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A novel vaccine based 
on SARS‑CoV‑2  CD4+ and  CD8+ 
T cell conserved epitopes 
from variants Alpha to Omicron
Iam Palatnik‑de‑Sousa1, Zachary S. Wallace2,3, Stephany Christiny Cavalcante4, 
Maria Paula Fonseca Ribeiro4, João Antônio Barbosa Martins Silva4, Rafael Ciro Cavalcante5, 
Richard H. Scheuermann 2,6,7,8 & Clarisa Beatriz Palatnik‑de‑Sousa4,9*

COVID‑19 caused, as of September, 1rst, 2022, 599,825,400 confirmed cases, including 6,469,458 
deaths. Currently used vaccines reduced severity and mortality but not virus transmission or 
reinfection by different strains. They are based on the Spike protein of the Wuhan reference virus, 
which although highly antigenic suffered many mutations in SARS‑CoV‑2 variants, escaping 
vaccine‑generated immune responses. Multiepitope vaccines based on 100% conserved epitopes 
of multiple proteins of all SARS‑CoV‑2 variants, rather than a single highly mutating antigen, could 
offer more long‑lasting protection. In this study, a multiepitope multivariant vaccine was designed 
using immunoinformatics and in silico approaches. It is composed of highly promiscuous and strong 
HLA binding  CD4+ and  CD8+ T cell epitopes of the S, M, N, E, ORF1ab, ORF 6 and ORF8 proteins. 
Based on the analysis of one genome per WHO clade, the epitopes were 100% conserved among the 
Wuhan‑Hu1, Alpha, Beta, Gamma, Delta, Omicron, Mµ, Zeta, Lambda and R1 variants. An extended 
epitope‑conservancy analysis performed using GISAID metadata of 3,630,666 SARS‑CoV‑2 genomes 
of these variants and the additional genomes of the Epsilon, Lota, Theta, Eta, Kappa and GH490 R 
clades, confirmed the high conservancy of the epitopes. All but one of the CD4 peptides showed a 
level of conservation greater than 97% among all genomes. All but one of the CD8 epitopes showed 
a level of conservation greater than 96% among all genomes, with the vast majority greater than 
99%. A multiepitope and multivariant recombinant vaccine was designed and it was stable, mildly 
hydrophobic and non‑toxic. The vaccine has good molecular docking with TLR4 and promoted, 
without adjuvant, strong B and Th1 memory immune responses and secretion of high levels of IL‑2, 
IFN‑γ, lower levels of IL‑12, TGF‑β and IL‑10, and no IL‑6. Experimental in vivo studies should validate 
the vaccine’s further use as preventive tool with cross‑protective properties.

COVID-19 is a severe acute respiratory syndrome caused by the SARS-CoV-2 coronavirus, which arose in 
December 2019 and it is affecting all the continents ever since. As of September 1rst, 2022, there have been 
599,825,400 confirmed cases of COVID-19, including 6,469,458  deaths1. The Wuhan Hu1 is the ancestral ref-
erence virus, but variants Gamma, Delta, Beta and Omicron emerged, respectively, in Brazil, India and South 
Africa, which are countries with dense populations, that had at that time a low anti-COVID-19 vaccination 
coverage. In Brazil, for instance, the Gamma variant was first described on January 21th, 2021, just before the 
start of the vaccination  campaign2.
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According to their increased transmissibility, increased hospitalizations and deaths, reduced neutralization by 
antibodies generated by previous infection or vaccination, reduced response to treatment or diagnostic failures 
some of the mutants are considered Variants of Concern (VOC): Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 
(B.1.1.28.1), Delta (lineage B.1.617.2) and Omicron (B.1.1.529), etc.3. In contrast, mutants that show changes to 
receptor binding, but not increased hospitalizations and deaths, are Variants of Interest (VOI): Mµ (B.1.621), 
Zeta or P.2 (B.1.1.28.2)3,  Lambda4 and R1 (B.1.427/B.1.429) and  others5. While the ancestral Wuhan Hu1 was 
worldwide predominant until September 2020, new variants emerged since December 2020 at a much higher 
rate, consistent with the accumulation of two mutations per month, and to a strong selective pressure on the 
immunologically important SARS-CoV-2  genes6.

Despite the immunological escape of the SARS-CoV-2 through the rapid rise of new mutants, most of the 
COVID-19 first generation vaccines, are composed only by the highly variable surface Spike  antigen7, either 
expressed by recombinant non-replicating  adenovirus8–10 or by messenger  RNA11,12. Confirming that, nearly 
56% of the 10 billion doses of vaccine delivered, correspond to the S spike protein non-replicating adenovirus 
and mRNA, while the whole virion inactivated (WVI)  vaccines13–15, correspond to 44% of the delivered  doses7.

The S protein is a surface predominant antigen involved in penetration of the virus into the host cell, there-
fore, it is the target of vaccine neutralizing  antibodies6. However, its high mutation rate jeopardized the vaccine 
cross-efficacy against other SARS-CoV-2 mutants. Vaccination of large populations is time-consuming, laborious 
and expensive. While a vaccine against a new mutant is under scaling-up, clinical trial and registration, a new 
variant can emerge. Therefore, vaccines against coronavirus should be focused not only in the S highly variable 
antigen, but in other conserved antigens instead, that suffer less mutations, are present in all mutants and are 
thus capable of inducing cross-protection16,17. Once the virus is inside an APC, all its components, whether 
structural or not, have the same probability to be digested and presented to lymphocytes in order to generate an 
immune response. Thus, it is reasonable to suppose, that non-structural genes, which codify for vital enzymes 
responsible for the virus replication, would be more conserved and less variable than other proteins of the same 
virus or of the coronavirus  family17–20. Conserved antigens should be therefore, the basis of second generation 
anti-COVID-19  vaccines17–20 as they could cross-protect against SARS, MERS, all the prevalent and even future 
SARS-CoV-2 variants.

Multiepitope protein vaccines optimize vaccine efficacy by joining the most immunogenic sequences of 
one or several antigens of a pathogen. A multivariant multiepitope vaccine expresses the most immunogenic 
conserved epitopes present in all variants of a pathogen, aiming to optimize their cross-efficacy. However, while 
several vaccines contain the Spike  antigen21–25, fewer formulations combine epitopes of different antigens of the 
Wuhan Hu1  strain26–28 and, multiepitope multivariant vaccines using conserved epitopes of all variants have 
been less  explored7.

In this investigation, we predicted in silico  CD4+ and  CD8+ T cell epitopes of the S, N, E and M structural 
proteins, and of the ORF1ab, ORF3a, ORF6, ORF7a, ORF7b ORF8 and ORF10 non-structural proteins of ten 
SARS-CoV-2 virus variants. Among them, we selected the epitopes that were: (1) promiscuous and had the 
highest binding affinity to HLA Class I and Class II molecules; (2) conserved in the Wuhan Hu1, Alpha, Beta, 
Gamma, Delta, and Omicron VOCs, and the Mµ, Zeta, Lambda, and R1 VOIs; and (3) that had higher population 
coverage. With these peptides, we designed a multiepitope universal vaccine potentially capable of generating 
cross-protection against all the human variants of SARS-CoV-2. In vivo vaccination tests will be needed in order 
to confirm this hypothesis.

Results
The Omicron VOC has an increased number of mutations, mainly in the S surface anti‑
gen. Mutations and deletions of the S, M, N, E, ORF1ab, ORF3a, ORF 6, ORF7a, ORF7b, ORF8 and ORF10 
proteins, of the 9 SARS-CoV-2 variants were compared to the Wuhan-Hu1 strain (Table S1). S protein mutations 
represented 25%, 9%, 11%, 7%, 4%, 7%, 4% and 69% of the total mutations of variants Alpha, Beta, Gamma, 
Delta, Mu, Zeta, Lambda, R1 and Omicron, respectively. S protein deletions represented 100%, 40%, 0%, 0%, 
0%, 0%, 100%, 70% and 6% of total deletions of variants Alpha, Beta, Gamma, Delta, Zeta and R1, Mu, Lambda 
and Omicron, respectively.

Prediction and selection of the totally conserved and highly promiscuous  CD4+ T cell epitopes 
of SARS‑CoV‑2 virus. For class II, the majority of endogenously bound ligands and epitopes are 12–20 
residues in length, with 15-mers being generally the most common and most  studied20,21,24,25,29. In the case of 
class II, because the binding groove is open, and the ligand can slide to assume optimal conformation, an exact 
size is not  essential30,31.

The majority of class I ligands, to include both known T cell epitopes and endogenously bound peptides, 
are 9-mers.

CD4+ T cell epitopes were predicted from the sequences of the 109 proteins of all variants, using the IEDB 
Class II 27 alleles, considering only epitopes that bind to at least 10 alleles. The 100% conserved epitopes were 
then sorted according to a final score, described on “Methods” section. This final score is based on the number 
of bound alleles and on the percentile rank of the peptides. The higher the number of bound alleles and the lower 
the value of percentile rank, the strongest final score is and the epitope is a better HLA binder.

Bound alleles correlated negatively to percentile ranks (R = − 0.108; p = 0.000). Non-promiscuous epitopes 
that bind to less than 14 alleles; epitopes that were not conserved with 100% of identity among the 10 virus 
strains, and epitopes that were duplicated, were excluded from the list (Fig. 1). Percentile rank was negatively 
correlated to promiscuity (R = − 0.184; p = 1.343 ×  10–6) and final score (R = − 0.8629; p < 0.0001). Final score and 
promiscuity correlated positively (R = 0.6739; p < 0.0001). No conserved promiscuous epitopes were predicted 
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for ORF3a, ORF7a and ORF10. ORF1ab holds 537 epitopes that bind to a maximum of 26 among the 27 alleles 
(Table 1). ORF6 and M epitopes bind to a maximum of 22 alleles, and E epitopes bind to a maximum of 21 alleles. 
ORF8 and ORF7b contributed with less epitopes, which bind to a maximum of 18 and 16 alleles, respectively. 
Despite its high immunogenicity, 6.1% of the epitopes corresponded to the S protein, and bind to a maximum 
of only 19 alleles (Table 1).

Number of epitopes and number amino acids of each protein were correlated (p < 0.0001, r = 0.9902,  r2 = 0.9806 
(Table 1). The longest ORF1ab protein holds more epitopes. However, if normalized by the number of amino 
acids (right hand axis of Fig. S1a), proteins ORF6, E, ORF7b and M showed proportionally higher  CD4+ epitopes 
densities.

