offshore 
underwater computing facility similar to the onshore computing facility has not been considered.

Alharbi et al.21 recognize the usefulness of autonomous underwater vehicles in accessing big data from 
underwater nodes. This is achieved by periodic visiting of underwater nodes by autonomous underwater vehicles. 
The use of the autonomous underwater vehicles (AUVs) is advantageous in comparison to relying on a hop to 
hop link between the power and compute resource constrained underwater nodes. However, the using AUVs 
is challenging with regard to scaling. This is due to their limited storage capability. The second challenge is the 
need for alignment between the transmitting (underwater sensor node) and receiving (autonomous underwater 
vehicle) entities. The alignment is needed when high data rate optical transmission is used. The proposed solution 
addresses these challenges and presents pipeline architecture. The pipeline architecture comprises underwater 
nodes with varying data storage and processing capabilities. It addresses the challenge of limited space aboard 
the autonomous underwater data center. This is realized by either using computing resources aboard nodes to 
execute a given function or via data set size reduction before being forwarded to a gateway node. The incorpora-
tion of central underwater data center computing platform reduces the challenges arising due to the paucity of 
computing resources in the AUV. This has not been considered in the presented research.

Lima et al.22 address the challenge of ensuring interoperability between underwater sensor networks and the 
internet. They re-design the internet control message protocol for the underwater environment to accommodate 
the limitations of underwater sensor nodes i.e. scarcity of computing resources resulting in small buffer size. 
The discussion recognizes the significant challenge arisen from the need to link underwater computing related 
activities with the internet.

Underwater data centers: existing approaches. The discussion in this aspect highlights existing 
research and approach that have focused on the development of underwater data centers.

Underwater data centers have low cooling costs and can reduce the content access  latency4,5 for coastal 
network  subscribers6. The discussion  in23 describes the functionality and design of an artificial reef data center. 
Cutler et al.23 point out that the artificial reef data center executes computing workload and supports marine life. 
The design of underwater data centers also benefits from using multiple methods of providing  electricity23. In 
addition, energy sources such as fossil—fuels, solar and nuclear power plants can be used to provide electricity 
to sub-marine assets. Advance in using energy from different  sources24–28 is important in providing the energy 
required for operating UDCs.

Currently, UDC utilization does not consider the effects of ocean warming that increases the ocean’s 
 temperature29. The discussion  in23 has not considered how to ensure UDC functionality while considering 
ocean warming.

Warm water cooling: method. Water plays a significant role in data center cooling. In this case, the 
chiller component in data center executes the function of reducing water temperature. The research being exam-
ined in this regard is important as it examines the role of chillers in data centers.

Data centers comprise servers that require cooling to preserve the integrity of the constituent electronics. 
The chiller plays an important role in ensuring the cooling of water to be used for server cooling in server 
farms. The use of chillers requires the consumption of electricity to realize water cooling and reduction in server 
temperature. However, the use of chillers is recognized to increase data center energy consumption. A reduc-
tion in chiller operational duration can reduce data center energy consumption and also improve the power 
usage effectiveness. The use of chillers with exit water having high outlet temperature is noted to reduce capital 
expenditure and cooling costs by up to 40%30.

Servers in server farms and data centers do not have 100% utilization at all times. This makes the operation 
of chillers at all times expensive. The resulting high cost can be reduced by using warm water cooling. The use 
of warm water cooling method is an approach that appears attractive due to the non-maximal utilization of 
servers in server farms. Jiang et al.7 recognize the suitability of using warm water cooling due to the observed 
reduction in cooling cost.

Oltmanns et al.31 propose using data center waste heat for district warming. In  addition31, recognizes that 
improved waste heat utilization can be obtained by supplying the waste heat into the district heating network 
instead of a campus based buildings only. The proposed solution reduces electrical energy consumption because 
the use of hot water cooling reduces the need for compression cooling. In addition, the re-use of waste heat 
reduces Carbon Dioxide emission.

Zhu et al.32 identify that the operation of data center chillers results in high power consumption aboard data 
centers. The controlled and non-operation of chillers at certain epochs reduces the cooling energy and makes use 
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of warm water for server cooling. A strategy for thermal energy recycling from warm water and use it to generate 
electricity for operating warm water-cooled data centers is proposed  in32. The intended capturing is done using 
thermo-electric generators. The discussion in 32 differs  from12 because the thermal energy from warm water is 
used to operate other warm water cooled servers instead of providing winter heating. The use of thermos-electric 
generators implies that the approach proposed  in31 is suitable for use in high temperature locations.

Sartor et al.33 examine different data center models with the aim of presenting an open server specification. 
The discussion recognizes the benefits of liquid cooling such as improved cooling efficiency, enhanced econo-
mizer hours and useful waste heat generation. Technology models such as liquid on chip cooling, liquid on board 
cooling, warm water cooling, and liquid immersion cooling are recognized in the discussion of Sartor et al.33. 
Liquid immersion technology model is similar to the use of ocean water for cooling of data centers immersed 
in the ocean environment. This approach has the benefits of not requiring chillers, cooling towers and having a 
significantly low water footprint.

However, the liquid immersion model being presented in the underwater data center approach is different 
from that presented  in33. This is because of the different environments. Liquid immersion technologies such as 
those presented  in33,34 are intended to function in the terrestrial environment. In the liquid immersion comput-
ing systems that have been considered, the coolant supply is limited being constrained by available capital. An 
ideal system is one in which the supply of coolant is not limited by capital constraints. This can be realized in a 
system that has a high amount of water such as the ocean.

New events in the ocean environment: marine heat waves. The discussion in the previous section 
recognizes the important role of underwater data centers in future computing. Research in cloud computing 
systems development recognizes the suitability of non-terrestrial computing platforms such as underwater data 
centers.

