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Pairwise and high‑order 
dependencies in the cryptocurrency 
trading network
Tomas Scagliarini1,2*, Giuseppe Pappalardo3, Alessio Emanuele Biondo4, 
Alessandro Pluchino3,5, Andrea Rapisarda3,5,6 & Sebastiano Stramaglia1,2,7

In this paper we analyse the effects of information flows in cryptocurrency markets. We first define 
a cryptocurrency trading network, i.e. the network made using cryptocurrencies as nodes and the 
Granger causality among their weekly log returns as links, later we analyse its evolution over time. 
In particular, with reference to years 2020 and 2021, we study the logarithmic US dollar price returns 
of the cryptocurrency trading network using both pairwise and high‑order statistical dependencies, 
quantified by Granger causality and O‑information, respectively. With reference to the former, we find 
that it shows peaks in correspondence of important events, like e.g., Covid‑19 pandemic turbulence 
or occasional sudden prices rise. The corresponding network structure is rather stable, across weekly 
time windows in the period considered and the coins are the most influential nodes in the network. 
In the pairwise description of the network, stable coins seem to play a marginal role whereas, turning 
high‑order dependencies, they appear in the highest number of synergistic information circuits, thus 
proving that they play a major role for high order effects. With reference to redundancy and synergy 
with the time evolution of the total transactions in US dollars, we find that their large volume in the 
first semester of 2021 seems to have triggered a transition in the cryptocurrency network toward a 
more complex dynamical landscape. Our results show that pairwise and high‑order descriptions of 
complex financial systems provide complementary information for cryptocurrency analysis.

The interest in cryptocurrencies increased a lot in the last few years, among investors and researchers. Still 
recently, until approximately five-seven year ago, the cryptocurrency markets were the object of interest of few 
professionals, vastly academic, interested on applications, technology and even speculation on DeFi (Decentral-
ized Finance). As data shows, during the year 2017, a huge increase in the USD price of Bitcoin (something like 
2300% , from about 800 in January to more than 19000 in  December1) caused un undoubtedly understandable 
interest. An even more impressive piece of evidence was that, after just after one month, that same price fell 
down to 6852 USD - a fall of more than 64%2. Also other cryptocurrencies manifested what we could name 
“turbulence” (at best) but the very peculiar aspect of their dynamics was the impressive volatility, the apparently 
intrinsic instability of these financial assets.

Needless to say, their markets have become attractive as a very ambitious and dangerous lottery, still able 
to provide wide returns, at a scale difficultly comparable with “traditional” financial instruments. Since then, a 
proliferous set of cryptocurrencies has developed and traded on exchanges (ETH since 2015, REP, XRP and ETC 
since 2016, USDT, XLM and BCH since 2017 among many others, see Table 2 for a fast overview), thus giving 
rise to an entire “sector”, as if they should behave similarly, all apparently representing the hottest opportunity 
of finance.

In time, therefore, the predominant position of Bitcoin has diminished and the financial potential of these 
cryptos is now so fragmented over a numerous set of competing alternatives, that it is very unlikely that one 
of them can assume any truly monetary role. One of the apparent elements of appeal of cryptos is the absence 
of a centralized control over them. The basic idea of the blockchain rests more on the side of tracking transac-
tions: encryption prevents any personal identification of market participants and this attracts many forms of 
traders, investors, negotiators in a wide variety of clear and unclear market transactions. Therefore, the market 

OPEN

1Dipartimento Interateneo di Fisica, Università degli Studi Aldo Moro, Bari, Italy. 2INFN Sezione di Bari, Bari, 
Italy. 3Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania, Italy. 4Dipartimento 
di Economia e Impresa, Università degli Studi di Catania, Catania, Italy. 5INFN Sezione di Catania, Catania, 
Italy. 6Complexity Science Hub, Vienna, Austria. 7Center of Innovative Technologies for Signal Detection and 
Processing (TIRES), Università degli Studi Aldo Moro, Bari, Italy. *email: tomas.scagliarini@uniba.it

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-21192-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18483  | https://doi.org/10.1038/s41598-022-21192-6

www.nature.com/scientificreports/

capitalization of the crypto world has assumed notable dimensions going to $14 billion in 2014 to $831 billion in 
2018, still remaining very high after severe reductions in 2018, until 2020 at $192 billion. On the aggregate side, 
it is easy to collect data of cryptocurrencies, since most of the anonymized exchanges are often publicly available.