The 676  CD4+ epitopes of the list were further filtered using the final scores in decreasing order (Table S3). 
Alternatively, filtering for 15-mers epitopes with overlapping of 10 amino acids retrieved 135 epitopes (Fig. S2 
and Table S3). Promiscuity and percentile rank correlated negatively but, with no significance (R = − 0.079; p 
value = 0.363). The maximum number of alleles bound by the overlapping epitopes of E, ORF1ab, ORF6, ORF7b 
and ORF8 proteins (15–23) was also lower than those bound by total epitopes (Table 1) indicating that the pre-
diction of total epitopes (Fig. 1), gave more robust results.

Figure 1.  Prediction of total  CD4+ epitopes. A prediction of 15-mers CD4 epitopes of the 109 proteins of all 
variants was carried out using the full set alleles of IEDB MHC Class II (27 alleles) and considering only the 
epitopes that bind to 10 or more alleles. We excluded from the list: (1) the non promiscuous epitopes that bind 
to less than 14 alleles, (2) the epitopes that were not conserved with 100% of identity among the 10 virus strains, 
and (3) the epitopes that were duplicated. These filters retrieved 676  CD4+ epitopes (Table S2) represented in this 
Category-plot which shows in the y axis the percentile rank values of all proteins that hold conserved epitopes 
and, in the x axis, the level of their promiscuity within a color-scale distribution. For each protein, the level of 
promiscuity increases from 14 to 26 HLA Class II alleles from left to right, along with the variation of colors 
from light green to dark violet color.

Table 1.  Predicted, promiscuous and totally conserved  CD4+ and  CD8+ epitopes of highest affinity.

Protein Amino acids

CD4+ total epitopes CD4+ overlapping epitopes CD8+ total epitopes

Predicted % Alleles bound Predicted % Alleles bound Predicted %
Alleles bound
PR < 1%

Alleles bound
PR < 0.5%

E 75 25 3.7 14–21 6 4.4 14–19 2 4.3 10 7

M 222 30 4.4 14–22 5 3.7 14–22 1 2.1 10 9

N 419 7 1.0 14–16 2 1.5 14–16 2 4.3 10–13 6–9

ORF1ab 7096 537 79.4 14–26 100 74.1 14–23 36 76.6 10–15 4–11

ORF6 61 25 3.7 14–22 7 5.2 14–20 0 0.0 – –

ORF7b 43 9 1.3 14–18 2 1.5 15–16 0 0.0 – –

ORF8 121 2 0.3 15–16 1 0.7 15 1 2.1 10 7

S 1273 41 6.1 14–19 12 8.9 14–19 5 10.6 11–12 2–8
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Epitope of 676 final-score filtered list that shared the same core, were combined  into a longer final epitope 
that would include them all. Sixteen  CD4+ novel epitopes, which combine sequences ranking up to position 
84 of the list, with final scores ranging from 0.666 to 0.938, were selected (Table S4). Twelve of them belong to 
ORF1ab, two to E, one to M and one to ORF6 proteins. Their final scores ranged from 0.938 to 0.666, promiscuity 
from 26 to 19 alleles and percentile ranks from 0.01 to 1.19 (Table S4). A final prediction was ran for these 16 
epitopes in the IEDB platform considering the full set Class II alleles (Table S5). A color-scale range from strong 
red color for high affinity binding (PR < 1%) to light pink for low affinity values (PR values close to 20%). The 
epitopes showed outstanding promiscuity values (16–22 alleles) and remarkably high affinity-binding values. 
Bindings with percentile ranks below 10% were observed for 71% of the epitope-allele combinations (Table S5). 
Sixteen of the 27 alleles (59%) were bound by at least 10 epitopes. The DPA1*02:01/DPB1*01:01, DRB1*01:01 and 
DRB1*04:05 alleles showed the maximal binding to all the 16 epitopes. DR, DP and DQ alleles of higher World 
population  prevalence32, showed good affinity-binding capabilities with percentile rank values < 10% (Table S6).

Prediction and selection of the totally conserved, promiscuous, strong and weak binders  CD8+ 
T cell epitopes of SARS‑CoV‑2 virus. MHC Class I epitopes have a single alpha chain that impacts binding 
and because the binding grove is closed it can only accommodate short peptides (8–14 amino acids). The major-
ity of class I ligands, to include both known T cell epitopes and endogenously bound peptides, are 9-mers30,31. In 
this investigation we used the default length of IEDB Class I predicting tool = 9  mer20,21,24,25,29,33. Epitopes were 
predicted from the sequences of 109 proteins of all variants, using the IEDB Class I 27 alleles. Epitopes that bind 
with percentile rank < 1%, to 10 or more alleles, are conserved with 100% of identity among the 10 virus strains, 
and are not duplicated, were selected. Forty-seven conserved epitopes that bind to 10–15 alleles with percentile 
rank < 1% were retrieved (Fig.  2). The 47 epitopes are considered weak binders of 10–15 alleles, for binding 
to them with PR < 1% but they also are strong binders to 2–11 alleles, with PR < 0.5% (Table S7). Results are 
shown in decreasing order of final scores and of number of alleles bound by the strong binders (PR < 0.5%). This 
method thus favored the strong binders (PR < 0.5%). Accordingly, final score correlated more to the promiscuity 
of strong binders (R = 0.9957; p < 0.0001) than of weak binders (R = 0.3088, p = 0.0347) and correlated negatively 
to percentile rank (R = − 0.3088, p = 0.3085). As such, peptide VVYRG TTT Y, the first of the rank binds weakly 
to 12, but strongly to 11 alleles. In contrast, peptide KLFDRYFKY, the second in rank binds weakly to 15 and 
strongly to 10 alleles (Table S7). If two peptides have the same promiscuity (PR < 0.5%) we can tiebreak using 
the promiscuity (PR < 1%).

Most of the 47 epitopes belong to ORF1ab antigen (Table 1). S protein contributed with less  CD8+ than  CD4+ 
epitopes, and it was followed by the E and N and by the M and ORF8 antigens. Numbers of  CD8+ epitopes and of 
amino acids of each protein (p < 0.0001, r = 0.9976,  r2 = 0.9953) were correlated (Table 1). ORF1ab showed more 
 CD8+ epitopes (Table 1). However, if normalized by the number of amino acids, protein E showed proportionally 
higher  CD8+ epitope density (right hand axis of Fig. S1b).

Figure 3 contains the heatmaps for the 47 predicted  CD8+epitopes generated by the algorithm described in 
“Methods” section. In both heatmaps the epitopes are sorted by decreasing final score. The top heatmap shows 26 

Figure 2.  Prediction of total  CD8+ epitopes. Category plot showing all predicted 9-mer  CD8+ T cell 
epitopes (100% conserved, promiscuity of at least 10). Each dot corresponds to an epitope. The y axis shows 
the percentile rank values of all proteins that hold conserved epitopes and, in the x axis, the level of their 
promiscuity within a color-scale distribution. For each protein, the level of promiscuity increases from 10 to 15 
HLA Class I alleles.
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candidate peptides that have already been confirmed by immunological assays (12th column of the Table S7) as 
restricted to one to three different alleles. Eight of those 26 were considered dominant (epitopes labeled with yes 
in the 13th column of the Table S7)34. The bottom heatmap contains the other 21 novel candidate epitopes (Fig. 3).

Figure 3.  Heatmap of predicted candidate epitopes for CD8 T cells. Each peptide is represented in the y-axis. 
The values displayed in the heatmaps are the percentile ranks for each peptide, when binding each of the 27 
most common Class I alleles (x-axis). Lower percentile ranks values, closer to zero, corresponding to darker 
colors ranging from light purple to dark purple/black, show stronger binder epitopes (PR < 0.5) for the purpose 
of this study. The values in light pink close to PR = 1.0, in contrast, are considered weak binder or non-binders 
epitopes. In addition, the alleles in x axis are sorted by their frequencies in Word Population in decreasing order 
from left to right. Furthermore, each row informs the degree of promiscuity of each respective epitope. Top 
heatmap includes the predicted epitopes that have already been confirmed by biological assays, and bottom heat 
map includes the predicted epitopes that are novel.
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The heatmaps allowed us to identify, 39 of the 47 Class I predicted sequences (Table S7), which are strong 
binders and link to the most frequent World Population alleles HLA-A*02:01(25.2%), HLA-A*24:02 (16.8%), 
HLA-A*01:01 (16.2%), HLA-A*03:01 (15.4%), HLA-A*07:02 (13.3%), HLA-A*11:01 (12.9%) and HLA-A*08:01 
(11.5%)32 (Fig. 3). They show PR ranging from 0 to 0.5% in both, the top and bottom heatmaps, with colors rang-
ing from light purple to purple/black in at least one epitope/allele combination (Fig. 3). In contrast, 7 epitopes 
from the top heatmap (LVKPSFYVY, LVSDIDITF, QSAPHGVVF, VARDLSLQF, VAMPNLYKM, NVIPTITQM 
and STQDLFLPF), and one epitope of the bottom heatmap (HVISTSHKL) were weak binders to the most fre-
quent alleles, with PR values between 0.5 and 1% (Table S7) and colors ranging from red to light pink. For this 
reason, we excluded them from the list of candidates to compose the vaccine.

Among the 39 Class I strong binder epitopes listed according to their decreased final score, 20 of them are 
novel and 19 were described before (Table S8 epitopes with an asterisk). Eight of these 19 were considered as 
dominant (Table S7) by previous literature (revised  in34. Furthermore, while no confirmed epitope was predicted 
to bind to the HLA-B*40:01 and HLA-A*33:01 alleles, the EYADVFHLY and AQLPAPRTL novel epitopes, in 
fact, did.

World population coverage of the T cell epitopes. The coverage value for the whole Class II epitopes 
is 99.45%. The average number of epitope hits/HLA combinations recognized by the population (average hit) 
is 27.51 and the minimum number of epitope hits/HLA combinations recognized by the population (Pc  90C) 
is 12.99 (Fig. S3). Remarkably, the individual World population coverage percent for each epitope ranged from 
95.75 to 62.88% (Table S4). Ten among the 16 epitopes show coverages above 90%, 3 above 86%, 2 above 70% and 
one, above 60%. Moreover, considering a percentile rank < 0.5%, the population coverage for the Class I strong 
binders was 98.09%, the average hit = 24.96% and the  pc90c = 6.79 (Fig. S4a). Considering a percentile rank < 1%, 
the population coverage for the weak binders was 98.55%, the average hit = 40.77% the  pc90c = 14.55 (Fig. S4b). 
Population coverages of strong binder epitopes (PR = 0.5%) (Table  S7) are correlated with the final scores 
(p < 0.0001, r = 0.6712,  r2 = 0.4505) and with the number of bound alleles (p < 0.0001, r = 0.6870,  r2 = 0.4720).