However, the ocean is a dynamic environment than surrounding environment of other liquid immersion 
based coolants. The effect of a varying temperature in this dynamic environment and its influence on server 
farm cooling should be considered. In addition, the realization of aquatic bio-diversity is an important ocean 
concern that should be considered. Warm water with temperature in the range 40 °C–45 °C12,33 can be used for 
cooling servers and server farms constituting data centers. The warm water having temperature values exceeding 
the maximum in this range i.e. 45 °C is not suitable for water cooling. The discussion  in12 recognizes that warm 
water with temperature in the range 40 °C–50 °C can be used for the cooling of servers in data centers. However, 
the use of warm water for cooling data centers in the case  of12 has considered the case of data centers with low 
utilization. In addition, the discussion  in12 involves the integration of thermoelectric cooling into the servers 
which requires individual server modification. The use of newly defined servers in the context of underwater data 
centers can result in increased ownership costs. This increase in costs defeats the purpose of using underwater 
data centers to realize cost savings. In addition, additional information overhead occurs as the thermoelectric 
cooling system needs to be aware of data describing central processing unit utilization to determine the epochs 
and duration of desired operation as seen  in12. The increased information overhead reduces the amount of user 
data that can be stored aboard servers. The discussion  in33 identifies that the data center does not solely rely on 
warm water cooling. Instead, it also makes use of air cooling. However, the realization of air cooling is challeng-
ing in non-terrestrial environment such as that presented by the context of the sub-ocean.

The rate of increase in ocean temperature is found to be depth dependent. Meinen et al.35 note that the higher 
rate of increase in temperature per decade occurs with increasing altitude. The ocean temperature increases at 
0.04 °C and 0.02 °C per decade at 1360 m and 4757 m, respectively.  Buchholz36 also notes that there is an increase 
in sea-surface temperature. The increment in this case is observed to be up to 0.76 °C above the mean sea surface 
temperature from the twentieth century. In this case, the increment is for the year 2020.

In addition, the ocean temperature can also increase due to the occurrence of marine heat waves that are 
unexpected epochs of anomalous temperature  increase15,37,38. Marine heat waves are unpredictable prolonged 
extreme events in the ocean. Daramaki et al.15 note that the study of marine heat waves is just beginning to 
receive sufficient attention. However, their occurrence is projected to increase with higher intensity. The increase 
in temperature at the ocean surface is also expected to significantly increase marine heat wave incidences. It 
is challenging to predict the extent of temperature increase arising from the occurrence of marine heat waves. 
Marine heat waves increase the temperature of ocean water. The use of the ocean water at elevated temperature 
for underwater data center cooling results in outlet water having a higher temperature. The resulting higher 
temperature of the outlet water poses risk to aquatic bio-diversity due to ocean de-oxygenation39. Different 
aquatic life forms have varying dissolved oxygen requirements as seen  in40. Ocean temperature values of 30 °C 
and 40 °C have an oxygen content of around 7 mg/L and 6 mg/L, respectively. The oxygen content of 6 mg/L is 
unsuitable for Trout as seen  in40. In the event of the occurrence of marine heat waves, an outlet temperature from 
the data center (water temperature elevated by data center heat) is un-friendly to marine life because it inhibits 
continued and sustained ocean oxygenation.

Existing research  in12  and33 shows that warm water cooling can be realized for servers in underwater data 
centers. However, the case  in12 requires the use of servers that have onboard thermoelectric cooling systems 
with the intention of reducing the chiller usage thereby reducing energy usage in the data center. However, 
the use of warm water cooling in the context  of12 requires having data centers comprising servers having own 
thermoelectric cooling systems. The use of such servers has not received significant consideration in the case of 
underwater data centers. Their use and acquisition is potentially associated with increasing ownership costs. In 
addition, the use of warm water cooling is not intended to replace the usage of cold water but aimed at reducing 
the energy consumption of chillers in the data centers. It is also recognized  in12 that significant operational risks 
accompany the use of warm water for server cooling. The solution  in12 presents a solution that reduces and not 
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eliminates the risk of server operational failure associated with warm water cooling. The occurrence of marine 
heat waves that increases the temperature associated with the cooling water therefore poses an operational risk 
i.e. server failure which should be addressed.

Identified challenges and solution perspectives. From the discussion, the use of underwater comput-
ing platforms is seen to enhance underwater sensor data processing. In addition, UDCs enable low latency con-
tent access for coastal subscribers. This is beneficial for low latency access to underwater sensor data. However, 
UDC operation requires continuous access to the ocean’s cold water. The occurrence of a temporal increase in 
ocean temperature increases the temperature of ocean water. This reduces the availability of cold water for cool-
ing. The reduced availability poses an operational risk to UDCs. This drawback should be addressed with a focus 
to ensure UDC functioning.

An additional challenge that should be addressed is ensuring that server payload in underwater data centers 
has low power consumption. This is because of the need to reduce high costs associated with providing electric-
ity. The power consumption can be reduced by incorporating low power neuromorphic processors instead of 
conventional von Neumann processors aboard underwater data center servers. This is because neuromorphic 
processors have low power consumption in comparison to von Neumann  processors41–43. Neuromorphic pro-
cessors enable the emergence of new computing entities and are suitable for other types of applications (besides 
artificial intelligence)44,45.

The discussion in this section has recognized the increasing deployment of underwater applications. These 
applications require access to computing resources. The use of computing resources placed in the underwater 
environment is identified to be beneficial for identified underwater applications. In addition, aspects relating to 
the use of different resources for cooling data centers have also been examined.

However, additional research is required to enable underwater data centers deliver the expected functionality 
in a robust manner. In this case, robust functionality is required with regard to ensuring underwater data centers 
can function with regard to the occurrence of marine heat waves.

Problem description
This section presents the problem under consideration. The considered scenario is one comprising an underwater 
data center located in an ocean region which is experiencing anomalous temperature increase due to the occur-
rence of marine heat waves. The underwater data center comprises multiple servers being used by subscribers 
for applications in communication  networks13, scientific  experiments14 alongside data storage and algorithm 
execution. The underwater data center being considered is also being used to host applications in online gaming. 
The central processing unit aboard the servers in the underwater data center is maximally utilized. In addition, 
conventional server units without custom made technologies are being used.

The underwater data center is located in an ocean region that is experiencing the occurrence of marine heat 
waves. In our consideration, marine heat waves occur in phases i.e. different time instants. The occurrence of 
marine heat waves results in an unexpected increase in temperature. This increase in temperature results in the 
limited availability of cold water for UDC cooling. The concerned underwater data centers experience rise in 
their surrounding temperature.

