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JSCSNCP‑LMA: a method 
for predicting the association 
of lncRNA–miRNA
Bo Wang*, Xinwei Wang, Xiaodong Zheng, Yu Han & Xiaoxin Du

Non‑coding RNAs (ncRNAs) have long been considered the "white elephant" on the genome 
because they lack the ability to encode proteins. However, in recent years, more and more biological 
experiments and clinical reports have proved that ncRNAs account for a large proportion in organisms. 
At the same time, they play a decisive role in the biological processes such as gene expression and cell 
growth and development. Recently, it has been found that short sequence non‑coding RNA(miRNA) 
and long sequence non‑coding RNA(lncRNA) can regulate each other, which plays an important role 
in various complex human diseases. In this paper, we used a new method (JSCSNCP‑LMA) to predict 
lncRNA–miRNA with unknown associations. This method combined Jaccard similarity algorithm, self‑
tuning spectral clustering similarity algorithm, cosine similarity algorithm and known lncRNA–miRNA 
association networks, and used the consistency projection to complete the final prediction. The results 
showed that the AUC values of JSCSNCP‑LMA in fivefold cross validation (fivefold CV) and leave‑one‑
out cross validation (LOOCV) were 0.9145 and 0.9268, respectively. Compared with other models, we 
have successfully proved its superiority and good extensibility. Meanwhile, the model also used three 
different lncRNA–miRNA datasets in the fivefold CV experiment and obtained good results with AUC 
values of 0.9145, 0.9662 and 0.9505, respectively. Therefore, JSCSNCP‑LMA will help to predict the 
associations between lncRNA and miRNA.

NcRNAs are a class of RNAs that don’t have the function of translating proteins in  organisms1–3. Therefore, 
ncRNAs have always been neglected by biological researchers. With the progress of science and technology, gene 
detection technology is also developing. Researchers have found that RNAs don’t participate in protein coding 
account for about 98% of RNA in  organisms4. As a result, researchers are increasingly interested in ncRNAs. 
Studies have found that ncRNAs can be divided into many types, including lncRNA, miRNA, circRNA, and 
 snRNA5,6. MiRNAs are a class of ncRNAs with a short sequence of 18–25 nucleotides in length, while lncRNAs 
are a class of ncRNAs with a length of more than 200  nucleotides7–11. Experiments have found that lncRNAs 
play an important role in various biological processes such as transcription, translation and  differentiation12–16. 
Meanwhile, mutations and dysregulations of these lncRNAs have also been shown to have complex relationships 
with many human complex  diseases17, such as lung  cancer18,  AIDS19, cardiovascular  disease20, Alzheimer’s disease 
(AD)21, and  diabetes22. For another example, lncRNA HOTAIR, PCA3 and H19 have been treated as potential 
biomarkers of hepatocellular carcinoma  recurrence23, prostate cancer  aggressiveness24 and breast cancer detec-
tion,  respectively25. Similarly, miRNAs also play a key role in the differentiation, proliferation and apoptosis 
of biological  cells26–30. Correspondingly, more and more miRNAs have been proved to have an impact on the 
occurrence of certain diseases. For example, in the midbrain of patients with Parkinson’s disease, miRNAs were 
regarded as a regulator to the maturation and function of midbrain dopaminergic  neurons31. Overexpression of 
mir-128 in glioma cells was proved to inhibit cell  proliferation31,32. Furthermore, mir-375 could regulate insulin 
 secretion33; the miR-1 was involved in heart development; deletion of miRNA-1–2 interrupted the regulation 
of  carcinogenesis34,35.

Recently, studies have shown that some specific lncRNAs and miRNAs can be detected in serum and blood of 
some cancer  patients36,37. At the same time, lncRNAs and miRNAs can interact with each other in some diseases, 
which jointly affects the occurrence of human  diseases38,39. For example, in the COVID-19 study, after compar-
ing the transcriptomic data from different patient groups, researchers observed that COVID-19 patients had 
abnormally expressed mRNA and lncRNA when they were admitted to the ICU. Shaath and Alajez suggested 
that further studies on the identification and role of these mRNA and lncRNA-based biomarkers, as well as 
their impact on the onset and severity of COVID-19, which could play a crucial role in patient stratification and 
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help select appropriate treatment  options40. Therefore, the research on the associations between lncRNAs and 
miRNAs has become a research boom. However, it is very complicated to verify the associations between lncR-
NAs and miRNAs only through biological experiments. In order to improve the research efficiency of biological 
researchers, researchers in the computer field use existing biological data to analyze and predict the unknown 
associations between lncRNAs and miRNAs.

Before that, some prediction models of ncRNA-disease were well-established and had good results. For exam-
ple, Chen et al. developed a reliable computational tool of LRLSLDA to predict novel human lncRNA-disease 
associations based on the assumption that similar diseases could tend to be related with functionally similar 
lncRNAs. This model was mainly based on a semi-supervised learning framework of Laplacian Regularized 
Least  Squares41, which integrated known disease-lncRNA associations and lncRNA expression profile. In 2015, 
based on the assumption that similar diseases could tend to be associated with lncRNAs with similar functions, 
Chen et al. further developed two novel lncRNA functional similarity calculation models (LNCSIM)42. In the 
model of LNCSIM, disease semantic similarity was first calculated based on the directed acyclic graph (DAG) 
which represented the relationships among different diseases. Then, lncRNA functional similarity was further 
obtained by calculating the semantic similarity between their associated disease groups. Yang et al. implemented 
a propagation algorithm on the coding-non-coding gene-disease bipartite network to infer potential lncRNA-
disease  associations43. The coding-non-coding gene-disease bipartite network was constructed by integrating 
known lncRNA-disease associations and gene-disease associations. Chen developed a computational model of 
KATZLDA to identify potential lncRNA-disease associations by known lncRNA-disease associations and various 
similarity measures of diseases and  lncRNAs44. Considering the limitations of traditional Random Walk with 
Restart (RWR), the model of Improved Random Walk with Restart for LncRNA-Disease Association prediction 
 (IRWRLDA45) was developed by Chen et al. to predict novel lncRNA-disease associations by integrating known 
lncRNA-disease associations, disease semantic similarity, and various lncRNA similarity measures.