Epitope‑conservancy analysis. The epitope conservation analysis generated two types of data files, each 
for CD4 and CD8, which are included in the Supplementary Materials. One of the data file types was a table pro-
viding the conservation ratio of each epitope among all genomes in the dataset and among all genomes of each 
variant clade, with values ranging between 0 and 1 after applying formula (1) in columns 6 and (2) in columns 
7 to 20 of Tables S9 and S10, respectively. The second data file type provides the raw fraction, total number of 
conserved genomes/total number of genomes, for each epitope among the entire collection of genomes (col-
umns 20) and among each clade (columns 6 to 19) of Tables S11 and S12, respectively, thus capturing how many 
genomes made up a WHO clade in the denominator. WHO clades such as Omicron and Delta comprised of far 
more genomes to the total genome analysis than clades such as Eta and Kappa; hence, a raw fraction of conserva-
tion offered an alternative perspective regarding the level of conservation.

All but one of the CD4 epitopes showed a level of conservation greater than 97% among all genomes (Fig. 4 
and Tables S9–S11). The one epitope with lower conservation ratio (62% conserved among all genomes) was 
from NSP6 position 66–80 (FLCLFLLPSLATVAY). This NSP6: 66–80 epitope was only 11% conserved among 
all Delta genomes and 1.5% conserved among all Kappa genomes due to the T77A susbtitution; all other clades 
showed greater than 99% conservation at this epitope. The E: 20–37 CD4 epitope (FLAFVVFLLVTLAILTAL) 
was only 23% conserved in the Eta clade but was greater than 99% conserved overall.

All but one of the CD8 epitopes showed a level of conservation greater than 96% among all genomes (Fig. 5 
and Tables S10–S12) and the vast majority greater than 99%. The one epitope with lower conservation ratio (58% 
conserved among all genomes) was from NSP13 (helicase) position 73–81 (KSHKPPISF), largely due to the pres-
ence of the mutation P77L substitution resulting in a 0.6% conservation level in the Delta clade. This epitope was 
greater than 98% conserved in all other clades. Other epitopes with clade-specific lower conservation values are 
NSP3: 1807–1815 (SLDNVLSTF) with only 1.6% conservation in Theta, NSP3: 748–756 (RTIKVFTTV) with 
only 2.6% conservancy in Kappa, and NSP12: 513–521 (RLYYDSMSY) with 78% conservation in Mu.

Composition, physicochemical and absence of toxicity of the multiepitope vaccine. The mul-
tiepitope vaccine holds at its N terminal, 39 Class I strong binder epitopes (Table S8), joined by AAY sequences 
(Fig. 6), followed by the 16 Class II epitopes (Table S4) joined by GPGPG  linkers35 and ends with a 6 HIS-tail at 
its C-terminal which will allow one-step purification of the multiepitope vaccine by  Ni2+ affinity columns. The 
inclusion of the repetitive regions, called spacers or linkers, intends to avoid the formation of faulty neoepitopes 
or junctional epitopes. Even if the epitopes of the pathogen are very well predicted and synthetized, the hydro-
lytic enzymes of dendritic cells or macrophages cells that ingest the vaccine, may not cut the protein exactly on 
their flanking amino acids in order to release the predicted sequences. Instead, the cuts between wrong amino 
acids will release disrupted epitopes with destroyed immunogenicity, i.e. junctional epitopes or  neoepitopes35. 
As the G and P residues are not normally found in anchor positions, the introduction of a GPGPG spacer 
between CD4 epitopes would have a higher probability of preventing the generation of junctional  epitopes35. 
Simultaneously, it was observed that the addition of the AAY spacers improved the responses to Class I epitopes 
of multiepitope vaccine against  tuberculosis36,  tumors37 and Staphylococcus aureus38. Since then, all the designs 
of multiepitope vaccines use the GPGPG spacers between CD4 sequences and the AAA, AAY spacer for CD8 
 sequences21,25,27,37,39,40.

Epitopes in the SARS-CoV-2 multiepitope vaccine are organized in decreasing order of final scores. Further-
more, the expression of a 6× His-tag tail on the C-terminal of the multiepitope protein will allow its one-step 
purification by  Ni2+ affinity  columns41.
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The protein has 825 amino acids, a molecular weight of 90,840.18 D and is basic (pI = 8.2). Its instability 
index of 27.72 (below 40) classifies it as stable. It has 100 h of estimated half-life in mammalian reticulocytes in 
vitro, more than 20 h in yeast in vivo and more than 10 h in Escherichia coli in vivo. Its aliphatic index is 93.24. 
Its average hydropathic index (GRAVY) of 0.446 classifies it as mildly hydrophobic. The multiepitope vaccine 
was predicted to be non-toxic by the PSI-BLAST BTXpred Server tool (https:// webs. iiitd. edu. in/ cgibin/ btxpr 
ed/ btx_ main. pl).

Secondary structure prediction. PSIPRED tool revealed in the multiepitope vaccine an estimated 63% 
of α-helix, 9% of β-strand and 27% coil (Fig. S5). One amino acid (K 361) is predicted as a putative domain 
boundary. Raptor X tool disclosed that, regarding the solvent accessibility of the protein, 28% of its residues are 
in an exposed region, 24% are in a moderately exposed region, 47% are buried and only 2% are predicted as in 
a disordered position.

Tertiary structure modeling and interactions with the TLR4 receptor. Robetta tool provided five 
3D models of the vaccine. Model refinement by Swiss Model and PROCHEK-PDBSUM indicated model 4, for 
its best scores and good agreement with the usual protein models (Fig. 7a). In fact, Model 4 (Fig. 7a) received 
the best Q mean Z score (− 1.90), the highest Qmean Disco Global (0.39 ± 0.05), the highest GMQE (0.34) and 

Figure 4.  CD4 T cell epitope conservation. The conservation of SARS-CoV-2 CD4 epitopes broken down 
by WHO clade rounded to the third significant digit is shown. The color scale is cutoff at a 0.90 conservation 
ratio such that everything less than 0.90 is assigned the same dark color and everything above 0.90 scaled with 
different colors. Each epitope on the y-axis is labeled as [protein]/[amino acid start position]-[amino acid end 
position]/[epitope sequence]. The order of WHO clades was determined by hierarchical clustering.

https://webs.iiitd.edu.in/cgibin/btxpred/btx_main.pl
https://webs.iiitd.edu.in/cgibin/btxpred/btx_main.pl
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the solvation value = 1.06 of the Swiss Model tool. QMEAN of the Swiss Model tool is an estimator known as 
z-score. When the value is close to 0, the model is reliable and, therefore, there is a good agreement between the 
model and the experimental structures. Furthermore, the model 4 also received the highest G factor = 0.55 of the 
PROCHEK-PDBSUM tool. The G factor gives an estimate of how unusual the model is (− 0.5 unusual, − 1 highly 
unusual). Furthermore, the model 4 also received the highest G factor = 0.55 of the PROCHEK- PDBSUM tool 
(Fig. 7a). Model 4 Ramachandran graph (Fig. 7b) disclosed 94.97% of the residues in a favored position, 0.74% 
outliers and 0.47% rotamers and was used for molecular docking studies. Clus Pro 2.0 indicated model 2 of the 
vaccine complex with TLR4 (Fig. 7c) as the best docked, showing cluster size = 33 and lowest interaction energy 
scores of − 1526.2 (Table S13). PDBSUM disclosed 36 residues of the TLR4, which interact with 36 residues 
of the vaccine through 3 salt bridges, 16 hydrogen bonds and 270 non-bonded contacts (Fig. 7d). The contact 
interface area was 2095 Å2 of the TLR4 and 2106 Å2 of the multiepitope vaccine.

Cloning, N‑glycosylation and codon optimization. The vaccine cDNA nucleotide sequence with 
optimized codons for Escherichia coli K12 was cloned into a pET28b + plasmid, between the NcoI and XhoI 
restriction sites with a 6 His-tag at its C-terminal (Fig. 8). The NetNGlyc—1.0 tool detected three N residues 

Figure 5.  CD8 T cell epitope conservation. The conservation of SARS-CoV-2 CD8 epitopes broken down 
by WHO clade rounded to the third significant digit is shown. The color scale is cutoff at a 0.90 conservation 
ratio such that everything less than 0.90 is assigned the same dark color and everything above 0.90 scaled with 
different colors. Each epitope on the y-axis is labeled as [protein]/[amino acid start position]-[amino acid end 
position]/[epitope sequence]. The order of WHO clades was determined by hierarchical clustering.
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(asparagine) in positions 26, 51 and 64 of the multiepitope protein. However, the lack of peptide signals revealed 
that the protein might not be glycosylated in vivo even though it contains these potential motifs.

Immune simulation. To estimate the impact of the use of three injections of the multiepitope vaccine on 
the human immune system we used the C-ImmSim software. For host HLA selection the HLA-A*02:01, HLA-
A*24:02, HLA-B*35:01, HLA-B*40:02, DRB1*07:01 and DRB1*15:01 were considered. To perform the immune 
stimulation, three injections at interval of 28 days were administered using 1000 multiepitope vaccine molecules 
per dose. Random seed, simulation volume and simulation steps were fixed as 12,345, 10 µl and 1095 (period 
analyzed 365 days), respectively. The injections were thus given at day 0, 28 and 56, which correspond to time 
steps of 1, 84 and 168 since one day is equivalent to 3 periods of 8 h. A sequence of 46 Alanine residues was 
used as a negative control and the sequence of the Full = Probable citrate synthase, mitochondrial; Flags: Precur-
sor UniProtKB/Swiss-Prot: A4H9H8.1 was used a positive control. IgM and IgM + IgG primary and secondary 
humoral responses with predominant IgG1 and a mild enhance of IgG2 antibodies (Fig. 9a,b) were observed. 
The B cell population remained high and active along the first year (Fig. 9b,c); including B cell memory cells 
(Fig. 9b). Th1 T cell counts increased after injections (Fig. 9d,e) and Th memory T cells were sustained along the 
whole year (Fig. 9f). In contrast, cytotoxic T cell counts decreased rapidly (Fig. 9g). Increased macrophage activ-
ity was also observed (Fig. 9h). Increases of IL-2, followed in magnitude by IFN-γ and IL-12 levels confirmed 
the raise a Th1 pro-inflammatory response, while lower levels of TGF-β and IL-10 suggested a mild regulatory 
response (Fig. 9i). The vaccine did not promote the secretion of IL-6 (Fig. 9i). The negative control did not gen-
erate any antibody response (Fig. S6a) and its B cell population was active only for the IgM isotype (Fig. S6b). 
No Th1, Th2 or Th17 responses were detected (Fig. S6d) and only very low Th memory (Fig. S6e) and resting T 
cell (Fig. S6f) but no resting macrophage responses (Fig. S6h) were observed. Furthermore, peaks of IFN-γ were 
detected only after injections while no other secreted cytokine were observed (Fig. S6i). In contrast, the immune 
response generated by the positive control (A4H9H8.1 protein) was very similar to that of the multiepitope vac-
cine for all variables (Fig. S7a–h), differing only by its higher IL-2 secretion, after the second and third protein 
injections (Fig. S7i).