The formulation considers that there are multiple underwater data centers in the underwater environment. 
Let α be the set of underwater data centers such that:

In addition, let θ1
(

αn, ty
)

,αnǫα, t = {t1, t2, . . . , tY }  be the ocean’s temperature around the nth underwater data 
center αn at the  yth epoch ty , tyǫt . The problem formulation considers that the ocean environment hosting under-
water data centers experiences variation in temperature between different pairs of epochs. In our consideration, 
the epoch spans two time instants that define the duration associated with the event of a temperature increase 
or decrease. The ocean region is deemed unsuitable for hosting UDCs considering the influence of the time 
epochs and epoch pairs. The ocean region around the nth UDC αn is unsuitable for hosting UDCs in the case:

In (2), each individual term described in the summation under consideration is the sum of the ocean tem-
peratures in the time epochs that have been considered. The summation in this case is deemed sufficient to 
represent the mean temperature in the concerned ocean region. This is because the cardinality of the considered 
duration (spanning different epochs) is considered equal. In this case, the upper limits of a, b and c are variables 
that describe the epochs such that the duration in each considered summation span an equal number of epochs.

Another feasible case in the ocean region is one described by the relations:
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In (3), the temperature variation in the duration described by the epochs tc , tb+1 and ta+1, tb, 
tcǫt, tb+1ǫt, ta+1ǫt, tbǫt is an increase in the temperature of the concerned ocean region. This is because of the 
temperature increase and decrease in the duration described by the epochs tb, ta+1 and ta, t1; and the epochs 
tc , tb+1 and tb, ta+1 respectively.

The relations in (3), (4) and (5) describe different cases of the comparison of the mean temperature in the 
underwater environment. In this case, the considered duration span an equal number of epochs (with each 
epoch comprising different time instants). The case presented in (3) is one considering that an increase in the 
ocean region due to the occurrence of marine heat waves can result in the mean ocean temperature during 
some duration (spanning a given epoch) falls short or exceeds the mean ocean temperature in another duration 
(spanning a different epoch). In (3), there is a reduction in mean temperature of the ocean region surrounding 
the underwater data center in the last two duration instances. These duration instances span epochs between 
tf =d+1, tf =d+1ǫt and tf =Y ; and epochs tf =c+1, tf =c+1ǫt and tf =d , tf =dǫt.

The scenario in (4) and (5) provides the relations between the mean ocean temperature observed in 
the duration spanning the epochs tf =a+1, tf =a+1ǫt, tf =b, tf =bǫt and tf =c+1, tf =c+1ǫt, tf =d , tf =dǫt ; and 
tf =d+1, tf =d+1ǫt, tf =Y , tf =Y ǫt and tf =a+1, tf =a+1ǫt, tf =b, tf =bǫt, respectively.

UDCs delivers expected function during the duration described by epochs tc , tb+1 and ta+1, tb . The function-
ing of the UDC is infeasible during the set of epochs td , tc+1 and tc , tb+1 ; tdǫt, tcǫt, tc+1ǫt  due to the increase 
in surrounding ocean temperature (arising due to the occurrence of the marine heat wave). The increase in the 
surrounding ocean temperature results in the non-availability of coolants (cold ocean water) for cooling the 
underwater data center. This reduces UDC functioning duration and essentially the uptime. Nevertheless, it is 
important that the UDC is able to function during the duration described by the epochs td , tc+1 and tc , tb+1 . This 
challenge is addressed in this paper.

Proposed solution: architecture and associated mechanisms
The discussion presents and describes the proposed solution. The proposed solution is set in the context of an 
ocean environment with an increasing temperature. In such an ocean environment, the occurrence of marine 
heat waves becomes highly feasible. Existing research  in35,46,47 shows that the occurrence of an ocean environ-
ment with this profile is applicable to the context of UDCs in our consideration. The discussion in this aspect has 
been provided to describe the context of the solution being presented for the research problem in the presented 
mathematical model described by the relations in (1)–(5). The increasing temperature is due to the occurrence 
of marine heat waves. In this case, the marine heat waves occur at the epoch of maximal server central process-
ing unit utilization. Furthermore, the maximal server central processing unit utilization spans a duration that 
is equal to the duration of the occurrence of marine heat waves. Hence, the servers have a significant amount of 
heat generation capacity. In addition, the use of warm water cooling is not considered in this case to prevent or 
limit the occurrence of failure of servers in the underwater data center. Furthermore, the computing capability of 
the underwater data center being considered is in high demand by end user and computing platform subscribers.

The discussion in this section has four aspects. The first presents the payload and computing capabilities. 
The second discusses the UDC assisted cooling approach. The third aspect discusses the innovative service 
being proposed in the context of the Industry 5.0 initiative. The fourth aspect describes influence of proposed 
solution on the uptime.

Proposed solution: enabling payload and computing capabilities. In3, the proposed solution aims 
to find ocean locations suitable for siting underwater data centers. The discussion here  extends3 by incorporating 
additional mechanisms and payload. The proposed solution enables the UDC to detect the onset and occurrence 
of marine heat wave without the use of costly bathymetric studies and surveys. Instead, the proposed mechanism 
uses novel payload hosted aboard the underwater data center. The payload acquires the temperature θ1

(

αn, ty
)

 
parameter that is used to evaluate the validity of (3). The validity of (3) implies the occurrence of a marine heat 
wave.

The acquisition of the parameter θ1
(

αn, ty
)

  is done for epochs ty+1, ty+2, ty+3; ty+1ǫt, ty+2ǫt, ty+3ǫt and 
ty+r , ty+rǫt . The temperature in the region (experiencing marine heat wave) hosting the underwater data center 
αn at epochs ty+1, ty+2, ty+3 and ty+r are θ1

(
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)

, θ1
(
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)

, θ1
(
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)

 and θ1
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 , respectively. 
The values of θ1

(
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(
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)
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(
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)

 and  θ1
(
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)

 are determined by the UDC’s temperature 
sensors. The mean ocean temperature θexp(αn)  is computed aboard the underwater data center, αn and given as:

Given that an ocean region hosts multiple UDCs αn,αn+1,αn+2;αn+1ǫα;αn+2ǫα and αn+p;αn+pǫα . The 
UDCs are connected via sub-marine fiber cables and share data on temperature measured at epochs ty+1, ty+2, ty+3 
and ty+r with each other. In this case, the mean ocean temperature, θexp(αn,αn+1,αn+2, αn+p) is given as:

(4)
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The acquisition of underwater data center temperature parameters is done by underwater temperature sensors 
(UTSs) aboard each underwater data center. The operational temperature computing entity (OTCE) receives 
information from the UTSs and executes (6) and (7). The OTCE determines if the observed mean temperature 
(and the associated temperature increase) denotes the occurrence of a marine heat wave. This is done via a 
detection of anomalies in increase in the ocean temperature for a given duration. The detection of anomalies is 
done by comparing the mean temperature that is computed in (6) and (7) at one epoch with the computational 
results arising from another epoch.