Meanwhile, Chen et al.46 proposed a novel computational model of Within and Between Score for MiRNA-
Disease Association prediction (WBSMDA) by incorporating miRNA functional similarity, disease semantic 
similarity, miRNA-disease associations and Gaussian interaction profile kernel similarity for diseases and miR-
NAs. Li et al.47 developed a matrix completion for MiRNA-disease association prediction model (MCMDA). This 
model used the Lagrange multiplier method to update the adjacency matrix of known miRNA-disease associa-
tions and further predict potential associations. Chen et al.48 further proposed a model called graph regression 
for MiRNA-disease association prediction. The model carried out graph regression in three spaces, including 
association space, miRNA similarity space and disease similarity space. Then, Chen et al.49 put forward Inductive 
Matrix Completion for MiRNA-Disease Association prediction (IMCMDA), which could apply to new diseases 
without known miRNAs. Furthermore, Chen et al.50 developed another prediction miRNA-disease association 
prediction model of Bipartite Network Projection for MiRNA-Disease Association prediction (BNPMDA). This 
model first constructed the bias ratings for miRNAs and diseases based on three networks, including the known 
miRNA-disease association network, the disease similarity network and the miRNA similarity network. Then 
bipartite network recommendation algorithm was implemented to reveal potential miRNA-disease associations. 
Chen et al.51, proposed a novel computational method named Ensemble of Decision Tree based MiRNA-Disease 
Association prediction (EDTMDA), which innovatively built a computational framework integrating ensemble 
learning and dimensionality reduction. The model adopted ensemble learning strategy that integrated multiple 
classifiers (base learners) to get final prediction results. Then, Chen et al.52, developed the model of deep-belief 
network for miRNA-disease association prediction (DBNMDA). DBNMDA innovatively utilized the informa-
tion of all miRNA-disease pairs during the pre-training process. This step could reduce the impact of too few 
known associations on prediction accuracy to some extent. In addition, Chen et al.53, proposed a new computa-
tional model named Neighborhood Constraint Matrix Completion for MiRNA-Disease Association prediction 
(NCMCMDA) to predict potential miRNA-disease associations. The model innovatively integrated neighborhood 
constraint with matrix completion, which provided a novel idea of utilizing similarity information to assist the 
prediction. After the recovery task was transformed into an optimization problem, this model solved it with a 
fast iterative shrinkage-thresholding algorithm.

However, the current lncRNA–miRNA association prediction models mainly use machine learning algo-
rithms. Huang et al.54 proposed a method named EPLMI, which relied on the assumption that lncRNAs having 
similar expression profiles were prone to associate with a cluster of miRNAs that had similar expression profiles. 
However, a new question had arisen as to how to use the expression profile of ncRNAs to define the similarity 
between them. The EPLMI model calculated the similarity using the Person correlation coefficient, which was 
basically consistent with the hypothetical ncRNAs feature similarity score of each element pair. Nevertheless, 
the method still had some problems due to the nature of its mechanism. Liu et al.55 proposed the LMFNRLMI 
model, which utilized the strongest neighborhood relationship and established a neighborhood matrix to pre-
dict the lncRNA–miRNA association by using the K nearest neighbor method. However, there was still a lack of 
high-performance and high-precision models to predict potential lncRNA–miRNA associations. At the same 
time, Huang et al.56 developed a novel group preference Bayesian collaborative filtering model (GBCF), which 
picked up a top-k probability ranking list for an individual miRNA or lncRNA based on known lncRNA–miRNA 
interaction network. However, the Bayesian classifier needed to have negative samples to improve its perfor-
mance. There were no negative samples in the lncRNA–miRNA association studies, and a random selection of 
positional association as negative samples would affect the prediction performance. A sequence-derived linear 
neighborhood propagation method (SLNPM) to predict lncRNA–miRNA associations was proposed by Zhang 
et al.57. Firstly, miRNA–miRNA similarity and lncRNA–lncRNA similarity were calculated by using miRNA 
sequence and lncRNA sequence and the known lncRNA–miRNA associations. Secondly, the integrated lncRNA 
similarity-based graph and the integrated miRNA similarity-based graph were respectively constructed, and 
the label propagation processes were respectively implemented on two graphs to score lncRNA–miRNA pairs. 
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Finally, the averages of their outputs were adopted as final predictions. However, these methods still have some 
limitations, which will inspire us to develop better models. In the association prediction of between lncRNA and 
miRNA, the focus and difficulty of the next step is to further reduce the dependence of the model on the quality 
of the lncRNA and miRNA similarity matrix, pay more attention to the difference of correlation strength, reduce 
the complexity of model calculation, and avoid the prediction model to bias towards some well-studied lncRNAs 
or miRNAs. In the future development of lncRNA–miRNA association prediction, cloud computing can further 
make it possible to mine complex large-scale information. It can further explore the deep correlation between 
lncRNAs and miRNAs related indicators, so as to find out that the joint action of lncRNAs and miRNAs leads 
to the occurrence of diseases. Therefore, the diseases can be accurately predicted before they are formed, so as 
to carry out manual intervention as early as possible, make a more accurate description of the degree of disease, 
and find a series of changes in the body to form the root (lncRNAs and miRNAs) of the disease, so as to achieve 
accurate and efficient treatment.