Figure 6.  Combination of  CD4+,  CD8+ conserved T cell epitopes and linkers in the multiepitope multivariant 
vaccine against SARS-CoV-2. 819 amino-acid residues organized in 39  CD8+ epitopes, joined by AAY linkers 
(dark grey), at the N-terminal region, followed by 16  CD4+ epitopes joined by GPGPG linkers (light grey), at 
the C-terminal, ended by a 6-HIS tail. The AAY and GPGPG spacers are included to avoid the formation of 
junctional  epitopes35. The epitopes belong to the ORF6 (pink), E (blue), S (yellow), ORF8 (red), M (magenta), N 
(green) and ORF1ab (cyan) SARS-CoV-2 proteins.
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Discussion
A vaccine against a highly mutating virus should contain a pool of antigens. If mutations occur in a single antigen, 
the protection generated against the remaining could circumvent the immune escape and guarantee the control 
infection, avoiding the  disease18. In this way, the currently used S-protein vaccines, not only did not block the 
virus transmission and the re-infection by multiple variants, but also possibly contributed to the positive selection 
of variants such as the Omicron, which holds a completely different S antigen. In fact, most of the currently used 
COVID-19 vaccines are composed of the S  antigen7, in which mutation rate ranged from 4%, in Zeta to 69%, in 
Omicron variant. These facts confirm the urgent need of development of a universal multivariant vaccine based 
on conserved multiple antigens of SARS-CoV-2 virus.

Until present, however, the multivariant conserved-epitope approach was less  explored42. Our study is the 
first of them to take into consideration ten SARS-CoV-2 human variants including the Omicron VOC. Before 
the Omicron VOC, Prakash et al.20 in 2021, identified epitopes highly conserved among SARS-CoV-2 genomes, 
CoVs responsible for epidemics of common cold; SL-CoVs isolated from bats, pangolins, civet cats and MERS 
isolated from camels. Other multiepitope vaccines used only 81–100% conserved epitopes of the S, M, N and 
 E43, or epitopes of the S, M and E antigens with almost 100% of  conservancy42. Furthermore, while most recent 
investigations used predicted overlapping epitopes with excellent  outcome34,44,45, in our study, the non-overlap-
ping  CD4+ epitope prediction showed more robust results. Finally, while many studies used for predictions a 
selected group of the human HLA Class II and/or Class I  alleles17,20,21,25,34,46, we used the full IEDB reference list.

While the number of genomes and antigens investigated for retrieving of the epitopes might be a concern, 
most multiepitope proposed vaccines used only epitopes of the S protein of the Wuhan-Hu1 reference  genome22–24 
or of a non-disclosed  variant25. Less vaccines used epitopes of the S, N,  E27 or of the S, N, E and M proteins, also 
of the Wuhan Hu1 reference  strain21,43 or of one SARS-CoV-2 and one SARS-CoV strains of  China28.

Figure 7.  Tertiary structure of the multiepitope vaccine and its interactions with the TLR4 human receptor. 
(a) Three dimensional structure of the multiepitope conserved SARS-CoV-2 vaccine obtained with the Robetta 
software. Model refinement by Swiss Model and PROCHEK-PDBSUM indicated the Robetta´s model  4, for its 
best scores and good agreement with the usual protein models. (b) Swiss Model Ramachandran plot validation 
of the vaccine model. (c) interaction of the vaccine model (Pink) with the TLR4 (Lemon green). (d) interactions 
of the TLR4 (PDB ID: 2Z63) and the ClusPro 2.0 model 2 of the multiepitope vaccine as disclosed by the 
PDBSUM tool.
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On the other hand, less multiepitope vaccines are composed of epitopes conserved in multiple isolates. Similar 
to our study, Prakash et al.20 investigated the conserved epitopes of 10 proteins although retrieved from 81,963 
genomes of GISAID bank, with disregard of their respective variant. Since they published their study in April 
2021, they could not include any sample of the Omicron variant. Although the conservation approach in that 
study is very robust, because it is based on the analysis of many isolates, the epitope predictions were only run 
for 5 alleles of DRB1 for CD4 and 5 alleles for HLA-A. In contrast, in our study, we used the 27 alleles of DR, 
DQ and DP, and the 27 alleles of the HLA-A and HLA-B genes, which certainly represents a more extensive 
world populational coverage approach. Furthermore, Al Zamane et al.42 studied only the epitopes of S, M and 
E proteins that were however, present in 128 isolates from Bangladesh and 110 from other afflicted countries, 
while Rajput et al.26 retrieved the common epitopes of 92 genomes of SARS-CoV-2.

To the best of our knowledge, none of the 16  CD4+ epitopes identified in our study were described 
 before34. However, the epitope  MPNMLRIMASLVLARKHT5018-5034 of our list includes the sequence 
 PNMLRIMASLVLARK5019–5033 described as a common  CD4+ epitope, conserved in humans, bats, pangolin and 
 camels20. We now showed that this epitope is also present in the ten SARS-CoV-2 human variants, including 
the Omicron. Furthermore, the epitope  FLAFVVFLLVTLAILTAL20–27 of our list, partially overlaps with the 
epitope  LLAFLAFVVFLLVTLA18–32 described by Singh et al.21 and with the epitopes LLVTLAILTALRLCA and 
LVTLAILTALRLCAY, previously shown in the  literature47–49 with experimental  evidence48. However, both have 

Figure 8.  In silico cloning of the Multiepitope vaccine gene in a restriction cloning vector pET28b (+) in E.coli 
host. The cDNA nucleotide sequence of the vaccine was obtained with optimized codons for Escherichia coli 
K12 using the Java codon adaptation index tool. The GC content was 53.41%, while the normal range is 40–60%. 
Furthermore, the codon optimization index (CAI) value was 1.0. CAI higher than 0.5  is considered acceptable 
and indicates the high expression of the vector pET28b +. Here, the red areas indicate the Multiepitope vaccine 
DNA sequence, and the black areas represent the expression vector, pET28b (+).
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been shown to be very unrepresentative for countries like Brazil, being good binders just for one of the alleles 
with a frequency over 5%50. Interestingly, the peptide LIVNSVLLFLAFVVFLLVTLAILTALRLCAY described by 
Tiloca et al.47, was also present in SARS-CoV, Pangolin CoV, Bat CoV, SARS-CoV-2, Dromedarius CoV, Camel 
CoV, Canine CoV, Bovine, CoV, H- Enteric CoV and Avian CoV.

Prakash et al.20 analized 81,963 human sequences of SARS-CoV-2 collected from the GISAID and NCBI 
databanks on 27th August, 2020. They used a conservancy approach for linear epitopes with a sequence identity 
threshold set at ≥ 50%. The CD8 and CD4 epitopes that showed ≥ 50% conservancy in at least two human and two 
animals SARS-CoV strains (from bat/civet/pangolin/camel) were selected as candidates. Although conservancy 
was 100% among human SARS-CoV-2 strains, identity to 4 major common cold Coronavirus, Coronavirus from 
previous outbreaks and SL-CoV-2 from bats, civet, camels and pangolins was much  lower20. In contrast, in our 
study, we identified 16 CD4 and 39 CD8 epitopes that were 100% conserved in 10 proteins of each one of the 
Wuhan-Hu1, Alpha, Beta, Gamma, Delta, Omicron, Mµ, Zeta, Lambda and R1 variants. While Prakash et al.20 
studied the epitope-conservancy among 81,963 GISAID sequences, our conservancy approach was far more 
comprehensive and included 3,630,666 genomes from 16 clades: the 10 that were used for the identification of 
the conserved epitopes (Wuhan-Hu1, Alpha, Beta, Gamma, Delta, Omicron, Mµ, Zeta, Lambda and R1) and 6 
more clades (Epsilon, Lota, Theta, Eta, Kappa and GH490 R). These genomes were also collected during a longer 
period, from 01 November 2019 up to August 2022.

High levels of epitope conservation were detected. Fifteen out of 16 CD4 selected epitopes showed levels of 
conservation ranging from 97 to 100% among all genomes, and 38 out of 39 of the CD8 epitopes exhibited level 
of conservation greater than 96% among all genomes, with the vast majority greater than 99%. These findings 
support the potential efficacy of our multivariant multiepitope vaccine in generation of cross-protection against 
infections by virus of different human SARS-CoV-2 clades.

The one CD4 epitope with 67% conservation in all genomes, called NSP6: 66–80 (FLCLFLLPSLATVAY) was 
only 11% conserved among all Delta genomes and 1.5% conserved among all Kappa genomes due to a T77A sub-
stitution; all other clades showed greater than 99% conservation at this epitope. Moreover, the one CD8 epitope 
with lower conservation ratio (58% conserved among all genomes) was from NSP13 (helicase) position 73–81 

Figure 9.  In silico immune stimulation analysis. The C-ImmSim tool simulation of the immune response 
promoted by the multiepitope was performed without the use of adjuvant. The tool offers only LPS as the option 
of adjuvant and we prefer instead, the QS21 saponin of Quillaja saponaria Molina. These two adjuvants probably 
use different mechanisms. Therefore, the simulation of the immune response was performed without the use of 
adjuvant. (a) Antigen and antibody response. (b) B cell counts. (c) B cell population per stat. (d) Th cell counts. 
(e) Th cell population per state. (f) Th memory T cells. (g) T cytotoxic cells per state. (h) Macrophage population 
per state. (i) Levels of cytokines.
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(KSHKPPISF), largely due to the presence of the mutation P77L substitution resulting in a 0.6% conservation 
level in the Delta clade. This epitope was greater than 98% conserved in all other clades. These two epitopes were 
however, 100% conserved in the sequence of ORF1ab of the Delta genome used for our epitope prediction (NCBI 
OK570404.1). Interestingly, while the two Delta mutations of interest NSP6: T77A and NSP13: P77L officially 
became positively selected on July 2021 and May 2021,  respectively51, the Delta genome OK570404.1, used for 
epitope prediction was collected on June 24, 2021 [https:// www. ncbi. nlm. nih. gov/ nucco re/ OK570 404.1]. The 
decline in conservancy of these two epitopes is most certainly a result of the growth and evolution of the Delta 
clade.