Proposed solution: assisted underwater data center cooling. The proposed solution incorporates 
mechanisms in UDCs that enable them to detect the onset of marine heat wave activity and also store cold water. 
The storage of cold water enables UDCs to ensure continued cooling when marine heat waves occur. These capa-
bilities are incorporated in the proposed assisted underwater data center cooling mechanism. The storage of the 
cold water aboard the UDCs can be realized via two types of reservoirs. These are: (1) UDC attached reservoir, 
and (2) Reservoir as a service (RaaS).

In the proposed solution, the UDC comprises multiple servers. A UDC is noted to be capable of hosting up 
to 864 servers as seen in the Microsoft prototyping efforts as seen  in48. However, there is no limitation on the 
amount of servers that can be hosted aboard a UDC. Therefore, the UDC can host more servers beyond the 864 
that has been considered  in48. The UDC being considered provides data storage, and computing services to a wide 
range of subscribers and enterprises such as communication networks, scientific institutions and online gaming 
service providers. It can be used for applications that are currently being executed by conventional terrestrial 
data centers with key difference lying only in the use of free ocean water for cooling. The considered UDC is 
connected to terrestrial gateway points via high speed fiber optic cables and benefit from the existing network 
of underwater fiber optics. In this case, the optic fiber cable network configuration is influenced by the number 
of terrestrial gateway stations being connected to the UDC. The terrestrial gateway stations are connected to the 
internet via wireless or wired networks depending on the network context.

The implementation of the proposed mechanism executes two important tasks. These are: (1) Detecting the 
onset of marine heat wave activity and (2) Reservoir related communications and activation.

In executing the detection of onset of marine heat wave, the assisted underwater data center cooling mecha-
nism ensures UDC cooling when (3)–(5) holds true. Detecting an increase in the mean temperature in succes-
sive epochs implies the onset of marine heat wave activity. The detection is followed by the process of storing 
cold ocean water aboard UDC reservoirs. The stored cold water cools the UDC when marine heat waves occur.

The procedure of reservoir related communications is described in the case of UDC attached reservoir. 
In this case, reservoir related communications involves the execution of data exchange between the UTS and 
OTCE entities in the UDC. The relation between the UTS and OTCE in a UDC is shown in Fig. 1. In executing 
the reservoir related communications, the OTCE incorporates three sub-entities. These sub-entities are the: (1) 
Temperature data receiver entity (TDRE), (2) Temperature data analysis entity (TDAE) and (3) Inference deci-
sion making entity (IDME).

The TDRE receives temperature values from the UTS and sends the received values to the TDAE. The TDAE is 
the OTCE’s sub-entity that evaluates the validity of (3)–(5). The result of TDAE computation is sent to the IDME. 
The IDME sends the decision on the non-occurrence or occurrence of temperature increase to the underwater 
data center reconfiguration entity (UDCRE). The UDCRE transmits signal to the reservoir. If ocean warming is 
not deemed to begin, the UDCRE continues to receive data from the OTCE.

UDC attached reservoirs can also enable functionality in the case of multiple UDCs. In this case, the tem-
perature value acquired by UDCs in different ocean regions is received via the external temperature port (ETP). 
The ETP is a sub-entity of the external data–gateway (ERD–GW). The ERD–GW hosts the control relation entity 
(CRE) that receives non-temperature data. Inter ERD–GW communications is realized via sub-marine fiber 
connections. The relations between ETP, CRE, ERD–GW for two UDCs in the case of UDC attached reservoir is 
shown in Fig. 2. A UDC (incorporating UDC attached reservoir) can have multiple reservoirs as seen in Figs. 3 
and 4. In this case, the concerned UDC incorporates multiple attached reservoirs.

Figures 3 and 4 shows a UDC that has four computing payload compartments with one and two water 
reservoirs respectively. In Fig. 3, the water stored in the reservoir is shared among the four computing payload 
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Figure 1.  Relation between the UTS, OTCE and UDCRE.
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compartments. The use of multiple reservoirs is suitable when the computing payload compartment aboard the 
underwater data center belongs to different computing platform service providers.

In Fig. 3, each reservoir is capable of storing sufficient amount of water capable of cooling maximally uti-
lized servers in the UDC. The dimensions of reservoirs are influenced by the number of servers, server power 
consumption and the desired server operational duration. In this case, the reservoir can store up to 1.9 million 
litres of water. This value has been considered because Google is observed to have permissions to pump up to 
1.9 million litres of water  in30. However, the reservoir capacity can be scaled considering the number of servers 
aboard the UDC system. This is because of the finite number of servers in data center systems. In realizing the 
proposed cooling, the water stored aboard the reservoir is made available to the computing payload compart-
ment and a heat exchanger executes heat transfer.

Proposed solution: novel service in industry 5.0. The previous discussion has focused on the design 
of intelligent mechanism enabling the use of UDC attached reservoir for realizing UDC cooling in the event of 
marine heat wave. The discussion in this aspect considers the Reservoir as a service (RaaS) as a novel mechanism 
that is deployed for ensuring UDC cooling and continued functionality. The RaaS enables the delivering of the 
cooling service for UDCs in the context of the industry 5.0. The incorporation of RaaS provides job opportuni-
ties in the blue economy.

Figure 2.  Relations between the ERD–GW and ETP for a case comprising two UDCs.

Figure 3.  Underwater Data Center with four computing payload compartments and one water reservoir.