In this paper, in order to more effectively predict potential associations between lncRNA and miRNA, we 
proposed a new computational method called Network Consistency projection for the Human LncRNA–miRNA 
Association (JSCSNCP-LMA). JSCSNCP-LMA achieved excellent prediction performance by using Jaccard 
similarity algorithm, self-correcting spectral clustering similarity algorithm, cosine similarity algorithm and 
known lncRNA–miRNA association network to predict lncRNA–miRNA of unknown associations. There are 
three advantages to this method. First of all, the algorithm in our prediction model is relatively simple and has 
no complex parameters. And the algorithm can also get good prediction results. Furthermore, our method 
could be also used for other association prediction, which has good expansibility. Last but not least, we can use 
lncRNA–miRNA association prediction to further study lncRNA-disease association prediction or miRNA-dis-
ease association prediction, so as to improve the accuracy of lncRNA-disease association prediction or miRNA-
disease association prediction. To demonstrate the prediction performance of the JSCSNCP-LMA, LOOCV and 
fivefold CV were used to test the model. The results showed that the AUC values of the proposed JSCSNCP-LMA 
were 0.9268 and 0.9145, respectively.

Datasets and methods
Datasets. For lncRNA, miRNA, and lncRNA–miRNA interactions data, there are many open-source data-
sets available for online download. For example,  miRBase58,  miRmine59,  NONCODE60, and  lncRNASNP61. We 
obtained three different datasets from different databases in order to verify the accuracy of our experiment. The 
specific operations are as follows. Firstly, we downloaded data from lncRNASNP, and obtained 8091 experi-
mentally verified lncRNA–miRNA interactions. After removing duplicated associations, we obtained 275 miR-
NAs and 780 lncRNAs. Then, we collected lncRNAs’ sequences from NONCODE and miRNAs’ sequences from 
miRbase. We finally obtained 417 lncRNAs and 265 miRNAs, which could be used as our Data 1. Secondly, we 
downloaded and cleaned the starBasev2.062 database on the ENCORI (open source platform). After process-
ing, we obtained 1089 lncRNAs and 246 miRNAs, which could be used as our Data 2. Thirdly, we obtained the 
lncRNA–miRNA interactions from the known lncRNASNP2 database. After processing, we finally obtained 
8634 lncRNA–miRNA interactions, including 468 lncRNAs and 262 miRNAs, which could be used as our Data 
3. Three datasets were finally obtained, as shown in Table 1 below.

In this paper, we let L = {l1, l2, l3, . . . , lr} and M = {m1,m2,m3, . . . ,mn} , which represented the set of r 
lncRNAs and n miRNAs. We defined adjacency matrix Y  to represent the relationship between lncRNA and 
miRNA interactions. If lncRNAli was verified to interact with miRNAmj , then Y(i, j) was assigned 1, otherwise 0. 
We let Y(li) = {l1, l2, l3, . . . , lr} and Y

(

mj

)

= {m1,m2,m3, . . . ,mn} , which represented the row i-vector of matrix 
Y  and the column j-vector of matrix Y  . Y(li) and Y(mj) represented the interactions of lncRNAli and miRNAmj , 
respectively. Matrix Y  is defined as follows:

Methods
Cosine similarity for lncRNA and miRNA. Previously, cosine similarity algorithm has been widely 
used by researchers in the collaborative filtering recommendation  algorithm63,64. Recently, Gaussian distribu-
tion kernel similarity algorithm has been widely used to calculate the similarity of individual biomolecules in 
human body. However, its performance is lower than the cosine similarity algorithm. Therefore, in this paper we 
decided to use cosine similarity as a complementary dimension of lncRNA and miRNA similarity. The principle 
of lncRNA cosine similarity was based on the assumption that if lncRNAli and lncRNAlj were similar to each 
other, then in the lncRNA–miRNA association matrix, binary vector Y(li) and binary vector Y(lj) should be 

(1)Y(i, j) =

{

0 miRNA m(j) has no association with lncRNA l(i)
1 miRNA m(j) has association with lncRNA l(i)

Table 1.  Data sheet.

Name LncRNAs MiRNAS Interactions

DATA 1 417 265 2272

DATA 2 1089 246 9086

DATA 3 468 262 8634
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similar to each other. The same assumption should also be true for miRNA. Based on known lncRNA–miRNA 
associations data, the cosine similarity matrix CL of lncRNA is calculated as follows:

The binary vector Y(li) indicates whether there is an association between lncRNAli and each miRNA (the row 
i of the adjacency matrix Y  , 1 if li is related to miRNA, otherwise 0). Meanwhile, CL(li , lj) is the cosine similarity 
of between lncRNAli and lncRNAlj . The CL is the lncRNA cosine similarity matrix.

Similarly, the cosine similarity of miRNAmi and miRNAmj is calculated as follows:

The binary vector Y(mi) indicates whether there is an association between miRNAmi and each lncRNA (the 
column j of adjacency matrix Y  , 1 if mj is related to lncRNA, otherwise 0). Meanwhile, CM(mi ,mj) is the cosine 
similarity of between miRNAmi and miRNAmj . The CM is the miRNA cosine similarity matrix.

Jaccard similarity for lncRNA and miRNA. Recently, Jaccard similarity coefficient has been widely used 
in recommendation  algorithms65. Meanwhile, it has been used by researchers to predict the associations of bio-
logical factors, because it is mainly used to compare the similarity between limited sample sets, and it does not 
consider the potential value size in the vector. In this paper, we used Jaccard similarity to calculate the similarity 
of lncRNA and miRNA respectively. The Jaccard similarity matrix JL of lncRNA is calculated as follows:

where Y(li) and Y(lj) represent the number of miRNAs sets associated with lncRNAli and lncRNAlj , respectively. 
The JL is the lncRNA Jaccard similarity matrix. Similar to lncRNA, the Jaccard similarity between miRNAmi 
and miRNAmj can be calculated as follows:

where Y(mi) and Y(mj) represent the number of miRNAs sets associated with miRNAmi and miRNAmj , respec-
tively. The JM is the miRNA Jaccard similarity matrix.