Considering the importance of the Spike protein to the humoral response, it would be expected that it would 
be present more in CD4 than in CD8 T cell epitopes. In fact, the adaptive immune system can provide strong 
and durable cellular and humoral immunity to SARS-CoV-2, through coordinated T and B cell responses. 
CD4+ helper T cells are very important because they differentiate into T helper type 1 (Th1) cells, to stimulate 
phagocytes and cytotoxic CD8+ T cells, and into T follicular helper (Tfh) cells to promote high affinity and 
long-lived antibody responses by B cells in germinal center (GC)  reactions52. Individuals with COVID-19 who 
did not require hospitalization had a greater percentage of circulating Tfh (cTfh) and Th1 cells among SARS-
CoV-2-specific  cells51.

In contrast, we showed that the S protein contributed to the multiepitope vaccine with more CD8 than CD4 
epitopes. In fact, our prediction did not retrieved any CD4 epitope of the S protein. These results mean that the 
Spike protein does not have any CD4 epitope 100% conserved among the 10 variants, that has a high final score. 
This is why probably, the vaccines based on the S protein of Wuhan-Hu1  variant8–12, in spite of generating strong 
humoral responses against the spike protein they do not efficient cross-protect against the other SARS-CoV-2 
variants. In fact, we showed that the spike protein is one of the most mutating antigens of SARS-CoV-2.

In Italian COVID-19 patients, the HLA-DRB1*15:01, DQB1*06:02 alleles have been associated to severity or 
extreme  severity53, and the allele HLA-DRB1*08 to  mortality54. In our study, 10 out of 16 Class II epitopes bind to 
HLA-DRB1*15:01, 8 epitopes to the DQA1*01:02/DQB1*06:02 and 7 epitopes bind to HLA-DRB1*08:02 alleles, 
with high affinity, indicating that our vaccine could protect more susceptible individuals.

Furthermore, the frequency of HLA-DRB1*04:01 was higher in asymptomatic individuals, suggesting its 
association with resistance; and the frequency of the haplotype DQA1*01:01-DQB1*05:01-DRB1*01:01 was lower 
in the asymptomatic group, suggesting its correlation to COVID-19  severity55. In addition, the frequency of the 
DPB1*04:01 was lower in Chinese COVID-19  patients56 suggesting correlation with resistance to the disease. 
In our prediction, 10 epitopes bind to DRB1*04:01, 9 to DQA1*01:01/DQB1*05:01, 12 to DRB1*01:01 and 10 
to DPA1*01:03/DPB1*04:01, all of them with high affinity, indicating that the vaccine could protect both, the 
susceptible and the resistant populations.

Moreover, 21 of the  CD8+ epitopes identified in our study are completely novel, while the other 26 were 
previously confirmed in immunological assays, however, they were not predicted as conserved  sequences34. On 
the other hand, the fact that more than half of the sequences predicted in our investigation has been previously 
confirmed as Class I restricted epitopes by in-vitro experiments is also encouraging in the sense of validating 
our approach. Supporting this, 8 of the previously described epitopes of our list are localized among the 12.8% 
most dominant of the 1,051 epitopes described by Grifoni et al.34. Additionally, seven of the described epitopes 
and only one of the novel group were weak binders to the most frequent alleles, suggesting that the novel group 
concentrates higher affinity-binding  CD8+ epitopes. We excluded these 8 weak binders from our selection and 
ended with 39 epitope candidates, 20 of them novel and 19, described before.

However, it is important to highlight that the description of an epitope as dominant by Grifoni et al.34 was not 
done based on the analysis of multiple peptides together. Since this vaccine formulation consists of presenting 
them all at the same time, the immunodominance may not be the same as the one  reported34.

After the submission of this article, Kaderi Kibria et al.29 predicted epitopes for Class I and Class II of the 
M, S and E proteins of the Wuhan-Hu-1 reference strain only, and further checked the conservancy of these 
epitopes, disregarding the variants, among: (1) 180 SARS-CoV-2 genome sequences of GISAID; (2) 4390 new 
variants of SARS-CoV-2 and in (3) the sequences of 1000 spike, 245 M and 81 E proteins of SARS and MERS. 
They declared that they assessed the conservancy of the Omicron variant by observing the amino acid changes 
reported in the journals and if the amino acid changes were not located in the specific vaccine region they 
evaluated as conserved. However, the authors did not disclose any accession number for the Omicron genomes, 
sourcing information from reliable data bank, nor references of the consulted  journals29. This is a very indirect 
and inappropriate method to assess conservancy of epitopes. The sequence of all variants, from Alpha to Omi-
cron, were not aligned as they were in our investigation. They report a list of 10 Class II epitopes of M, E and S 
proteins. None of them is present in our list of Class II epitopes, which mostly concentrates sequences of ORF 
1ab protein, and only contains two epitopes of E, one of M and none of S proteins. Among the 9 Class I epitopes 
of their  list29, only the epitope YVYSRVKNL is present in our list. However, as previously stated, that epitope 
was also previously reviewed as biologically tested by Grifoni et al.34.

The number of deaths due to COVID-19 was correlated to the Class I HLA-A*01  phenotype57 and to the 
infected cases per million. HLA-A*01 is more frequent in Europe and America, where COVID-19 was more lethal 
and less frequent in East Asia, where severity was  lower57. In our study, 27  CD8+ epitopes bind to HLA-A*01:01, 
a highly frequent allele. Furthermore, HLA-A*11 and HLA DQB1*04 were associated to mortality in  Spain58. 
In our study, 14 Class I epitopes bind to HLA-A*11:01, and 10 of the 16 Class II epitopes bind to DQB1*04:02, 
suggesting that our vaccine could protect against mortality, severity and rate of infections.

On the other hand, we identified that, less epitopes bind to the ten most frequent HLA-Class I alleles in the 
World population (HLA-A*02:01, HLA-A*24:02, HLA-A*01:01, HLA-A*03:01, HLA-A*07:02, HLA-A*11:01, 
HLA-A*08:01, HLA-A*40:01, HLA-A*44:02, HLA-A* 44:03)32, while more epitopes tend to bind to the less 
frequent alleles. However, the novel epitope LMDGSYYQF binds strongly to HLA-A* 02:01, HLA-A*24:02 

https://www.ncbi.nlm.nih.gov/nuccore/OK570404.1
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and HLA-A*01:01 alleles, and 7, 12 and 19 epitopes bind strongly to each one of these alleles, respectively. 
KVNSTLEQY, VVYRG TTT Y and KLFDRYFKY epitopes are also strong binders of HLA-A* 01:01, HLA-A* 
03:01 and HLA-A* 11:01 alleles. It might be adaptive for the virus to have conserved epitopes that do not bind 
to the Class I most frequent alleles, so they do not generate the antiviral  CD8+ cytotoxic response. In this way, 
the SARS-CoV-2 virus could escape from the immune response in the majority of the World population, and 
the pandemic could continue. Supporting our hypothesis, the less frequent alleles HLA-A*02:02, HLA-B*15:03, 
and HLA-C*12:03 were the top presenters of conserved SARS-CoV-2  peptides59. On the other hand, the most 
frequent HLA-A*02:01 allele was associated to increased risk for COVID-19 and showed a lower capacity to 
present SARS-CoV-2 antigens compared to the less frequent  alleles60. In our prediction, 9 epitopes are strong 
binders of the HLA-A*02:01 suggesting that they can generate good protection in susceptible  subjects60. In 
addition, the HLA-A*11:01 and B*51:01 alleles also correlate with the extreme  severity61. Twelve epitopes of our 
study are strong binders of HLA-A*11:01 and 3 are strong binders of B*51:01 indicating that the  CD8+ epitopes 
of our vaccine might generate protection in the more susceptible HLA-phenotypes. Future in vivo studies could 
confirm this hypothesis.

It might be argued that that all the alleles shouldn’t be treated equally for an optimal vaccine design because 
some alleles are more abundant than others. The equation used in this study counts the number of alleles bound 
regardless of the allele frequency. This ends giving the same weight to high and low abundant alleles. Although 
it might have been useful for understanding the biology of the virus, this decision might have impact on the 
selection of the best epitopes for a massive vaccine.

The efficiency of our prediction was however, confirmed by the World population analysis, which disclosed 
high Class I and II epitope coverages, with high average hits and Pc  90C values. The panels not only showed wide 
coverages but it also offered deep coverages, meaning that not only the individual is covered, but also that he 
is covered but multiple different epitopes. This is important when an epitope dominant for one specific allele 
suffers mutations that determine the pathogen immune escape. If the coverage is deep, the immune escape is 
less probable since it is unlikely that several epitopes that link to one specific allele would suffer simultaneously 
mutations. Different from other  investigations20,22,42, in which population coverage was calculated using only 
selected alleles, in our study we used the IEDB full set of 27 alleles.

A map of epitopes recognized by  CD4+ and CD8 T cell human responses against the whole SARS-CoV-2 pro-
teome of individuals infected with the Alpha, Beta and Gamma variants was reported using a cytokine  analysis44. 
Furthermore, the T cell responses of individuals vaccinated against the S or the M proteins of the Wuhan-Hu1 
strain, cross recognize the SARS-CoV2 variants from Alpha to  Omicron62. However, these epitopes have not yet 
been explored in vaccine formulations.

A criticism has been raised on the IEDB population coverage tool, which comes directly from the Allele Fre-
quencies Net Database. This calculation was considered not representative of worldwide populations, and mainly 
influenced by the data of USA and Europe, which comprises the largest source of information in this database, 
while it probably misses a large amount of information of South  America50. However, the two methodologies 
seem to be very different and hard to compare. The population data of IEDB is taken from a publically available 
repository that collects data from the International Histocompatibility Working Group (IHWG) certified labs 
from around the world, and its results can indicate an approximation since there is no other database with a 
more comprehensive data  collection21,22,25–28,38,42,63.