Figure 4.  Underwater Data Center with four computing payload compartments and two water reservoirs.
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The notion of the RaaS considers the context where the deployment of UDCs and ensuring their continued 
operation considering the occurrence of marine heat waves is decoupled. This decoupling is deemed necessary to 
consider the context where computing platform service providers seek to avoid the additional overhead arising 
due to the need to design supporting reservoir systems. In this case, an external entity i.e. a third party develops 
the system that ensures UDC operational resilience in the event of the occurrence of marine heat waves. This is 
the framework for the proposed RaaS in the context of industry 5.0. By providing an underwater system com-
ponent enabling the functioning of UDC (by realizing UDC cooling), the proposed RaaS provides a context for 
job opportunities in the blue economy from the perspective of technology development and service delivery.

RaaS incorporates ocean based reservoir towers that execute the detection of the onset of marine heat waves 
and the activation. The reservoir towers comprise multiple reservoir pods. These reservoir pods can be used in 
conjunction with UDC having own reservoirs or independently to provide cooling for UDCs without integrated 
reservoirs. Water is stored aboard reservoir towers (having reservoir pods) and delivered to UDCs without 
integrated reservoirs via water bearing autonomous underwater vehicles (wAUVs).

The proposed wAUVs execute their functionality autonomously. In this regard, the wAUVs are attached to the 
ocean based reservoir towers and execute the task of communicating with deployed UDCs. The communications 
enable the wAUVs to obtain information on occurrence of marine heat waves for concerned UDCs. The proposed 
RaaS incorporates three levels of service providers. These are: (1) Reservoir Tower Provider Entities (RTPEs), (2) 
wAUV Provider Entities (WPEs), and (3) Robust Communication Service Entities (RCSEs).

RTPEs deploy reservoirs in the sub-marine environment. The deployed reservoirs comprise pods that store 
and retain cold water in the ocean environment. The reservoir towers host temperature sensors and renewable 
energy sub-systems that enable the operation of cooling sub-systems for retaining water at very low temperature. 
Being in a cold environment, low power is required for maintaining the stored water at a cold temperature. Hence, 
the proposed use of renewable energy is feasible.

WPEs deploy wAUVs that enable the supply of water from reservoir towers to UDCs experiencing marine 
heat wave events. In providing water to UDCs, wAUVs move water from the reservoir tower to the emptied 
reservoirs aboard concerned UDCs. RCSEs provide a data transfer service between RTPEs assets i.e. reservoir 
towers and UDCs. They deploy separate and own AUVs (different from wAUVs) to provide a transfer of data 
regarding the status of the occurrence of marine heat waves and also affecting the concerned UDC. The AUVs 
deployed by RCSEs provide information on UDC identifier and the path of sojourn to wAUVs. This enables 
wAUVs to navigate their path to the concerned UDC.

Relation between the RTPEs, WPEs, RCSEs and an underwater data center (UDC) is shown in Fig. 5. In Fig. 5, 
RTPEs comprise reservoirs and interact with the RCSEs which provide information on the status of marine heat 
wave occurrence in the vicinity of a UDC. The relation comprises five communicating AUVs that relay informa-
tion on the status of occurrence of marine heat wave around a UDC. The relayed information is passed to the 
RTPE (comprising reservoirs) through the RCSE. In Fig. 5, it is assumed that marine heat waves are occurring. 
The receipt of this information by the RTPE triggers reservoir supplying water to the wAUVs.

The power usage effectiveness (PUE) is an important metric for data centers an also UDCs. The use of UDCs 
with benefits of free ocean cooling enables UDCs to have a better PUE performance than existing terrestrial data 
centers. It is also important to consider the PUE for UDCs given the two types of identified reservoirs. From 
the perspective of the power usage effectiveness (PUE), the use of the RaaS is more beneficial than the use of 
UDC integrated reservoirs. This is because the power aboard the UDC is not used to maintain the water at low 
temperature in the case of the RaaS. However, the power aboard the UDC is used to maintain the water intended 
for cooling at low temperature in the UDC integrated reservoir.

Proposed solution: influence on operational duration. The discussion in this aspect presents archi-
tecture demonstrating how the incorporation of the reservoir in the underwater data center influences the 
uptime. The uptime is an important metric that influences operational duration for which the underwater data 
center can act as a node in communication networks.

The incorporation of the water reservoirs influences the UDC power consumption. In the existing UDC; 
there are two heat exchangers i.e. the internal heat exchanger and the external heat  exchanger1. The internal heat 
exchangers are attached to server racks and transfer the resulting heat to water. The hot water is then pumped 
to heat exchangers which transfer the heat to the surrounding ocean. This two stage heat transfer process does 
not consider the context where the surrounding ocean experiences a temperature increase. The occurrence of 
marine heat wave results in a case where transfer of heat (from exiting hot water) to the ocean from the second 
heat exchanger (external heat exchanger) is infeasible. This arises because of the need to reduce the threats posed 
by marine heat waves to aquatic life and bio-diversity. The heat transfer process in existing case is shown in Fig. 6.

In the case where the ocean experiences marine heat wave, entities that ensure water supply to the internal 
heat exchanger for server cooling are required. The reservoirs comprising two chambers execute this function-
ality. The first chamber stores cold water for supply to the first heat exchanger. The second chamber provides 
temporary storage for the hot water output from the first heat exchanger. The use of the reservoir is activated 
when results of decision on marine heat wave occurrence is received from the UDCRE. The relation between the 
UDCRE and reservoir(s) in the underwater data center is presented in Fig. 7 presenting the role of the cognitive 
heat exchanger (CHE). The CHE enables the internal heat exchanger to determine if hot water resulting from 
server cooling should be directed to the external heat exchanger. In the case where marine heat wave event is 
deemed to occur, the CHE determines the reservoir whose chamber should receive the hot water output. The 
choice of reservoir is made by the reservoir selection entity (RSE). In Fig. 7, the RSE communicates with the 
reservoir sensor entity (SE). The SE stores information on the status of each reservoir chamber.
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The status indicates if chamber 1 has stored cold water contents (indicating that chamber 2 is empty) or if 
chamber 1 no longer has stored cold water content (indicating that chamber 2 is not empty). In addition, the SE 
indicates the utilized chamber capacity of each reservoir. The utilized capacity describes the level to which each 
chamber hosts the expected chamber content. For example, a chamber 2 with 50% utilized capacity indicates that 
only half the capacity of the concerned chamber 2 has been utilized. In chamber 1, the utilized capacity indicates 
the proportion of the stored cold water content that has been used for data center cooling. The underwater data 
center has multiple reservoirs located in a reservoir farm entity.