Self‑tuning spectral clustering similarity for lncRNA and miRNA. After Jaccard similarity calcula-
tion, the similarity matrix we obtained was still relatively sparse. To improve the accuracy of the experiment, 
we used self-tuning spectral clustering similarity algorithm to fill the sparse  matrix66. Spectral clustering is one 
of the methods of clustering, which can deal with complex and diverse structured data. It does not require an 
explicit model for estimating the data distribution, but rather performs a spectral analysis of the point-to-point 
similarity matrix. In this paper, we concluded that similar lncRNAs were related to similar function miRNAs, 
so we used self-tuning spectral clustering similarity algorithm to calculate the similarity between lncRNAli and 
lncRNAlj . We represented the rows i and j vectors of the matrix Y  as VL(li) and VL(lj) , respectively. Then, the 
self-tuning spectral clustering similarity of lncRNAs can be calculated as follows:

where, VL(liK ) is the K th adjacent point of the VL(li) sample point, and here we default K value is 5.

where, SL is the self-tuning spectral cluster similarity matrix of lncRNAs.

(2)CL
(

li , lj
)

=
Y(li) · Y

(

lj
)

�Y(li)��Y
(

lj
)

�
,

(3)CL = ((CL(li , lj))r∗r .

(4)CM
(

mi ,mj

)

=
Y(mi) · Y

(

mj

)

�Y(mi)��Y
(

mj

)

�
,

(5)CM = ((CM(mi ,mj))n∗n.

(6)JL
(

li , lj
)

=

∣

∣Y(li) ∩ Y
(

lj
)∣

∣

∣

∣Y(li) ∪ Y
(

lj
)∣

∣

,

(7)JL = ((JL(li , lj))r∗r ,

(8)JM
(

mi ,mj

)

=

∣

∣Y(mi) ∩ Y
(

mj

)∣

∣

∣

∣Y(mi) ∪ Y
(

mj

)∣

∣

,

(9)JM = ((JM(mi ,mj))n∗n,

(10)SL(li , lj) =







exp

�

−�VL(li)−VL(lj)�
2

δi ·δj

�

, i �= j

0, i = j,

(11)δi = �VL(li)− VL(liK )�,

(12)SL = ((SL(li , lj))r∗r ,
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Similarly, we represented the column i and j vectors of the matrix Y  as VM(mi) and VM(mj) , respectively. The 
self-tuning spectral clustering similarity of miRNAs can be calculated as follows:

where, VM(miK ) is the K th adjacent point of the VM(mi) sample point, and here we default K value is 5.

where, SM is the self-tuning spectral cluster similarity matrix of miRNAs.

Integrated lncRNA similarity and miRNA similarity. After the above steps, we obtained the cosine 
similarity matrix, Jaccard similarity matrix, and self-tuning spectral cluster similarity matrix of lncRNAs and 
miRNAs. Then, we integrated various similarity matrices to obtain a more complete similarity matrix. First, 
we combined the Jaccard similarity matrix of lncRNAs with the self-tuning spectral cluster similarity matrix of 
lncRNAs. The integrated similarity matrix JSL of the lncRNAs can be calculated, as follows:

where, we used the self-tuning spectral cluster similarity to supplement the Jaccard similarity. If JL(li , lj) was 0, 
it was filled directly by SL(li , lj) , otherwise the mean was taken, so that the matrix was more complete to make 
the sparse matrix dense and improve the accuracy of the experimental results. Second, we combined the Jaccard 
similarity matrix of miRNAs with the self-tuning spectral cluster similarity matrix of miRNAs. The integrated 
similarity matrix JSM of the miRNAs can be calculated, as follows:

To better supplement the dimension of the similarity matrix, we would re-integrate the cosine similarity with 
the new integrated similarity matrix. Specifically, if lncRNAli and lncRNAlj had no common associated miRNA in 
the adjacency matrix Y  , then the value between them was 0 in the cosine similarity matrix CL . Therefore, when 
the lncRNAli and lncRNAlj had no similarity scores in the CL , we directly used the JSL similarity score between 
them as the integrated similarity score. If lncRNAli and lncRNAlj had similar scores in CL , then we integrated the 
similarity scores in CL and JSL as the final similarity scores. We conducted experiments on the weight parameters 
of the integration process and found that 0.5 was the best integration. The integrated similarity matrix JSCL of 
the lncRNAs can be calculated, as follows:

Similarly, if the miRNAmi and miRNAmj had no common associated lncRNA in the adjacency matrix Y  , then 
the value between them was 0 in the cosine similarity matrix CM . Therefore, when the miRNAmi and miRNAmj 
had no similarity scores in the CM , we directly used the JSM similarity score between them as the integrated 
similarity score. If miRNAmi and miRNAmj had similar scores in CM , then we integrated the similarity scores 
in CM and JSM as the final similarity scores. The integrated similarity matrix JSCM of the miRNAs can be 
calculated, as follows:

(13)SM(mi ,mj) =







exp

�

−�VM(mi)−VM(mj)�
2

δi ·δj

�

, i �= j

0, i = j,

(14)δi = �VM(mi)− VM(miK )�,

(15)SM = ((SM(mi ,mj))n∗n,

(16)JSL(li , lj) =

{

JL(li , lj)+SL(li ,lj)

2
, JL(li , lj) �= 0

SL(li , lj), JL(li , lj) = 0,

(17)JSL = ((JSL(li , lj))r∗r ,

(18)JSM(mi ,mj) =

{

JM(mi ,mj)+SM(mi ,mj)

2
, JM(mi ,mj) �= 0

SM(mi ,mj), JM(mi ,mj) = 0,

(19)JSM = ((JSM(mi , mj))n∗n.