In contrast, the work of Requena et al.50 was based on data of articles available at PubMed and datasets of 
AFNSD. These datasets were integrated by country calculating weighted allele frequencies. The authors claim 
to have included in this way, the frequencies of 91 alleles that were previously considered to have frequencies 
lower than 5% in South American  Countries50. Different from the IEDB full list of HLA-A and HLA-B alleles 
used in our  investigation33, the study by Requena et al. also included the HLA-C  alleles50. However, in contrast 
to the HLA-Class II full reference list of IEDB which comprises HLA-DRB1*, HLA-DRB3*, HLA-DRB4* and 
HLA-DRB5*63, the study by Requena et al., only includes HLA-DRB1*  alleles50.

The algorithm that we used in our study, filtered first the peptides that bound at least 14 of the 27 most fre-
quent Class II alleles. From this subset, the epitopes with conserved identity in 100% of the 10 studied variants 
were further selected. For Class I prediction only epitopes with 100% of conservancy were selected which bound 
with percentile rank < 1% (weak binders) or with percentile rank < 0.5% (strong binders). We retrieved the protein 
FASTA sequences from the NCBI Genbank site, as recommended by the  literature20,21,23,24,26–28 and confirmed 
the variant identity in the Pangolin site. In contrast, other investigations used multiple genomes instead of one 
genome for each  variant20,26,42,50, however, none of them specified the proportional contribution of each variant to 
the set, and only one of them described the contribution of each geographic region to the whole set of  genomes50.

Furthermore, we compared the prediction obtained in IEDB with the MHCFlurry method, which is a more 
recent  tool64. In fact, different from IEDB, MHCFlurry is a Class-I only predictor. It is not possible to make 
Class-II predictions with it. Another issue is that MHCFlurry does not output scores for all alleles in a prediction, 
only for the best one. Because of this, it is not possible to calculate promiscuity scores, on which our final_score 
depends. As such, there is no direct way of making a comparison between our approach and MHCFlurry. This 
is yet another reason why we chose the IEDB tools for this study and likely why these are the most widely cited 
and used tools in this area of research. We however ran a prediction on our final selection of 47 Class I to verify 
whether the MHCflurry scores (named “presentation_score” in their algorithm) correlates to our final score. A 
Spearman correlation test confirmed that both scores have a positive correlation of R = 0.35 with a significant 
p value = 0.016. We noted however that our selection of epitopes includes information on all 27 alleles and the 
promiscuity, whereas the presentation score from MHCFlurry seems to only consider the strongest binding 
allele alone. We however noted that when comparing the best predicted allele in our final selection, the method 
we used agrees with MHCFlurry in a vast majority of cases. Namely, out of the 47 epitopes in the final selec-
tion, in 24 cases (51% of the total) the strongest binding allele predicted by MHCFlurry is the same predicted 
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by us: (AMDEFIERY, ATSRTLSYY, GVYSVIYLY, HVISTSHKL, IVSTIQRKY, KAYNVTQAF, KMKDLSPRW, 
KQFDTYNLW, KVNSTLEQY, LVSDIDITF, NVIPTITQM, QVVDMSMTY, RLYYDSMSY, RTAPHGHVM, 
SFYEDFLEY, SSVELKHFF, STNVTIATY, STQDLFLPF, TILDGISQY, TLKEILVTY, VARDLSLQF, VYDPLQPEL, 
YLFDESGEF, YLITPVHVM). In 18 cases (38% of the total) the strongest binding allele predicted by MHC-
Flurry is the second strongest predicted by us: (AQLPAPRTL, EYADVFHLY, HADQLTPTW, HLDGEVITF, 
KLFDRYFKY, KSHKPPISF, LVKPSFYVY, QTFSVLACY, RTIKVFTTV, SLDNVLSTF, SSLPSYAAF, TSNQVAVLY, 
TTLPVNVAF, TTNGDFLHF, VMYMGTLSY, VVIPDYNTY, VVYRG TTT Y, YVYSRVKNL). In 3 cases (6% of the 
total) the strongest binding allele predicted by MHCFlurry is the third strongest predicted by us: (LMDGSIIQF, 
QSAPHGVVF, TIKPVTYKL). In 1 case (2% of the total) the strongest binding allele predicted by MHCFlurry 
is the fourth strongest predicted by us: (QALLKTVQF). In 1 case (2% of the total) the strongest binding allele 
predicted by MHCFlurry is the sixth strongest predicted by us: (VAMPNLYKM). In no cases the difference in 
predictions was larger than this. These results show the strength of our methodology compared to the MHC-
Flurry  tool64.

Moreover, also for comparison, we ran a prediction on the resumed selected 16 Class II epitopes using 
MixMHCPred2.065 and the same 27 alleles that we used for prediction with IEDB recommended method. We 
observed that in 6 out of 16 peptides (38%) the strongest binding allele predicted by us (IEDB lowest percentile 
rank) is the same predicted by MIXMHCPred2.0 (% Rank Best Allele) for the exact first position (VTLV-
FLFVAAIFYLITPVHVM, LMIERFVSLAIDAYPLT, IILASFSASTSAFVET, QLIKVTLVFLFVAAIFYL, FLCLFLL-
PSLATVAY, FLAFVVFLLVTLAILTAL). In 3 more cases (19%) the strongest binding allele predicted by us is the 
second strongest predicted by MixMHCPred2.0 (MPNMLRIMASLVLARKHT, HLVDFQVTIAEILLI, SLFFF-
LYENAFLPFAM). In 1 case (7%) the strongest binding allele predicted by us is the third strongest predicted by 
MixMHCPred2.0 (CTERLKLFAAETLKA). In 2 cases (13%) the strongest binding allele predicted by us is the 
fourth strongest predicted by MixMHCPred2.0.2 (LFTRFFYVLGLAAIMQLFF, LMWLSYFIASFRLFARTR). 
In 1 case (7%) the strongest binding allele predicted by us is the fifth strongest predicted by MixMHCPred2.0 
(FAWWTAFVTNVNASS) and in 1 case (17%) the strongest binding allele predicted by us is the sixth strongest 
predicted by MixMHCPred2.0 (VFLLVTLAILTALRLCAY). Both for IEDB and MixMHCpred2.0 tools give lower 
PR% or %Ranks, respectively, for epitopes having higher affinity binding to the HLA-allele receptor molecules. 
The mean ± SD of the PR % values attributed by IEDB to the best alleles (3.03% ± 3.6%) was not different from 
the mean of % Ranks attributed by MixMHCPred2.0 to the best alleles (3.66% ± 4.99%). However, taking into 
account the predictions of all the 27 alleles, we observed that the IEDB tool attributed low percentile ranks to 
many epitope-allele combinations, suggesting that it retrieved high affinity-binding epitopes to multiple alleles 
(mean ± SD = 7.08 ± 5.47%). In contrast, MixMHCpred2.0 attributed low % Rank to only a few combinations, 
and high % Rank, to the majority of the epitope-allele combinations (38.87% ± 4.38% Rank). The difference in 
variability of the ranks suggest differences in the algorithms of the two tools.

In addition, we also ran a prediction for the resumed selected 16 Class II epitopes using the NETMHCPan-
4.0EL software (https:// servi ces. healt htech. dtu. dk/ servi ce. php? NetMH CIIpan- 4.0). Different from the MHC-
Flurry and MixMHC Pred2.0 tools, which only give the % Rank values for the best alleles, both the IEDB and 
NETMHCPan-4.0EL tools give more detailed predictions and they both output scores for all alleles. We compared 
the Class II epitope predictions retrieved by IEDB and by NETMHCPan-4.0EL. NETMHCPan-4.0EL is an 
updated  version66 that also uses the IEDB benchmark data and retrieves the % Rank EL value, which is the per-
centile rank of elution ligand prediction score for each epitope. We compared the performance of both methods 
for detection of the most powerful epitopes that bind with high affinity to MHC Class II DR, DQ and DP alleles. 
Only the epitopes binding to alleles with PR < 1% and PR < 5%, of the IEDB method, or with % Rank_EL < 1% 
(strong binders) and % Rank_EL < 5% (weak binders) of the NETMHCpan-4.0EL tool were considered for 
comparison. IEDB prediction detected as strong affinity-binders with PR < 1% values, 15 out of the 16 peptides 
(94%), while all the 16 sequences (100%) also bound with lower affinity (PR < 5%) to several alleles. Better than 
MIXMHCPred. 2.0, but less sensitive than IEDB, NETMHCpan-4.0EL disclosed 11 out of the 16 epitopes (69%) 
selected by IEDB (TERLKLFAAETLKATEE, VTLVFLFVAAIFYLITPVHVM, MPNMLRIMASLVLARKHT, 
LMWLSYFIASFRLFARTR, NSWLMWLIINLVQMAPISAM, LMIERFVSLAIDAYPLT, HLVDFQVTIAEILLI, 
IILASFSASTSAFVET, FAWWTAFVTNVNASS, CTERLKLFAAETLKA, FLAFVVFLLVTLAILTAL). Among 
these 11 epitopes, 5 bind to alleles with % Rank < 1% (46%), while all the 11 bind with % Rank < 5%, revealing 
that NETMHCPan-4.0EL is more strict or less sensitive than IEDB and detects less strong-binding epitopes. In 
fact, NETMHCpan-4.0EL agreed with IEDB in the identification of the same five epitopes among the strongest 
binders, with average % Rank < 1% values: IILASFSASTSAFVET (% R = 0.27%), TERLKLFAAETLKATEE (% 
R = 0.37%), MPNMLRIMASLVLARKHT (% R = 0.47%), CTERLKLFAAETLKA (% R = 0.49%), FAWWTAFVT-
NVNASS (% R = 0.83%). In addition to these 5 peptides, more 6 epitopes were also identified by NETMHC-
pan-4.0EL as weak binders to other alleles (average % Rank < 5% values): VTLVFLFVAAIFYLITPVHVM (% 
R = 2.65%), LMWLSYFIASFRLFARTR (% R = 2.82%), NSWLMWLIINLVQMAPISAM (% R = 4.81%), LMIER-
FVSLAIDAYPLT (% R = 1.84%), HLVDFQVTIAEILLI (% R = 3.70%), FLAFVVFLLVTLAILTAL (% R = 4.81%). 
Moreover, the promiscuity of the 11 epitopes disclosed by NETMHCPan-4.0EL was lower than that retrieved by 
IEDB. Only 2 peptides, which share the same core, bind to 19 out of 27 Class II alleles (TERLKLFAAETLKATEE, 
CTERLKLFAAETLKA), only one epitope to 10 alleles (MPNMLRIMASLVLARKHT), and the rest of them bind 
to only 1 to 5 alleles. In contrast, IEDB detected in all the 16 epitopes promiscuity values ranging from 4 to 14 
alleles for PR < 5%, and from 1 to 4, for PR < 1%. We concluded that NETMHCPan-4.0EL predicted less strong 
and weak binders than IEDB, and predicted epitopes of lower promiscuity, being as such more strict or less sensi-
tive than IEDB. However, IEDB and NETMHCPan-4.0EL agreed in the prediction of 69% of the Class II epitopes.