In Fig. 7, stored cold water in the first chamber is used for UDC cooling. This is similar to existing system as 
found  in1. In the existing system, the pump ensures the transfer of hot water from the internal heat exchanger 
to the external heat changer and onwards to the surrounding ocean for cooling. In the proposed system, the 

WPEs – wAUVsRTPEs – Reservoirs 
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Figure 5.  Relations between the RCSEs, RTPEs, WPEs and underwater data centers. (The Figure has been 
created by AA Periola using Microsoft Word, the logos and objects have been obtained from the Shapes, and 
Icons options in Microsoft Word).
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Figure 6.  Relations between internal heat exchanger and external heat exchanger in existing scheme.
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pump supplies hot water from the internal exchanger to the second chamber of the concerned water reservoir. 
The pump also uses stored cold water in chamber 1 for data center cooling.

The proposed solution differs from existing  case1 because it does not require the operation of the external 
heat exchanger at all operational epochs of the underwater data center. The external heat exchanger does not 
transfer hot water to the ocean environment during a marine heat wave event. Therefore, the proposed solution 
reduces energy consumption due to a reduction in the heat exchanger consumed power.

Accelerated adoption: UDC technology
The discussion in this section presents mechanisms enabling the rapid adoption of UDCs. The considered UDCs 
comprise both with and without (benefitting from RaaS) integrated reservoirs. The discussion in this section 
considers the case for the development of UDCs by capital constrained maritime organizations (CCMOs). In 
this case, CCMOs can benefit from insights observed from the development path of small satellites (as seen  in49) 
due to the cost reduction benefit.

A UDC module is designed to be capable of executing computing tasks in a robust manner and comprises 
two main modules. These are robust service modules (RSMs) and computing executing modules (CEMs). RSMs 
maintain robust functionality in the event of the occurrence of marine heat waves. The RSMs also host the cool-
ing sub-system that executes modular UDC cooling. CEMs execute the functionality refers to the execution of 
expected data center functions i.e. receiving, storing and processing data.

UDC modules are similar to small satellites in promoting the goals of ocean colonization via the deployment 
of multiple UDCs by CCMOs. The proposed modular UDC has the features and capabilities of: (1) Aggregation 
Capability, and (2) Minimum Size Specification. The modular UDC has a minimum size in terms of physical 
dimensions and computing capability. This minimum size can be realized considering the CCMO’s constraints. 
In addition, modular UDC has aggregation capability i.e. modular UDCs can be stacked together to realize a 
single UDC. Currently, UDCs are deployed and installed as large data center structures and the individual servers 
or groups of servers can’t be operated in a standalone manner.

A UDC module is designed to be capable of executing computing tasks in a robust manner and comprises 
two main modules. These are robust service modules (RSMs) and computing executing modules (CEMs). RSMs 
maintain robust functionality in the event of the occurrence of marine heat waves. The RSMs also host the cool-
ing sub-ystem that executes modular UDC cooling. CEMs execute the functionality refers to the execution of 
expected data center functions i.e. receiving, storing and processing data.

The use of open source strategies can be used for UDC development by CCMOs. The open compute platform 
(OCP) as seen  in50–52 is an open-source strategy that enables enterprise data center service providers to share 
technology solutions and strategies. However, the OCP focuses only on terrestrial data centers and not UDCs. 
The increasing adoption of UDCs can be realized by integrating their coverage in the existing OCP framework. 
This will enable more CCMOs to be capable of accessing technology suitable for UDC development. The UDC 
adoption framework should incorporate important information elements enabling hardware designers and devel-
opers to develop and deploy UDCs.

Information elements should comprise data on the UDC. The required information is in seven categories. 
These are: (1) Computing Details, (2) Power Access Details, (3) Power Usage Details, (4) Performance Details, 
(5) Location Information, (6) Vessel Related Information, and (7) Access to information technology.

The information considered in the computing details is: (1) Computing Payload i.e. Number of Servers, (2) 
Server capacity, (3) Hardware details i.e. manufacturers, specifications and serial number, (4) Required Energy 

Figure 7.  Relations between heat exchangers and reservoir systems in proposed solution.
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for server operation and (5) Deployed software. The information considered in the power access details is: (1) 
Accessed renewable energy, (2) Forms of accessed renewable energy, (3) Accessed energy from the grid, (4) 
Onboard power storage capability, (5) Battery Details i.e. manufacturers, specifications and serial number and 
(6) Number of batteries. Power usage details consider the electricity consumption associated with: (1) each 
onboard server, (2) each heat exchanger, and (3) each element in UDC’s support sub-system. Performance details 
comprises: (1) Observed operational duration, (2) Power usage effectiveness (PUE) and (3) UDC number of 
failures observed over a pre-determined duration.

The description of maritime resource location is specified in the Location Information aspect as: (1) Type of 
maritime resource i.e. river, ocean or lake. (2) Name of concerned maritime resource, (3) Location of maritime 
resource described by surface coordinates, (4) Depth of UDC in the maritime resource and (5) Regulatory permit 
details. Vessel related information comprises details such as: (1) Class of vessel, (2) Age of vessel, (3) Custom 
design status and (4) Vessel capacity. The custom design status indicates if the vessel is being re-used or was 
specifically produced for use as a UDC support vessel.

The UDC is also required to be capable of communicating with external networks and requires access to infor-
mation systems and networks. The category of ‘Access to information technology’ comprises data on: (1) Acces-
sibility indicator to sub-marine fiber optic cable, (2) Number of accessed fiber optic cables and (3) Link speed.

The information in each category is stored aboard a database by entities deploying UDCs at different global 
locations. In addition, stored information can be accessed by CCMOs seeking to develop and deploy UDC 
technology. Service providers that have developed and deployed UDCs upload information in this category into 
the underwater computing entity database (UCED). The UCED is a sub-component of the OCP. It hosts the 
information element in each pre-defined and aforementioned category. The upload is done via the information 
provision portal (IIPP). Prospective hardware designers and service providers that aim to utilize UDCs access 
uploaded information via the Designer Access Portal (DAP). Relations between the IIPP, UCED, DAP and the 
information elements is shown in Fig. 853.