(20)JSCL(li , lj) =

{

JSL(li ,lj)+CL(li ,lj)

2
, CL(li , lj) �= 0

JSL(li , lj), CL(li , lj) = 0,

(21)JSCL = ((JSCL(li , lj))r∗r .

(22)JSCM(mi ,mj) =

{

JSM(mi ,mj)+CM(mi ,mj)

2
, CM(mi ,mj) �= 0

JSM(mi ,mj), CM(mi ,mj) = 0,

(23)JSCM = ((JSCM(mi ,mj))n∗n.
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Network consistent projection of the human
LncRNA–miRNA association. In our study, network consistency projection predicted potential lncRNA–
miRNA associations through heterogeneous networks. The heterogeneous networks included the known 
lncRNA–miRNA association networks, the integrated lncRNAs similarity network ( JSCL ), and the integrated 
miRNAs similarity network ( JSCM ). JSCSNCP-LMA was divided into two parts: lncRNAs spatial consistency 
projection score and miRNAs spatial consistency projection score. The flow chart of the JSCSNCP-LMA method 
is shown in Fig. 1.

Figure 1.  Flow chart of JSCSNCP-LMA applied to lncRNAs–miRNAs association prediction. The JSCSNCP-
LMA including four steps: First, construct the lncRNA–miRNA association matrix. Second, calculate the 
cosine similarity matrix of lncRNA and miRNA, Jaccard similarity matrix of lncRNA and miRNA and self-
tuning spectral cluster similarity matrix of lncRNA and miRNA. Third, integrate the above matrix to obtain the 
comprehensive similarity matrix of lncRNA and miRNA. Finally, the final prediction score matrix is calculated 
by the network consistency projection.
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LncRNA space consistency projection score. Network consistency projection refers to the higher sim-
ilarity score between lncRNAli and other lncRNA (including lncRNAli itself) in the integrated lncRNA similarity 
matrix ( JSCL ), more lncRNAs related to miRNAmj , and the high spatial similarity of lncRNAli with miRNAmj . 
In the adjacency matrix Y, the values of the unknown associations are all 0; but in fact, these unknown associa-
tions are uncertain. Therefore, we replaced each of them with one small positive integer δ , and the value of δ was 
set as 10–30. This approach prevents the denominator from being 0 and will not affect the result of the calcula-
tion. The lncRNA space consistency projection scores are calculated as follows:

where, JSCLi is the i th row of the integrated lncRNAs similarity matrix JSCL , which represents the similarity 
of lncRNAli with all lncRNAs. Yj is the jth column of the adjacency matrix Y  , which represents the associa-
tion of miRNAmj with all lncRNAs. 

∣

∣Yj

∣

∣ is the length of the vector Yj , which is also the modules of the vector. 
JSCLSNCP(i, j) represents the network consistency projection score of JSCLi on Yj . Specifically, if the angle of 
the network projection of JSCLi on Yj is smaller, then the value of JSCLSNCP(i, j) is larger.

MiRNA space consistency projection score. Similarly, the miRNA space consistency projection scores 
are calculated as follows:

where, JSCMj is the j th column of the integrated miRNAs similarity matrix JSCM, which represents the simi-
larity of miRNAmj with all miRNAs. Yi is the ith row of the adjacency matrix Y  , which represents the associa-
tion of lncRNAli with all miRNAs. |Yi| is the length of the vector Yi , which is also the modules of the vector. 
JSCMSNCP(i, j) represents the network consistency projection score of JSCMj on Yi . Specifically, if the angle of 
the network projection of JSCMj on Yi is smaller, then the value of JSCMSNCP(i, j) is larger.

With the integration of JSCLSNCP(i, j) and JSCMSNCP(i, j) calculated above, the final similarity score matrix 
can be integrated and normalized, as follows:

where, JSCLSNCP(i, j) and JSCMSNCP(i, j) represent the network consistency projection scores for lncRNAli and 
miRNAmj in the lncRNA space and miRNA space, respectively. The |�| is a normalized operation to standardize 
the final prediction scores. Therefore, the value of JSCSNCP(i, j) ranges between 0 and 1. Matrix JSCSNCP is 
the final projection score matrix in lncRNA space and miRNA space, and each value in the matrix represents 
the final score of each lncRNA–miRNA pair. The final score is used to predict lncRNA with miRNA association. 
The higher the score, the higher the association.

Results and discussion
Self‑performance evaluation of the JSCSNCP‑LMA model. The performance evaluation of the 
JSCSNCP-LMA model was divided into two parts: the self-performance evaluation and the performance evalu-
ation with other methods. For the self-performance evaluation, we verified the performance of JSCSNCP-LMA 
by using k-fold CV. We set the k values to 2,3,4,5, respectively, to perform the comparison test. In the k-fold CV 
scheme, 2272 known lncRNA–miRNA associations were divided into k equal subsets randomly. For each cross-
validation experiment, k − 1 of them were used as the training set and the remaining one subset was used as the 
test sample. The predicted scores were calculated and sorted by JSCSNCP-LMA, the special ranking position was 
selected as the threshold value, and the offline area (AUC value) of the receiver operating characteristic (ROC) 
curve was used as a performance index to evaluate the prediction  performance67,68. The ROC curve can plot the 
relationship between true positive rate (TPR) and false positive rate (FPR) at different thresholds. If the AUC is 
closer to 1, then the predicted performance is better. The TPR and FPR can be calculated as follows:

where, TP, FN, FP, and TN, each represent True Positive, False Negative, False Positive and True Negative.
As shown in Fig. 2, it represented the ROC curves and AUC values under different k values in k-fold CV in 

Data 1, respectively.
To verify the generality of the method, we selected the data obtained from three different datasets by fivefold 

CV experiments to evaluate and compare its predictive analysis power. In the fivefold CV, 2272 lncRNAs–miR-
NAs associations in Data 1, 9086 lncRNAs–miRNAs associations in Data 2 and 8634 lncRNAs–miRNAs associa-
tions in Data 3 were included. For each cross-validation experiment, 4 of them were used as the training set and 
the remaining one subset was used as the test sample. The results of experiment are shown in Fig. 3.
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To further verify the results of experiment, in this study, we used LOOCV and fivefold CV to compare their 
prediction performance on Data 1. The specific results are shown in Fig. 4.