In this work, we consider three different classes of cryptocurrencies, according to their different operational 
architecture: coins, having an independent blockchain (a list of records linked using cryptography) and which 
are usually the most important in terms of market capitalization; tokens, i.e. independent projects which use the 
blockchain of another cryptocoin; stablecoins, whose price is held stable with respect to another financial asset, 
like the USD dollar or other fiat currencies.

Crises show periodically that financial markets are complex systems where interactions among individual 
participants is much more relevant in terms of dynamics than the individual characteristics of individual partici-
pants. One of the most relevant reasons why micro-prudential supervision (e.g., Basel Agreements) is almost vein 
in order to prevent the systemic risk is that it fails to consider complexity features emerging from interconnected-
ness among financial institutions and their resulting financial network. Then, given the wild and unpredictable 
instability of the price of cryptocurrencies, a branch of literature has flourished dealing with analysis of signals 
and precursors that could be useful to check the existence of correlations and systemic regularities.

In this work, we study the impact of cryptocurrency price returns using statistical tools to detect the flows 
of information between time series. To this purpose, we first show how, in general, two variables exchange 
information in a pairwise way by Granger causality, which detects the information flow from a source variable 
to a target one.

Granger causality is a statistical method aimed to quantify the gain in linear predictability between time series. 
This definition does not necessarily imply a true causal link between time series, due to the possible presence 
of confounding or unobserved  variables3. For this reason, in this context causality must be intended as a form 
of predictive causality. The idea of defining causality as a useful tool for predictions was introduced by  Wiener4 
and was later implemented by  Granger5,6 in the context of linear autoregressive models, that will be used in the 
present work as weight on a directed cryptocurrency traded network where each nodes is a cryptocurrency and 
each link states if a crypto may be useful on the price prediction of another one. Since 1960, Grange Causality 
has become a standard tool in econometrics and has recently received a lot of attention in many other contexts, 
such as  neuroscience7 and  climatology8. All these studies take into account the information exchange between 
pairs of variables, possibly conditioning over a set of confounding elements to remove spurious effects. Recently, 
it has been shown that in many systems a simple pairwise approach may not fully describe the entire multivari-
ate structure of information exchange, since higher-order effects play an important role in their  description9.

High-order effects might be appreciated under two points of view: when considering multiplets of variables, 
the joint effect can be greater than the sum of single contributions, a condition known as synergy; alternatively, 
the case in which the overall effect results lower than the sum of the parts, is called redundancy. Stated differently, 
redundancy occurs when multiple copies of the same information can be found in different parts of the system, 
while synergy refers to the part of the information that is not stored in any specific element, but rather in the 
joint state of a group of variables. A trivial example is the case where X1 and X2 are independent binary random 
variables and X3 = XOR(X1,X2) . In this situation, neither X1 nor X2 contain any information about X3 ; rather, 
information is completely stored in their joint state.

In a real-world example, the study of how two market indices cooperate to transfer information to a third 
one has shown non-trivial synergistic  effects10 using the Partial Information Decomposition, a statistical frame-
work that decomposes information in the unique, redundant and synergistic parts but has the drawback of not 
being computationally feasible for more than three  variables11. A simple yet promising approach for quantifying 
high-order dependencies in a system is the O-information12, which quantifies the balance between redundancy 
and synergy. Speaking qualitatively, in a complex system, the synergy measures its capacity to make integration 
of information whilst redundancy provides robustness to the system; decomposing interactions between vari-
ables into synergistic and redundant components illuminates how the system addresses the trade-off between 
robustness and integration. For example, recent works focusing on the brain at the macroscale have identified 
high synergy brain regions which support higher cognitive  function13 and are affected by the aging  process14.