Performance formulation
The performance model is formulated and described in this section. The parameter of interest is the data center 
uptime. This is influenced by the different phases of operation of the underwater data center. The metric of the 
power usage effectiveness (PUE) has not been considered. This is because UDCs benefit from free ocean cool-
ing, utilize smaller power for cooling thereby having an improved PUE in comparison to existing terrestrial 
data centers.

The use of UDCs is still at a nascent stage from the perspective of research and enterprise development. 
There is still a paucity of system emulation software that can be used to model and examine the performance 
of the underwater data centers in the context of the presented solution. Hence, it is important to develop math-
ematical models to formulate the performance model describing the performance of underwater data centers. 
The role of mathematical models in this case is important to flexibly examine how the sub-ocean environment 
influences underwater data center performance. In this regard, the formulation of mathematical models serves 
two purposes. In the first case, the use of mathematical models provides a means for clarifying the parameters 
that influence the performance of the underwater data center considering the metric of the data center uptime. 
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Figure 8.  Relations between the IIPP, UCED, DAP, information elements and access by the CCMO.
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Secondly, the use of mathematical models provides a means of demonstrating the relations between the param-
eters that have been identified to influence underwater data center performance.

The performance model is formulated considering the NOPh, ROPh and MWPh. The duration of each of the 
NOPh, ROPh and MWPh make up functional duration of the underwater datacenter. In the case of the exist-
ing scheme, the ROPh and MWPh are not considered. The proposed scheme comprises the ROPh, MWPh and 
NOPh in our consideration.

The proposed solution introduces the reservoir and associated mechanisms (active in the ROPh) to ensure 
all round UDC cooling. This maintains the PUE but may reduce the functional duration. Hence, the functional 
duration i.e. the underwater data center functional duration is considered.

Let D1(αn),αnǫα D3(αn) denote the expected functional duration for the nth underwater data center in phase 
1 (NOPh) and phase 3 (ROPh), respectively. The ocean region around the underwater data center αn experiences 
marine heat wave events in Phase 2 (MWPh) of its operation. Phase 2 comprises multiple sub-epochs within 
an epoch. The duration of the marine heat wave event occurring in phase 2 (MWPh) for the underwater data 
center αn between the epochs tp, tpǫt and tx , txǫt is denoted D2

(

αn, tp, tx
)

 . In addition, let Ire(αn)ǫ{0, 1} denote 
the reservoir status aboard the underwater data center αn . The underwater data center, αn does not [existing 
mechanism without phase 3 (ROPh)] and does use reservoirs [proposed mechanism with Phase 1 (NOPh), Phase 
2 (MWPh) and Phase 3 (ROPh)] when  Ire(αn) = 0 and Ire(αn) = 1 , respectively.

The UDC functional duration considering the influence of marine heat waves on the underwater data center 
in the case of existing mechanism [without phase 3 (ROPh)] and case of proposed mechanism [with phase 3 
(ROPh)] are denoted Ŵ́1 and Ŵ́′

1 respectively:

Let ζre(αn) denote the operational efficiency of the reservoir system aboard the underwater data center αn . 
An ideal efficiency i.e. ζre(αn) = 1 implies that the reservoir system cools the computing payload aboard the 
underwater data center during the entire duration of the marine heat wave event. A non-ideal efficiency i.e. 
ζre(αn) < 1 implies that the proposed reservoir system is unable to provide water to enable the cooling of the 
computing payload aboard the underwater date center, αn during the entire duration of the marine heat wave 
event. A non-ideal efficiency may arise when the reservoir capacity is unable to store cold water for server cool-
ing during the duration of the marine heat wave event. The UDC functional duration considering the reservoir 
system operational efficiency, Ŵ́2 is given as:

Performance evaluation and benefit
The performance evaluation is presented in this section. The performance metric is the underwater data center 
functional duration. This is because the occurrence of marine heat waves in the absence of the proposed reser-
voir system reduces data center functional duration by making free coolant (freely available ocean cold water) 
non-available. The non-availability of free coolant causes a non-functioning of the UDC cooling system. The 
evaluation is done to investigate the UDC functional duration considering that the occurrence of marine heat 
wave reduces coolant availability and directly influences the functional duration.

The evaluation is done to investigate UDC functional duration via MATLAB stochastic simulation. In the 
simulation, an underwater data center operational duration of 105 days is considered. This is because of the 
observation  in13 that the existing work i.e., Project Natick was functional for 105 days. In addition, the discus-
sion  in15 notes that marine heat waves can observe for a range of 5–10 days. Furthermore, a maximum duration 
of marine heat waves of up to 170 days has been observed  in15. The number of days for which the marine heat 
wave occurs has been observed to have a minimum of 5 days and a maximum of 170 days as seen  in15. The choice 
of the marine heat wave duration has been made considering these occurrence parameters as presented  in15. 
Furthermore, the characterization of the types of marine heat waves is a subject that is beyond the scope of the 
presented research. In addition, the number of day span for marine heat wave occurrence has been less than half 
of the maximum observed  in13 of 105 days. This is done to avoid a greedy estimate of the performance benefit of 
the proposed use of UDC cooling via reservoir systems. In a similar manner, a non-ideal reservoir with efficien-
cies less than 100% has been considered. Hence, the reservoir efficiency has not consistently and continuously 
had a value of 100% in the simulation.

This functional duration is divided into equal lengths in Phases 1, 2 and 3. Phases 1 and 3 each have a length 
of 35 days. The incidence of marine heat waves is considered to last a minimum of 5 days as seen  in41. The 
duration of the marine heat waves is deemed the duration of Phase 2. However, the duration of Phase 2 does 
not exceed 35 days. This consideration has been made to ensure that the total operational duration of 105 days 
is not exceeded. The evaluation investigates the performance benefit of UDC reservoirs in its influence on the 
functional duration.
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Existing work does not consider the occurrence of marine heat waves and their influence on the functioning of 
UDCs. The UDC is operational in a variable number of phases each having an equal duration. The phases during 
which marine heat waves occur have a variable duration and are also described by a given number of epochs.