After comparing the results of different validation methods, we also considered the following conditions of 
the self-performance evaluation of JSCSNCP-LMA: (1) predictive performance with all information (JSCSNCP-
LMA); (2) considering only the prediction performance of lncRNA space projection; (3) considering only the 
prediction performance of miRNA space projection. According to the above situation, the ROC curves and the 
AUC values in LOOCV on Data 1 are shown in Fig. 5.

Meanwhile, we also compared influence of self-model’ s change by using AUPR in Data 1, as shown in Table 2.
Where, SSNCP-LMA is method JSCSNCP-LMA only including self-tuning spectral clustering similarity 

algorithm. JSSNCP-LMA is method JSCSNCP-LMA only including self-tuning spectral clustering similarity 
algorithm and Jaccard similarity algorithm. JSCLSNCP-LMA is considering only the prediction performance 
of lncRNA space projection. JSCMSNCP-LMA is considering only the prediction performance of miRNA space 
projection.

Comparison with the other methods. To further verify the advantages of JSCSNCP-LMA, we used the 
known lncRNAs–miRNAs associations to compare JSCSNCP-LMA with other five methods. To the best of our 
knowledge, there were only a few machine-learning based methods for lncRNA–miRNA associations predic-

Figure 2.  Influence of parameter variation on model prediction accuracy. The figure shows the ROC curve 
of k (where k = 2, 3, 4, 5) fold CV and the respective AUC values (fivefold CV: AUC = 0.9145; fourfold CV: 
AUC = 0.9108; threefold CV: AUC = 0.9039; twofold CV: AUC = 0.8877).

Figure 3.  Prediction ability in different datasets. The figure shows the ROC curves in fivefold CV and the AUC 
values (Data 1: AUC = 0.9145; Data 2: AUC = 0.9505; Data 3: AUC = 0.9662).
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Figure 4.  Prediction ability with different test methods. The figure shows the ROC curves in LOOCV and 
fivefold CV and the AUC values (LOOCV: AUC = 0.9268; fivefold CV: AUC = 0.9145).

Figure 5.  Influence of self-model’ s change on prediction accuracy. The figure shows that JSCSNCP-LMA has a 
reliable predictive performance with an AUC value of 0.9268. In the lncRNA projection space, the AUC value of 
JSCSNCP-LMA reach 0.8991. In the miRNA projection space, the AUC value is 0.9078. If the projection of two 
spaces is integrated, then the prediction performance can be greatly improved. Therefore, the JSCSNCP-LMA is 
reliable and has achieved good performance.

Table 2.  Comparison of AUPR values for Influence of the change of model itself in fivefold CV.

Methods AUPR

SSNCP-LMA 0.0730

JSSNCP-LMA 0.0715

JSCLSNCP-LMA 0.1501

JSCMSNCP-LMA 0.1591

JSCSNCP-LMA 0.1599
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tion. Here, we adopted EPLMI and  INLMI69 as the benchmark methods. EPLMI is a two-way diffusion model 
which uses the known lncRNA–miRNA interaction-based bipartite graph and expression profiles to predict 
lncRNA–miRNA associations. We implemented EPLMI using its publicly available source code. INLMI inte-
grates the expression similarity networks and the sequence similarity networks to predict lncRNA–miRNA asso-
ciations. And we implemented this model according to descriptions in Ref.69. Since predicting lncRNA–miRNA 
associations could be considered as a link prediction task, we adopted several network link inference methods as 
baseline methods, i.e. the collaborative filtering method (CF)63 and the resource allocation algorithm (RA)70. In 
collaborative filtering method takes known lncRNA–miRNA interactions as a bipartite graph and exploits exter-
nal information, such as expression profiles to calculate the lncRNA–lncRNA similarity and miRNA–miRNA 
similarity. Then, the CF method finds neighbors for each lncRNA and each miRNA, then uses the weighted 
average of its neighbor-interacting miRNA (lncRNA) to predict unknown associations, and then combines the 
lncRNA-based neighbor prediction and the miRNA-based neighbor prediction with a trade-off parameter. The 
resource allocation algorithm also formulates lncRNAs (miRNAs) as nodes and lncRNA–miRNA interactions 
as links in a bipartite graph. Interaction information is iteratively propagated from miRNAs to their linked 
lncRNAs, and then the information is allocated from lncRNAs back to miRNAs. After finite iteration, final 
resources for miRNAs are probabilities that the lncRNA interacts with these miRNAs. We used open source 
code to implement the method of sequence-derived linear neighborhood propagation (SLNPM) to predict 
the lncRNA–miRNA associations. Finally, we adjusted the parameters to achieve the best performance of each 
method. In this study, the fivefold CV was used to compare their prediction performance in Data 1. The results of 
the JSCSNCP-LMA comparison with the other methods are shown in Fig. 6. In Fig. 6, we can see that the AUC of 
the JSCSNCP-LMA model has a score of 0.9145. The proposed model performs much better than EPLMI (AUC 
score 0.8494), INLMI (AUC score 0.8477), RA (AUC score 0.8637), CF (AUC score 0.8610) and SLNPM-SC 
(AUC score 0.9115).