The designed multiepitope vaccine contains, at its N-terminal, the 39  CD8+ epitopes, joined by AAY 
 spacers21,27, followed by 16  CD4+ epitopes, joined by GPGPG  spacers21,25,27,35, with a 6 His-tag at its C-terminal. 
The epitopes are in decreasing order of final scores. Previous  work67,68 indicate that the order of the epitopes in 

https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-4.0


16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16731  | https://doi.org/10.1038/s41598-022-21207-2

www.nature.com/scientificreports/

a multiepitope vaccine would impact their immunogenicity. This interesting question deserved further stud-
ies. A maximum number of conserved epitopes was preferred to ensure cross-protection, regardless size and 
hydrophobicity increases. The vaccine’s molecular weight is 90.84 kDa and it was non-toxic. The 220 kDa trimer 
of hemagglutinnin is industrially produced  (Flubok®) and used as an alternative to the fractionated inactivated 
Influenza  vaccine69,70. Proteins of less than 110 kDA were reported as good  vaccines71,72 and a mild hydrophobic-
ity was expected for a vaccine composed only of  CD4+73 and  CD8+  epitopes74. Its 93.24 aliphatic index indicated 
high  termostability75. The vaccine is very stable and has a remarkable high half-life in mammalian, yeast and 
E. coli cells.

The multiepitope protein was planned to be expressed by E. coli. It has three N residues (asparagine), but 
since it lacks peptide signals, it might not be glycosylated in vivo even though it contains the potential motifs. 
Since E. coli does not perform glycosylation it seems that the presence of these N residues would not affect the 
protein expression. However, if other expression systems will be used for production and testing in the future, 
its final sequence might be changed from the current one in order to avoid glycosylation sites.

In COVID-19, activation of TLRs lead to activation of inflammasome, production of IL1β and IL-6.  TLR3−/−, 
 TLR4−/− mice have increased susceptibility to SARS‐CoV76. The best tertiary structure model of the vaccine 
docked with the TLR4 receptor, indicating that the vaccine can efficiently induce the innate immune response. 
Long-lasting antibodies, B- and T-memory cells and a cytotoxic T cell peak were predicted to be generated 
during the adaptive immune response, despite the vaccine lack of B cell epitopes. A Th1, IL-2 and IFN-γ pro-
inflammatory response and a mild TGF-β and IL-10 regulatory response were also detected, but IL-6, charac-
teristic of the SARS inflammatory syndrom, was absent. The future vaccine formulation with QS21-containing 
 adjuvants77 could strongly potentiate the vaccine antibody and T cell responses. We conclude that predictions 
of the immune responses generated by the multiepitope vaccine revealed encouraging results. However, in silico 
simulations are not enough to estimate the potential use of this formulation in the entire world population during 
this current pandemic. In vivo data about the immunogenicity of the proposed multiepitope vaccine is critical 
to evaluate the efficacy of this new strategy.

Finally, the evolution of the COVID-19 vaccine immune responses was monitored mainly considering the 
anti-S antibody titers. Now, 2 years and 6,469,458 deaths after, the need of vaccines based on conserved antigens 
and on T cell epitopes of SARS-CoV-2 virus has been  recognized17–20,26,27.

Methods
Comparison of the sequences of SARS‑CoV‑2 coronavirus variants. To obtain the Fasta files of 
the genomes of the Wuhan-Hu-1 reference strain, Alpha, Beta, Gamma, Delta, Mu, Zeta, R.1, Lambda and 
Omicron variants, a search was performed using the NCBI Nucleotide database site (https:// www. ncbi. nlm. nih. 
gov/ nucco re). The genome reference codes used in this investigation were: NC_045512.2 for Wuhan-Hu1 of 
China, MW059036.1 for Alpha variant of England, MZ376663.1 for Beta variant of South Africa, MZ264787.1 
for Gamma variant of Brazil, OK570404.1 for Delta variant of India, MZ710932.1 for Mu variant of Colombia, 
MZ833438.1 for Zeta variant of Peru, OK399319.1 for R.1 variant of California, OK546825.1 for Lambda variant 
of Peru and OK546825.1 for Omicron variant of South Africa (https:// www. ncbi. nlm. nih. gov/ nucco re). The lin-
eage of each of the variants was further confirmed using the Pangolin website tool (https:// pango lin. cog- uk. io/).

Furthermore, the ID numbers of the sequences of the S, M, N, E structural and ORF1ab, ORF3a, ORF 6, 
ORF7a, ORF7b, ORF8 and ORF10 non-structural proteins of each SARS-CoV-2 variant were obtained using the 
NCBI protein tool (http:// www. ncbi. nlm. nih. gov/ prote in). Finally, the sequence of each protein of each variant 
was aligned with the sequence from the respective protein of the Wuhan-Hu1 reference strain using the Blast 
Alignment Search Tool, (https:// blast. ncbi. nlm. nih. gov/ Blast. cgi? PROGR AM= blast p& PAGE_ TY= Blast Searc 
h&_ LOC= blast home). Mutations and deletions were annotated.

SARS‑CoV‑2  CD4+ T cell epitope prediction. Epitope prediction was performed on the following 11 
proteins: S spike glycoprotein, E envelope protein, M membrane glycoprotein, N nucleocapsid protein, open 
reading frames ORF 1ab, ORF 3a, ORF 6, ORF 7a, ORF 7b, ORF 8 and ORF10, of each one of the follow-
ing 10 SARS-CoV-2 virus strains: Wuhan-Hu-1, Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), 
Delta (B.1.617.2), Omicron (B.1.1.529), Mµ (B.1.621), Zeta or P2 (B.1.1.28.2), Lambda (C.37 lineage) and R1 
(B.1.427/B.1.429), using the Immune Epitope Database and Analysis Resource (IEDB) (https:// www. iedb. org/ 
home_ v3. php).

Protein sequences of each SARS-CoV-2 protein of each strain used in this study are deposited in the NCBI 
Protein Repository Bank (https:// www. ncbi. nlm. nih. gov/ guide/ prote ins/). Table S14 shows the respective acces-
sion code numbers.

A  CD4+ T cell epitope prediction was run, using 15-mer peptides and the Full HLA Class II reference list of 
the IEDB  platform78, which contains 27 DR, DQ and DB alleles (Table S15A). The IEDB recommended method 
was used, which consists in using the Consensus approach combining the NN-align, SMM-align, CombLib and 
Sturniolo algorithms if any corresponding predictor is available for the molecule, otherwise NetMHCIIpan is 
 used34,44,45.

Overall, predictions were carried out on 109 proteins since the sequence of ORF7a protein from the Zeta 
variant contains a “XX” sequence at amino acid positions 60–61, which is not recognized by the IEDB algorithm.

The sequences of the 109 proteins to the MHC-II Binding Predictions of the IEDB platform were submitted 
using a Python API (https:// github. com/ mattf emia/ iedb- python). Peptides were selected only if they bound at 
least 14 of the 27 most frequent Class II alleles (promiscuity ≥ 14). From this subset, the epitopes with conserved 
identity in 100% of the 10 studied variants were further selected (corresponding to conservancy = 10).

All plots and visualizations were generated with the Seaborn and Matplotlib libraries.

https://www.ncbi.nlm.nih.gov/nuccore
https://www.ncbi.nlm.nih.gov/nuccore
https://www.ncbi.nlm.nih.gov/nuccore
https://pangolin.cog-uk.io/
http://www.ncbi.nlm.nih.gov/protein
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TY=BlastSearch&_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TY=BlastSearch&_LOC=blasthome
https://www.iedb.org/home_v3.php
https://www.iedb.org/home_v3.php
https://www.ncbi.nlm.nih.gov/guide/proteins/
https://github.com/mattfemia/iedb-python
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In order to facilitate the selection and comparison of the best candidate peptides for a multiepitope conserved 
vaccine against SARS-CoV-2, it was necessary to define a quantitative metric corresponding to each peptide. 
Such a metric, here termed “final score” (fs), combines the values for promiscuity, conservancy and percentile 
rank into a single quantity.

As the selected  CD4+ epitopes only include those with 100% conservancy, it would be redundant to add a 
conservancy-related term to fs. (It would be equivalent to adding 1 to the final score of all peptides).

Thus, in the case of  CD4+ epitopes, the final score was calculated according to the equation:

where Nbound is the number of alleles bound by the epitope, Ntotal is the total number of HLA class II, and pr is the 
percentile rank. As such, the final score is a combination of the relative promiscuity (number of alleles bound 
divided by the total number of alleles) and the percentile rank.

However, by design, the relative promiscuity will be a number between 0 and 1. The percentile rank, on the 
other hand, is a number between 0 and 100, inversely proportional to the quality of a given candidate peptide. 
That is to say, desirable peptides will have very low values of percentile rank (often around 1 or less). To reflect 
this in the calculation of fs, pr is multiplied by a negative coefficient (in this case − 0.1 or − 1/10). By adjusting 
this coefficient, the pr influence over the final score can be increased or decreased accordingly.

As an illustrative example, a very bad candidate, with percentile rank of 100, would greatly decrease the value 
of fs, compared to a very good candidate with percentile rank 1.

The final score was used to identify of the best epitopes in the category plots discussed in the “Results” section.
Furthermore, for comparison, we also obtained a prediction of the 15-mer  CD4+ T cell epitopes with overlap-

ping of 10 amino  acids34,44,45.