Many studies have investigated different aspects of the cryptocurrency time series, from their correlation 
 properties15,16 to the possibility of being used for portfolio  optimization17,18. The spillover effect between the 
major cryptocurrencies has been investigated by using VAR (Vector Autoregressive Models, as  in19, for instance), 
finding that return and volatility spillover is mainly driven by the Bitcoin and this effect was continuously rising 
during the considered period, suggesting a growing interdependence among cryptocurrencies. Other studies 
have investigated the relationship among the most important coins using VAR and SVAR (Structural VAR) 
Granger causality, finding that “Ethereum is likely to be the independent coin in this market, while Bitcoin tends 
to be the spillover effect recipient”20. An example of direct use of Granger Causality test to study information 
flow between two major cryptocurrencies has been  performed21, but this study was limited only to Bitcoin and 
Litecoin.  In22, multivariate transfer entropy, which is a model-free approach to study information  flow23, was 
used to study a network of cryptocurrencies, using a greedy algorithm to detect the most informative drivers. 
They found an increase in information flow during the market turbulence of March 2020. It has been shown 
that Granger Causality and transfer entropy are equivalent for Gaussian  processes24. Being pairwise methods, 
neither Granger Causality nor Transfer entropy can assess high-order effects. To the best of our knowledge, there 
are no investigations among cryptocurrencies using high-order dependencies. The present work addresses to 
contribute in filling this gap, studying a high-order generalization of Granger Causality. We will show that the 
pairwise approach and the higher-order one give complementary information to describe the cryptocurrency 
trading network.
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The paper is organized as follows. In section Data and section Methods we describe the dataset and the 
methodology used for the analyses, respectively. In section Results and Discussion we present and discuss the 
results while, in section Conclusions , we close the paper drawing some conclusions.

Results and discussion
In this section, we present and discuss the results obtained with both the pairwise Granger causality approach 
and the O-information methodology, evaluated among the logarithmic returns time series of cryptocurren-
cies exchanged in US dollars (USD) in the same time window. The number of elements in the data-set at hand 
increases with time, due to the constant introduction of newer cryptocurrencies in the market. In order to track 
the qualitative changes in the pattern of information flow, due to a genuine evolution of the system dynamics 
and not the varying size of the network, all the global information-theoretic quantities are normalized to the 
size of the system at each time window.

Pairwise Granger causality. Granger causality (GC) is a statistical method based on linear regression 
which establishes a directed link between two time series if one, hereafter called source, allows to make better 
predictions about the future of the other, the target variable, beyond the information contained in the target’s 
past states. For each one of the 104 weekly windows (from 30 Dec, 2019 to 31 Dec, 2021), Granger causality 
analysis was conducted for all the n(n− 1)/2 pair of variables active in that window, which become nodes of 
the cryptocurrency traded network. For each pair, the optimum model order p was chosen using the Bayesian 
information  criterion25. A link between a pair of nodes is created only if the GC strength overcomes the signifi-
cance threshold of 1%.

A first visual representation of the structure of the USD network averaged over all the time windows is shown 
in Fig. 1, where the biggest nodes represent the most influential elements and the color scale of the labels indi-
cates how much a node is influenced by all the others (for a better visualization, only the first 5% of links sorted 
according to their GC strength is reported in the figure). This kind of graph is very effective in giving an overall 
idea about the relative importance of cryptocurrencies in the whole considered period (the network evolution 
across weekly time windows will be addressed later).

To see more in detail which cryptocurrencies transfer the most information to the rest of the system and 
which receive the most information from the others, it is useful to look at the ranking of the average in strength 
and out strength. These information are shown, respectively, in the top and bottom panels of Fig. 2. The different 
classes of cryptocurrencies - token, coin and stable coins - are represented using different colors. As can be seen 
in the top panel, the most influential cryptocurrencies belong to the class “coin” (the ones that have their own 
blockchain, colored in red). Unsurprisingly, the most influential coins are the eldest and most capitalized, such 
as Bitcoin (XBT), Ethereum (ETH), and Litecoin (LTC). Among the topmost influenced elements (bottom) we 
find younger and less capitalized “coins”, such as Tron (TRX), EOSIO (EOS) and Dash (DASH). Stable coins 
seem to play a marginal role in the pairwise description of the network, both for transferred (EUR, DAI, GBP) 
and received information (EUR, USD).

To get a visual hint of how the information flow changes over time, in Fig. 3 we depict the structure of the 
USD network in several weekly windows (for a period going from 28 Dec, 2020 to 22 Mar, 2021), selected for 
being stable windows or characterized by the presence of crashes or turbulence. For example, an anomalous activ-
ity involving several currencies with high out strength (biggest nodes) can be appreciated in the week starting 
on 22 Feb, 2021, while during the majority of the other weeks the information flow is visibly much lower. It is 
worth to notice that the number of nodes in the network slightly increases for subsequent windows, since new 
cryptocurrencies enter in the market/dataset. 