In addition, we also compared the model with the recent and more popular algorithms(LMI-INGI71 
 NDALMA72) by using data in Refs.71,72. The comparison results (AUC values) are shown in Table 3.

Figure 6.  Prediction abilities with different models. The figure shows the ROC curves and AUC values of the 
six methods (INLMI, EPLMI, CF, RA, SLNPM-SC, JSCSNCP-LMA) by using fivefold CV.

Table 3.  Comparison of AUC values for different lncRNA–miRNA prediction methods in fivefold CV.

Methods AUC 

LncRNA-based CF 0.6359

KATZ 0.7439

MiRNA-based CF 0.8235

LFM 0.8253

EPLMI 0.8447

GBCF 0.8615

LncMirNet 0.8763

NDALMA 0.8810

LMI-INGI 0.8957

JSCSNCP-LMA 0.9154
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Case studies. To further investigate JSCSNCP-LMA model proposed by us for predicting lncRNA–miRNA 
associations, we constructed JSCSNCP-LMA based on the Data1 to predict unkown lncRNA–miRNA associa-
tions that didn’t include in the Data 1. After predicting, our prediction results had been verified by other data-
bases or relevant literature. Therefore, we selected the top ten lncRNAs–miRNAs data pairs of the prediction 
scores. As shown in Table 4.

Overall, 9 of the 10 data pairs of lncRNA–miRNA obtained by ranking prediction are confirmed by the cor-
responding database.

In addition, we also investigated the proportions of correctly predicted lncRNA–miRNA pairs among the 
top 100 highly scored predictions based on the bench marking dataset and compared their results with other 
methods. The results are shown in Table 5.

Therefore, we can argue that JSCSNCP-LMA can predict lncRNA–miRNA associations with high accuracy.
In addition, a number of studies have shown that lncRNA and miRNA play a key role in various diseases, 

especially cancer. To further evaluate the ability of JSCSNCP-LMA to predict potential lncRNA–miRNA asso-
ciations, we conducted case studies on two common lncRNAs: H1973 and HOTAIR74. Among all the predicted 
results, we found and analyzed the top 15 miRNAs in H19 and HOTAIR prediction score. In H19, 14 miRNAs 
related to H19 have been verified by known databases or relevant literature. In HOTAIR, 14 miRNAs related to 
HOTAIR have been also verified by known databases or relevant literature, as shown in Tables 6 and 7.

In recent years, H19 has become a research hotspot due to its ectopic expression in human diseases, especially 
malignant tumors, and plays an important role as an oncogene in human malignant tumors. Meanwhile, H19 
has been shown to be involved in the development and malignant progression of many tumors, and promote 
cell growth, invasion, migration, epithelial-mesenchymal transition, metastasis and apoptosis. In addition, H19 
can isolate some miRNAs, promote multi-layer molecular regulatory mechanisms, or co-affect the occurrence of 
some diseases with some miRNAs. For example, in Table 3, Qin et al.75 verified that both H19 and hsa-mir-301b 
were prognostic factors of cervical cancer. Luo et al.76 verified that H19 played an important role in regulating 
inflammatory processes in retinal endothelial cells by regulating hsa-mir-93 under high-glucose condition. He 
et al.77 verified that H19 and hsa-mir-17/hsa-mir-106b could affect the treatment efficacy of patients with chronic 
hepatitis B. Zhao et al.78 verified that H19 could regulate the expression of ID2 through competitive binding to 
hsa-mir-19a/b, which played a role in the proliferation of acute myelocytic leukemia (AML) cells. Moreover, 
H19 also plays an important role in the generation or treatment of other cancers, such as colon cancer, breast 
cancer, lung cancer and prostate  cancer79–82. Similarly, there are also many miRNAs that play an important role 
in the generation or treatment of cancer. For example, Rafael Sebastian Ford et al.83 verified the oncogenic role 
of hsa-mir-130b in prostate cancer. However, no biological researchers have directly verified the association 
between H19 and hsa-mir-130b at present. Therefore, the prediction results provided by the JSCSNCP-LMA 
are mainly used to provide biological researchers with research directions, so as to improve the efficiency of 
biological research.

Table 4.  Top 10 miRNAs-related candidate lncRNAs.

Rank LNCRNAS MIRNAS CONFIRMED

1 RPll-244213.1 hisa-mir-497 starBase v2.0, lncRNASNP2

2 YLPMI hisa-mir-195 -

3 LINC00649 hisa-mir-16 starBase v2.0, lncRNASNP2

4 RPll-329L6.1 hisa-mir-16 starBase v2.0, lncRNASNP2

5 LINC00649 hisa-mir-15a starBase v2.0, lncRNASNP2

6 RP6-206I17.2 hisa-mir-195 starBase v2.0, lncRNASNP2

7 RPll-329L6.1 hisa-mir-497 starBase v2.0, lncRNASNP2

8 RP6-206I17.2 hisa-mir-16 starBase v2.0, lncRNASNP2

9 RPll-155D18.12 hisa-mir-15a starBase v2.0, lncRNASNP2

10 RPll-155D18.12 hisa-mir-497 starBase v2.0, lncRNASNP2

Table 5.  Top 100 lncRNA–miRNA pairs prediction ratio.