SARS‑CoV‑2 CD8 T cell epitope prediction. Similar to the  CD4+ case, a prediction was ran in a Python 
API (https:// github. com/ mattf emia/ iedb- python). In this case the Class I API was used for the prediction of 
9-mer length peptides, using the Full HLA Class I reference list of the IEDB  platform33, which contains 27 HLA 
Class I A and B alleles (Table S15B). The IEDB 2020.9 recommended method was used, which corresponds to 
NetMHCpan EL 4.1  algorithm79.

Only epitopes with 100% of conservancy were selected. We then calculated two separate promiscuity values: 
the promiscuity for weak binders with percentile rank < 1%, and the promiscuity for strong binders that bind 
with percentile rank < 0.5%. As such, we could select for the peptides that bind strongly to the most possible 
alleles while still bind weakly to the rest. This was done because  CD8+ peptides had less candidates with high 
promiscuity values, compared to  CD4+.

As such, the formula for fs had to be changed accordingly for  CD8+ epitopes, favoring strong binding peptides, 
as given by the equation:

where c0, c1 and c2 are coefficients that can be adjusted give more or less weight to the strong binder promiscuity, 
weak binder promiscuity, or percentile rank. The percentile rank contribution has a negative sign for the same 
reasons as discussed in the  CD4+ case. The coefficients used in this study were c0 = 1, c1 = 0.1, and c2 = 0.1.

The score does not distinguish a strong from a weak CD8 epitope. What distinguish them is its percentile 
rank. Therefore, one epitope can be a strong binder of some alleles and a weak binder of other simultaneously. 
Weak binders are those CD8 epitopes that bind to alleles with percentile rank < 1% while strong binders are CD8 
epitopes that bind to an allele with percentile rank < 0.5%. The percentile rank measures the affinity to the Class I 
HLA molecule. The formula for calculation of the score involves both the percentile rank < 1% and the percentile 
rank < 0.5%. The lower the percentile rank, the higher its affinity.

The following example illustrates how two different epitopes are classified. The first binds to 11 alleles strongly 
and to 3 weakly. The second binds to 2 alleles strongly and to 12 weakly. As such, both epitopes bind to a total 
of 14 alleles. However, we wish to favor the epitopes with more strong binds. The formula defined on Line was 
conceived for this purpose. The first epitope will receive a higher final score than the second.

As such, the  CD4+ and  CD8+ epitopes were selected according to these respective final scores.

Population coverage of epitopes. The world population coverage of the predicted epitopes was deter-
mined using the IEDB platform (http:// tools. iedb. org/ popul ation/)80.

Conservancy analysis. To evaluate the amino acid sequence conservation of 16 CD4 and 39 CD8 SARS-CoV-2 
epitope regions of the structural and non-structural proteins, the amino acid substitutions found in the  GISAID81 
metadata file from August 2022 was used. This metadata file includes ~ 10 million genomes records that have 
been pre-aligned to the Wuhan-Hu-1 reference genome and includes a summary of the amino acid substitutions 
of the full-proteome for each sequenced SARS-CoV-2 genome. In addition to the amino acid substitutions, each 
genome record in the metadata file is annotated with information about the nucleotide sequence length, the 
WHO clade, PANGO lineage, geographical location of sample collection, collection date, and indeterminant 
nucleotide content (N-content). The precomputed amino acid substitutions were used to compute the extent of 
sequence conservation within each individual WHO clade and across all high-quality SARS-CoV-2 genomes.

fs =
Nbound

Ntotal
−

pr

10

fs = c0

(

N<0.5%

Ntotal

)

+ c1
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Ntotal

)

− c2 ∗ pr1%
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For quality control, records were removed from further analysis if: (i) the genome sequence was less than 
29,400 nucleotides, (ii) the genome sequence had an N-content proportion greater than 1%, or (iii) the metadata 
record was missing a geographical region of isolation, collection date, or not annotated with a variant clade. Fol-
lowing this quality control and including data since the earliest collection date of 01 November 2019, 3,630,666 
genomes remained for conservation analysis.

The protein start and end coordinates of each CD4 and CD8 epitope within each mature protein was deter-
mined using the Wuhan-Hu-1 reference coordinates based on annotations provided in the Bacterial-Viral 
Bioinformatics Resource Center (BV-BRC)51. The protein amino acid substitution position obtained from the 
GISAID metadata file was then compared to the protein start and end positions of each CD4 and CD8 epitope 
to determine if the substitution was contained within the epitope region. The number of sequence records in 
which each epitope was affected by an amino acid substitution was determined for the entire collection of high 
quality genomes and for 14 disjoint WHO clades: Alpha, Beta, Delta, Epsilon, Eta, Gamma, Iota, Kappa, Lambda, 
Mu, Omicron, Theta, Zeta, and GH/490R (no WHO name assigned, PANGO lineages B.1.640 + B.1.640.*). From 
this analysis we were able to compute a conservation ratio between 0 and 1 quantifying the conservation of 
each epitope. The conservation of epitope k among all genomes was calculated according to formula (1) and 
the conservation of epitope k among all genomes of each WHO clade was calculated according to formula (2).

Prediction of physicochemical properties of the multiepitope vaccine. Physicochemical evalua-
tion of the vaccine construct were carried out utilizing the Expasy portal’s ProtParam tool (https:// web. expasy. 
org/ protp aram/)21, which predicts the following important parameters: theoretical isolectric point (pI), amino 
acid composition, molecular weight (MW), in vitro and in vivo half-life, instability and aliphatic index, and 
grand average of hydropathicity (GRAVY). Prediction of toxicity was addressed using PSI-BLAST BTXpred 
Server tool (https:// webs. iiitd. edu. in/ cgibin/ btxpr ed/ btx_ main. pl).

Secondary structure prediction. This was carried out using the PSIPRED tool (http:// bioinf. cs. ucl. ac. 
uk/ psipr ed/) which predicts the secondary structure, transmembrane topology, transmembrane helix, fold and 
domain recognition. The solvent accessibility of the vaccine was assessed using the RaptorX server (http:// rapto 
rx. uchic ago. edu/), which is a protein structure and function prediction tool powered by deep learning.

Tertiary structure modelling, refine and validation. Since the multiepitope vaccine includes epitopes 
of several different proteins of SARS-CoV-2, it was not possible to predict its 3D structure by homology. We used 
instead the Robetta Fold tool (https:// robet ta. baker lab. org/ submit. php)82 which performs accurate predictions 
of protein structures and interactions using a three-track neural network. Refinement of the models was per-
formed with the Swiss Model (https:// swiss model. expasy. org/) and the PROCHEK tool of the PDBSUM (http:// 
www. ebi. ac. uk/ thorn ton- srv/ datab ases/ cgi- bin/ pdbsum/ GetPa ge. pl? pdbco de= index. html). Validation of the 
models was assessed by their Ramachandran plots, their best Q mean Z score, the highest Qmean Disco Global, 
the highest GMQE, solvation value in the Swiss Model, and the highest G factor that gives an estimate of how 
unusual the model is in the PROCHEK-PDBSUM tool.

Molecular docking and interactions between the multiepitope vaccine and the TLR4 human 
receptor. In order to describe the interaction of the vaccine with the Toll-like human receptors, the tertiary 
structure models of TLR4 (2Z63) were obtained from the Protein Data Bank. The docking of the best vaccine 
model and TLR4 were analyzed using the ClusPro 2.0 (https:// clusp ro. bu. edu/ login. php? redir=/ home. php). The 
Cluspro 2.0 model, showing the highest cluster sizes and lowest interaction energy scores was considered as the 
best docked  model83. Furthermore, the interactions between the receptors and vaccine were further analyzed by 
the PDBSUM tool (http:// www. ebi. ac. uk/ thorn ton- srv/ datab ases/ cgi- bin/ pdbsum/ GetPa ge. pl? pdbco de= index. 
html).

Codon optimization, N glycosylation sites and cloning. Codon optimization is a crucial tool to 
enhance protein expression. For this purpose, the Java codon adaptation index (JCAT) (http:// www. jcat. de/)84 
was used, and the multieptitope protein DNA with optimized codons was obtained. Then, the codon adaptation 
index (CAI) value and GC content were also obtained. Furthermore, Escherichia coli (strain K12) was selected 
as the target organism, and XhoI and NcoI as the restriction enzyme cleavage sites. SnapGene (version 6.0.2) 
(https:// www. snapg ene. com/) was used to integrate the adapted DNA sequence to pET-28b (+) vector, between 
the NcoI and XhoI restriction sites with no stop codon. This vector enables enhanced protein yield and purifica-
tion due to its C-terminally 6× HIS-tag. For determination of the N-glycosylation sites in human protein we used 
the tool NetNGlyc-1.0 (https:// servi ces. healt htech. dtu. dk/ servi ce. php? NetNG lyc-1.0).

Prediction of the immune stimulations response to the multiepitope vaccine. For this pur-
pose we used the C-ImmSim software (https:// kraken. iac. rm. cnr. it/C- IMMSIM/)85,86. It determines the patho-

(1)Genome − wide conservation of epitope k = 1−
Total # of genomes not conserved at epitope k

Total # of genomes

(2)Variant clade conservationof epitope k = 1−
Total # of clade genomes not conserved at epitope k

Total # of genomes in the clade
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gen epitopes, using existing prediction methods, and evaluates the molecular interactions of the immune com-
plexes. It combines a mesoscopic stimulator of the immune response with machine learning techniques (Neural 
Networks) for predictions of MHC-peptide binding interactions, linear B-cell epitopes and protein–protein 
potential  estimation60. A sequence of 46 Alanine residues was used as a negative control. The sequence of the 
Full = Probable citrate synthase, mitochondrial; Flags: Precursor UniProtKB/Swiss-Prot: A4H9H8.1 was used a 
positive control.

Statistical analysis. Correlation analysis between percentile ranks and promiscuity values of  CD4+ T cell 
epitopes was performed using the Spearman two-tailed test. Correlation analysis between number of epitopes 
and number of amino acid of each proteins was carried out using the Pearson two-tailed test (Graphpad Prism 
6).

Data availability
All relevant data supporting the findings of this investigation are available in the manuscript and its Supplemental 
information. The corresponding protein sequences for each protein of each SARS-CoV-2 strain used in this study 
are available at the NCBI Protein Bank (https:// www. ncbi. nlm. nih. gov/ guide/ prote ins/) and their respective 
accession code numbers were summarized in Table S14. The genome reference codes used in this investigation 
are available at the NCBI Nucleotide Bank (https:// www. ncbi. nlm. nih. gov/ nucco re).
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