In this regard, it is interesting to investigate if there is some correlation between the age of the cryptocur-
rencies (i.e. the number of time windows in the USD dataset where it is present) and their in and out strength. 
As can be seen in the first row of Table 1, actually it seems that such a correlation does exist and is also quite 
consistent (expecially for the out strength).

Repeating the same procedure also for the other datasets (where the cryptos are exchanged in different fiats, 
i.e. EUR, Bitcoin or Ethereum), it results that the correlation stays quite high only when EUR is adopted as fiat 
(second row in Table 1) while it rapidly disappears for the other fiat currencies (third and fourth rows). This 
can be explained by the fact that when a given fiat is firstly adopted for the exchange, it is still quite unpopular, 
and then its connections with the rest of the system from the point of view of Granger causality are still weak. 
Conversely, as time passed, its importance grows and this is reflected in the values of information flow.

Finally, it is also interesting to look at the correlation between pairs of USD networks of Granger causality as 
they appear in any couple of windows h and k. To this aim, in Fig. 4 we report the Pearson correlations ρ(Ah,Ak) 
between the adjacency matrices Ah and Ak , for each h, k = 1, 2, . . . , 104 . Correlation ρ can be seen as a measure of 
similarity between networks: high values of ρ in two different windows indicate that, on average, the information 
flows between the cryptocurrencies are similar in the corresponding two periods. If we look at values close to the 
main diagonal, we see that for consecutive windows the correlation is very high, often above 0.9; also, inspecting 
windows more separate in time (that is, looking at values far from the main diagonal) correlation still remains 
quite high, indicating that the structure of the Granger causality network is quite stable or, in other words, that 
the information flow between the various nodes does not change much over time.

Analogous correlation matrices calculated for the other datasets (EUR, XBT and ETH) are reported for 
completeness in Fig. 9 in Section “Results for other fiat” (of course, as expected for the reasons explained above, 
correlations between networks traded in XBT and ETH are much less significant with respect to EUR and USD).

Summarizing the results obtained with the Granger pairwise analysis, we can say that, on one hand, as one 
could expect, for a specific time window nodes influence/get influenced each other according to their out/in 
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strength. On the other hand, the structure of the network stays quite stable over consecutive time windows, since 
the in/out strength values of nodes remain comparable. In this respect, even if in correspondence of important 
events or shock in the market the structure of the network seems to change, increasing the number of links and 
their weight, when the effect of those events vanishes the network come back to its original state.

O‑information. Let us now describe the results of the analysis of the USD dataset from the point of view 
of high-order dependencies, using dynamical O-information d�

X̃→y defined in the “Methods” section. This 
quantity is a signed metric representing the informational character of the high-order dependencies between 
the source variables’ past states X̃ and the future states of the target y. For each cryptocurrency treated as a 
target variable, the goal of the analysis is to find the multiplets of variables whose past states X̃ convey the most 
redundant and synergistic information (occurring for highest and lowest values of d�

X̃→y , respectively) with 
the future states y of the target variable.

A first interesting observation can be made about Fig. 5, where it is shown the ranking of the presence of 
each class of cryptocurrency in the best multiplets, both for redundancy and synergy. Here, on the contrary of 
the pairwise case, one can observe that stable coins are the variables which belong to the highest number of 
synergistic information circuits, hence they play a major role for high order effects.

We get other insights by observing the composition of the best multiplets as function of their size. In Fig. 6 
we report the typical fraction of elements belonging to the 3 different classes of cryptocurrencies for both 
redundancy (left panel) and synergy (right panel). Concerning the redundant multiplets, the composition do not 
depend on the size but only on the class. The highest fraction of elements in these multiplets are tokens, which 
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Figure 1.  The average USD network of pairwise Granger causality. Each link aij represents the Granger 
causality averaged over the 104 weekly windows from 28 Dec, 2019 to 30 Dec, 2021. The size of the nodes 
represents the total out strength kouti =

∑
j aij , while the label color (from black to red) is the total in strength 

kini =
∑

j aij , that is how much that node is influenced by the rest of the network. A comprehensive list of the 
most influential and influenced nodes is plotted in Figure 2, where the total out strength and in strength values 
are shown for each node.
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are also the most common in the original dataset (60/99): high redundancy can be explained from the fact that 
these cryptocurrency don’t have a own blockchain, but are built on top of another crypto-coin. Notice that the 
lowest fraction are stable coins, which are the least common in the dataset (6/99).