Methods Prediction ratio (%)

INLMI 84

EPLMI 85

CF 86

RA 86

SLNPM-SC 90

JSCSNCP-LMA 91



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17030  | https://doi.org/10.1038/s41598-022-21243-y

www.nature.com/scientificreports/

Like H19, HOTAIR is one of the most widely studied abnormally regulated lncRNAs in human cancers. 
Studies have shown that in preclinical cancer  research84, HOTAIR can control basic biochemical and cellular 
processes and promote proliferation, invasion, survival, drug resistance and metastasis through interactions with 
a variety of other biological factors. And HOTAIR has been also shown to promote tumor progression by regulat-
ing miRNAs expression and function. For example, in Table 4, Pan et al.85 verified that the regulatory mechanism 
between HOTAIR and hsa-mir-17 played an important role in ruptured intracranial aneurysm disease. Cao 
et al.86 verified that the regulatory mechanism between HOTAIR and hsa-mir-20a played an important role in 
liver cancer cells. Bao et al.87 verified that HOTAIR could affect human chondrosarcoma disease by controlling 
mir-454-3p. Moreover, HOTAIR also plays an important role in the generation or treatment of other cancers, 
such as lung cancer, rectal cancer, prostate cancer and cervical  cancer88,89. Similarly, there are also many miR-
NAs that play an important role in the generation or treatment of cancer. For example, Liu et al.90 verified that 
hsa-mir-106b also played a crucial role in rectal cancer. Therefore, it is very important to study the unknown 
lncRNA–miRNA associations.

Conclusions
LncRNAs–miRNAs associations are critical to many biological activities and are closely related to the devel-
opment of various diseases. Therefore, exploring and identifying these associations can help to understand 
the function of lncRNAs/miRNAs and complex disease mechanisms. In this paper, we proposed a prediction 
method named the JSCSNCP-LMA that was different from other traditional methods. JSCSNCP-LMA achieved 
excellent prediction performance by using Jaccard similarity algorithm, self-tuning spectral clustering similarity 
algorithm, cosine similarity algorithm and known lncRNA–miRNA association networks. JSCSNCP-LMA did 

Table 6.  The top 15 candidate miRNAs for H19. 

Rank LNCRNAS MIRNAS EVIDENCES PMID

1 H19 hsa-mir-17 starBase v2.0 34041839

2 H19 hsa-mir-106a starBase v2.0 30993766

3 H19 hsa-mir-20b starBase v2.0 31894264

4 H19 hsa-mir-130b starBase v2.0 29744254

5 H19 hsa-mir-106b starBase v2.0 34041839

6 H19 hsa-mir-130a starBase v2.0 33616375

7 H19 hsa-mir-519d starBase v2.0 25366760

8 H19 hsa-mir-301b starBase v2.0 30625468

9 H19 hsa-mir-93 starBase v2.0 31953562

10 H19 hsa-mir-20a starBase v2.0 30092355

11 H19 hsa-mir-301a starBase v2.0 30814872

12 H19 hsa-mir-454 starBase v2.0 30809286

13 H19 hsa-mir-19b starBase v2.0 28765931

14 H19 hsa-mir-19a starBase v2.0 28765931

15 H19 hsa-mir-302e No 27075472

Table 7.  The top 15 candidate miRNAs for HOTAIR.

Rank LNCRNAS MIRNAS EVIDENCES PMID

1 HOTAIR hsa-mir-519d starBase v2.0 25366760

2 HOTAIR hsa-mir-130b starBase v2.0 29744254

3 HOTAIR hsa-mir-17 starBase v2.0 33750300

4 HOTAIR hsa-mir-20a starBase v2.0 29740493

5 HOTAIR hsa-mir-106a starBase v2.0 30993766

6 HOTAIR hsa-mir-454 starBase v2.0 28182000

7 HOTAIR hsa-mir-301b starBase v2.0 29744254

8 HOTAIR hsa-mir-130a starBase v2.0 33616375

9 HOTAIR hsa-mir-20b starBase v2.0 30468285

10 HOTAIR hsa-mir-301a starBase v2.0 30814872

11 HOTAIR hsa-mir-106b starBase v2.0 33773548

12 HOTAIR hsa-mir-93 starBase v2.0 32144238

13 HOTAIR hsa-mir-19b starBase v2.0 34249429

14 HOTAIR hsa-mir-19a starBase v2.0 –

15 HOTAIR hsa-mir-302d No –
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not require redundant parameters and showed a obvious advantage when the known experimentally validated 
lncRNA–miRNA associations were insufficient. To validate the predictive performance of the JSCSNCP-LMA, 
LOOCV and fivefold CV were used. Results showed that the proposed method outperformed other methods 
and effectively identified potential lncRNAs–miRNAs associations. Meanwhile, the prediction capabilities of 
proposed models were also tested by case studies. We validated the results of case studies by using known lit-
erature and datasets. In conclusion, JSCSNCP-LMA is promising for lncRNA–miRNA association prediction. It 
not only has a good performance, but also has good expansibility. For example, metabolite-disease association 
 prediction91, miRNA-disease association  prediction92, lncRNA-disease association  prediction93, and lncRNA-
protein association  prediction94.

Although this model has achieved good results, it still has some limitations. First of all, the known associa-
tion data between lncRNAs and miRNAs is relatively small, which will affect the final prediction results. What’s 
more, this model only uses a single lncRNAs–miRNAs association data and does not combine other association 
data, such as lncRNAs-diseases, miRNAs-diseases and lncRNAs-proteins. This may lead to inaccurate predic-
tion results due to the failure to consider the influence of other factors. Finally, in the algorithm, we only simply 
compare the influence of the default parameters on the algorithm and do not use the optimization algorithm to 
find the optimal solution automatically. This will reduce the accuracy of the prediction results. In order to bet-
ter reduce the prediction bias and improve the prediction performance, our future work mainly focuses on the 
optimization of similarity calculation and method fusion. At the same time, we will also build an algorithm to 
automatically seek the optimal parameters, so as to improve the accuracy of the prediction results. Finally, we will 
try to combine other association data to consider the predicted results from multiple perspectives. We believe 
that when more biological knowledge is applied to a refined fusion method, the accuracy of model prediction 
can be improved. And our method can be helpful for relevant biomedical research.
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