The simulation is done for the case of a marine heat wave (MHW) event comprising ten epochs and fifteen 
epochs in the simulation procedure. In each epoch, the underwater data center functions in a varying number 
of phases i.e. 3 phases, 4 phases, 5 phases and 6 phases. In the case of 3 phases, 4 phases, 5 phases, and 6 phases, 
the duration of each non-MHW occurring phase are 35 days, 26.25 days, 21 days and 17.5 days, respectively. 
The duration of the MHW occurring phase exceeds the non-MHW occurring phase duration. The occurrence 
of MHW is limited to a phase out of the total number of phases with epochs using the parameters in Table 1.

The operational duration when the MHW phase comprises 10 epochs and 15 epochs are presented in Figs. 9 
and 10, respectively. The simulation results that have been presented in Figs. 9 and 10 describe how the UDC 
operational duration is influenced by the occurrence of marine heat waves in the underwater environment. In all 
the presented results, the operational duration is examined in the case of the existing approach (without the use 
of proposed reservoirs) and proposed approach (with the use of proposed reservoirs). The performance simula-
tion result for the operational duration in the case of the existing mechanism is observed to be constant. This is 
because of the non-consideration of the dynamic reservoir efficiency in the case of existing mechanism. In the 
presented results, the case of a UDC operational in the underwater environment considering the occurrence of 
marine heat waves in the absence of the proposed solution is described as the Existing Approach. The results 
being presented in the case of the Proposed Approach describe the UDC operational duration considering the 
occurrence of marine heat waves when the proposed solution is incorporated.

From the results, it can be seen that the total duration in all cases is less than 105 days. This is due to the 
occurrence of the MHW event. Figure 9 has four sub-figures i.e. Fig. 9a–d. The simulation results obtained 
given 10 epochs for the case of 3 phases, 4 phases, 5 phases and 6 phases are presented in Fig. 9a–d, respectively. 
Figure 10 also has four sub-figures i.e. Fig. 10a–d. The simulation results presented in Fig. 10 consider the case 
where the MHW occurring phase has 15 epochs. The results obtained given 15 epochs for the case of 3 phases, 
4 phases, 5 phases and 6 phases are presented in Fig. 10a–d, respectively.

The performance improvement i.e. the mean increase in the operational duration of the underwater data 
center is also analyzed using the simulation results. This is done for the case of 10 epochs (in non-MHW occur-
ring phase) and 15 epochs (in non-MHW occurring phase). Given that the MHW occurring phase has 10 epochs, 
the use of the proposed solution increases the underwater data center operational duration by 12.3%, 8.7%, 6.7% 
and 5.5% for the case of 3 phases, 4 phases, 5 phases and 6 phases, respectively.

The use of the proposed solution results in the highest improvement in the operational duration with the 
least number of operational phases. The highest improvement in the UDC operation is obtained with the least 
number of phases. In the case of the least number of phases, the MHW occurring phase has the longest expected 
operation. This implies that the use of the reservoirs as proposed enables the cooling of the underwater data 
centers for the longest duration in the case where there is a fewer number of operational phases.

Analysis of the results presented in Fig. 10a–d shows the obtained operational duration when an MHW occur-
ring phase has 15 epochs. In a similar manner, the operational duration of the underwater data center is less than 
105 days. This is due to the consideration of the occurrence of MHW in the simulation. The mean percentage 
improvement in the underwater data center operational duration due to the use of the proposed solution is also 

Table 1.  System simulation parameters.

Parameter 3 4 5 6

Number of MHW occurring phase. Each phase has 10 epochs

Maximum MHW duration (days) 33.7 25.3 20.2 16.9

Minimum MHW duration (days) 7.7 5.8 4.6 3.9

Mean MHW duration (days) 19.2 14.4 11.5 9.6

Maximum reservoir efficiency (%) 91.7 91.7 91.7 91.7

Minimum reservoir efficiency (%) 16.2 16.2 16.2 16.2

Mean reservoir efficiency (%) 53.6 53.6 53.6 53.6

Number of MHW phases. Each phase has 15 epochs

Maximum MHW duration (days) 34.9 26.2 20.9 17.5

Minimum MHW duration (days) 0.8 0.6 0.5 0.4

Mean MHW duration (days) 17.9 13.4 10.8 9.0

Maximum reservoir efficiency (%) 97.9 97.9 97.9 97.9

Minimum reservoir efficiency (%) 4.3 4.3 4.3 4.3

Mean reservoir efficiency (%) 55.3 55.3 55.3 55.3
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investigated. The use of the proposed solution increases the operational duration by 11.5%, 8.2%, 6.3% and 5.2% 
on average for the case of 3 phases, 4 phases, 5 phases and 6 phases, respectively.

Conclusion
The research being presented proposes a solution enabling the functioning of underwater data centers when 
marine heat waves occur. Marine heat waves affects all ocean regions especially those closer to the surface i.e. the 
epipelagic and mesopelagic ocean zones. Underwater data centers that are placed in the epipelagic and mesope-
lagic zones experience an insufficient supply of cold water required for cooling due to the occurrence of marine 
heat waves. The reduced cooling capability can potentially limit the operational duration of underwater data 
centers. The solution being proposed incorporates temperature sensors enabling the detection of the occurrence 
of anomalous temperature increases in the ocean region hosting underwater data center systems. In addition, 
the proposed underwater data center also incorporates reservoirs that store cold water. The stored cold water is 
used to cool underwater data centers and ensure their continued operation when marine heat waves occur. The 
use of the proposed solution increases the underwater data center operational duration. The operational dura-
tion of the underwater data center considering the occurrence of marine heat waves in a given phase comprising 
multiple epochs is investigated via simulation. The operational duration is enhanced by at least 5.2% and at most 
by 12.3% on average by using the proposed solution.

a: Operational Duration given 3 Phases for a case of 10 epochs.

b: Operational Duration given 4 Phases for a case of 10 epochs 
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c: Operational Duration given 5 Phases for a case of 10 epochs 

d: Operational Duration given 6 Phases for a case of 10 epochs 
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Figure 9.  (a) Operational Duration given 3 Phases for a case of 10 epochs. (b) Operational Duration given 4 
Phases for a case of 10 epochs. (c) Operational Duration given 5 Phases for a case of 10 epochs. (d) Operational 
Duration given 6 Phases for a case of 10 epochs. Evaluation showing results for the underwater data center 
duration (for 3 phases, 4 phases, 5 phases and 6 phases) in the case that the marine heat wave event occurs for 10 
epochs.
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