The situation is very different for the synergistic multiplets (right panel), where the size plays a greater role: 
actually, the fraction of stable coins increases with the size, while that of the other classes tends to decrease. 
Interestingly, from size 3 onwards the best multiplets are populated much more often by coins and, in particular, 
by the stable coins, even if they are very few in the dataset.

These findings are quite surprising since stable coins have a rather marginal activity in the pairwise Granger 
causality, as can be seen in Fig. 2. This result confirms that taking into account high-order dependencies through 
O-information provides insights that cannot be retrieved with a pairwise analysis.

Complementarity of pairwise and high‑order descriptions. In order to better highlight the comple-
mentarity between the pairwise and the high-order descriptions, in Fig. 7 we make a comparison between the 
average values of the pairwise and high-order indicators analyzed so far for the USD dataset. The second and 
third panel (from the top) address the O-information, showing the values of d�

X̃
5→y averaged over each target 

as function of the 104 weekly windows, for redundancy and synergy respectively. In the bottom panel, we depict 
the analogous time behavior of Granger causality FX→Y averaged over all the possible pairs. Finally, in the top 
panel, we show the behavior of total exchanges in US dollars, which can be meant as the total volume of transac-
tions which have been performed during each weekly window.

It is quite clear the presence of three successive stages characterized by a different behaviour of the O-infor-
mation indicators: (i) the first phase, from January to December 2020, shows high redundancy of the market 
and low synergy; (ii) the second phase, from January to June 2021, is characterized by a fall of the redundancy 
and a rise of the synergy; (iii) finally, a third phase can be located between July and December 2021 and is 
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Figure 2.  The most important nodes in the network of pairwise Granger causality. Top panel shows the total 
out strength for the first 70 most influential cryptocurrency, cumulated over the considered two years period. In 
the same fashion, the bottom panel depicts the in strength of the first 70 most influenced nodes, cumulated over 
the 104 weekly windows, thus indicating the most influenced nodes of the network. Yellow bars indicate stable-
coins, red bars coins and blue bars tokens.
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characterized by a stationary dynamics of both synergy and redundancy, which stay relatively high. Since synergy 
may be interpreted as an indicator of the system’s complexity, this result suggests that, during the first semester 
of 2021, the cryptocurrencies network has undergone a transition toward a more complex dynamical landscape. 
The transition seems to be triggered by the large volume of transactions occurred in the first semester of 2021.

Figure 3.  The USD network of pairwise Granger causality for weekly time windows. The size of the nodes 
represents the total out strength of that node in that window or, in other words, how much that node influences 
the network, while the label color (from black to red) is the total in strength, that is how much that node is 
influenced by the rest of the network.
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On the other hand, the behaviour of the Granger causality seems insensitive to such a transition, remaining 
quite homogeneous during the whole considered period, with the exception of sudden peaks in correspondence 
of important events - like Covid turbulence in 2020, days of sudden rise in prices etc. Notice, in particular, the 
peak of 22 Feb 2021, which also appears in the synergy panel and coincides with the first minimum of redun-
dancy. It could be related with the week of anomalous activity already observed in Fig. 3, maybe the effect of some 
market movements and announcements of Elon Musk about cryptos and their adoption/dismiss as payment 
method - as reported by financial press (see for  example26).

A global perspective about the time behaviour of both the O-information and pairwise indicators for each 
cryptocurrency of the USD dataset can be appreciated in Fig. 8, where we report the same quantities of the pre-
vious figure but without averaging over all the crypto. In particular, in the left and central panel it is shown the 
redundancy and synergistic value of dynamical O-information from the best multiplet, respectively. In the right 
panel, it is shown the Granger causality out strength of each crypto for each weekly time window. Notice that in 
such a visualization it becomes clear that only about thirty cryptos (the first from the top) are always present in 
the dataset for the whole considered time period: the others, ordered according to their age, show an increasing 
number of weekly windows (colored in gray) in which they are not yet listed.

Focusing on the highest and lowest values of redundancy and synergy, a behaviour analogous to that one 
observed in Fig. 7 can be easily detected also at this disaggregated level, and the same holds for the Granger 
causality, thus further confirming the complementarity of the pairwise and the high-order approach.

Conclusions
In this work, we have analysed the logarithmic USD price returns, building a network of traded cryptocurrency by 
defining the Granger causality between each pair of cryptocurrencies in the years 2020 and 2021 as links. We used 
both pairwise and high order statistical dependencies, as measured by Granger causality and O-information, with 
a dataset consisting of two classes of currencies (coins and tokens) and six stable coins, for a total of 99 time series.

Table 1.  Table shows the Spearman correlation ρ between the in strength and the out strength of a fiat with 
its “age” (that is, the number of windows in which it was active in the dataset). Two asterisks indicate that ρ is 
significant at p < 0.01 , one asterisk at p < 0.05.

Currency In-strenght Out-strenght

USD 0.304
∗∗

0.442
∗∗

EUR 0.246
∗

0.400
∗∗

XBT 0.015 0.051

ETH −0.152 −0.076
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Figure 4.  The Pearson correlation between adjacency matrices at different time windows. The element 
cij = ρ(Ai ,Aj) of the matrix is the Pearson correlation between the vectorized adjacency matrices at windows 
i and j. High values of cij indicate that the structure of the network at windows i and j is very similar. Diagonal 
elements, indicating self-correlation, are colored in gray.
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Figure 5.  Most influential nodes for synergy and redundancy in the USD dataset. The bar plot counts the 
number of times a cryptocurrency is found in the best multiplets built as explained in the text. Yellow bars 
indicates stable-coins, red bars coins and blue bars tokens. Only the first 60 elements are shown.
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We found that, in terms of Granger causality, the network structure is rather stable across time, referring 
to weekly time windows in the considered period since, according to our analysis, the set of most influential 
cryptocoins presents small changes over time. The structure of the network may change due to relevant events or 
shocks within a specific period, but in a short time it tends to restore its original condition. In the present work 
we are mainly interested in the stability of the newtork on a global scale. It is worth mentioning that recently 
several papers dealt with the investigation of time stability of specific links, using network measures such as 
weighted network  liquidity27 or assortativity  metrics28–32; the analysis of local time stability of the cryptocurren-
cies network is matter for further research.

Turning to consider high-order dependencies, we have analysed how multiplets of cryptocurrencies carry 
redundant and synergistic information toward the future states of other variables. In synergistic multiplets, as 
the size of the multiplets increases, the same does the fraction of stable coin on it, despite their marginal role 
pointed out by the pairwise analysis. On the other hand, in the redundant case, stablecoins fraction is less than 
10% and the multiplets composition does not vary while increasing their size.

We obtained other insights by looking at the temporal trends of the pairwise and high-order indicators. In 
particular, we compared Granger causality, redundancy and synergy with the time evolution of the total amount 
of exchanges in US dollars, and we found three successive stages characterized by different behaviour of these 
indicators. The first period, between January to December 2020, is characterized by high redundancy and low 
synergy among cryptocurrencies. Both change directions on the second phase, starting from January to June 

Figure 7.  From top to bottom: the total volume (in US dollar) exchanged in each time window; the average 
value of redundancy and synergy and the average value of Granger causality F  calculated for each time window. 
The 10-weeks moving average of the signal is represented in red.
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2021, where redundancy fall and synergy rise up. At the last phase, located between July and December 2021, 
both indicators maintains a stationary dynamics.

These results suggest that pairwise and high-order descriptions of complex financial systems provide com-
plementary information, thus, considered together, they represent a very promising tool for the analysis of 
cryptocurrency trading networks or similar ones.

Conclusively, considering the amount of resources and the relevance of trading activities related to crypto-
currencies, the analysis of their dynamics is a relevant field of investigation aimed at stabilizing their markets. 
At the end of the day, cryptocurrencies are not financial instruments with an intrinsic value representing pro-
ductive assets. They have been conceived as mediums of exchange, in markets where their quotation is totally 
self-referenced and driven by their adoption in transactions (often of unknown type and content).

Nonetheless, the attracting appeal of positive price jumps and bubbles induces investors to underestimate 
potential losses. Our analysis of the network of cryptocurrencies might be useful to unveil that while drivers of 
instability cannot be removed in general, specially in the absence of intrinsic – fundamental – values, quotations 
and prices become extremely risky and unpredictable. This, on a normative side, could inspire policies aimed at 
fostering stability of markets, anchored more to produced values than to financial speculation.

Matter of factly, some attempts have been done to create a formal market structure for some crypto (i.e. lend-
ing platforms such as CoinLoan or Hodlnaut, Binance and Crypto.com as an example of crypto-debit payments 
card and even Sandbox virual world, where each player can buy objects using cryptocoins and even earning 
coins by playing the game). The need for a more “readable” orientation, aimed at providing priors on the market 
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Figure 8.  The redundant (left) and synergistic (center) dynamical O-information toward various targets, where 
each point represents the value of d�X̃5→y of the best multiplet of sources X̃5 that conveys the highest and 
lowest O-information toward the target y. We also depict the out strength Granger causality (right) for each 
weekly window. Regions in grey represents windows where that cryptocurrency was not yet listed.
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configuration and on its physiology, shows that despite a financial artefact may reveal appealing in block-chain 
transactions, it might be perceived as dangerous and too risky.

Our analysis goes to the direction of investigating and understanding what moves the dynamics of such highly 
volatile crypto currencies, which can be useful from a policy standpoint in order to foster stability and prevent 
the destruction of relevant financial values.

Methods
Pairwise Granger Causality. In this section, we describe how to implement Granger Causality between 
pair of variables in the context of linear autoregressive models.

Let us consider two stationary time series Xt and Yt . Under suitable  conditions33, the target series Y can be 
written as a weighted sum of its past states and an error term ǫ′t (reduced model); similarly, a second model can 
be built by adding the past states of the source variable (full model):

In other words, in the full model, the future states of the target are predicted using its previous p past states and 
the previous q states of the source, while in the reduced model only the target is involved.

The goodness of these models can be quantified by the variance of the error term of the full model σ 2
f = �ǫ2t � 

and of the reduced model σ 2
r = �ǫ

′2
t � , where �·� indicates the expected value. To test if the full model improves 

the predictability of the target, we use the statistics

This choice has a number of useful  properties34, remarkably the invariance under scaling transformation of 
the original time series and the asymptotic chi-square distribution under the null hypothesis FX→Y = 0 . To 
build a bridge between Granger causality and the information-theoretical methods for analyzing high-order 
dependencies of the next section, we can consider the equivalence between Granger causality and transfer entropy 
T  under the Gaussian  approximation24.

Transfer entropy is a model-free version of Granger causality. Considering the source states 
X
−
t = (Xt−1,Xt−2, . . . ,Xt−p) , at varying t, as realizations of a stochastic variable X− , and analogously 

Y
−
t = (Yt−1,Yt−2, . . . ,Yt−p) as realizations of the target state variable Y− , Yt as realizations of the future of the 

target y, considered as a stochastic variable, the transfer entropy is defined as the mutual information between 
source and target variable conditioned over the target past states:

The equivalence reads:

The pairwise Granger causality has been computed for each pair using the MATLAB toolbox  MVGC35. The 
result of Granger causality produces an adjacency matrix A = {aij} , where the element aij represents the Granger 
Causality from the cryptocoin i toward the cryptocoin j, which can be used as weighted links for our directed 
Cryptocurrencies Trading Network.

To find the most influencing and influenced nodes, one may define the quantities out strength and in strength:

O‑information. We now describe how to study high-order dependencies in a collection of random vari-
ables Xn = (X1,X2, . . . ,Xn) . The first step is to extend the concept of mutual information to the multivariate 
case: a popular way to do it is through total correlation (also known as multi-information)36, which quantifies 
the amount of high-order constraints and then is a measure of redundant information. In terms of information-
theoretical quantities, it can be expressed as:

(1)Yt =

p∑

m=1

amYt−m + ǫ′t

(2)Yt =

p∑

m=1

amYt−m +

q∑

m=1

bmXt−m + ǫt

(3)FX→Y = ln
σ 2
r

σ 2
f

.

(4)TX→Y = I(y;X−|Y−)

(5)FX→Y = 2TX→Y

(6)kouti =
∑

j �=i

aij

(7)kini =
∑

j �=i

aji

(8)T (Xn) =

n∑

k=1

H(Xk)−H(Xn),
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where H(Xk) and H(Xn) are the Shannon entropies, which quantify the uncertainty of the k-th variable and of 
the whole system, respectively. Another useful way of looking at this quantity is as a measure of the “statistical 
constraints” acting on Xk : when H is low, the system explores more frequently small regions of the phase space 
and, in this sense, the constraints are high. Conversely, when H is maximum (a condition that occurs when the 
distribution is uniform), then there is the minimum possible amount of constraints acting on Xk.

Another popular extension of mutual information is the dual total correlation37

where Xn
−k represents all the system minus the k-th variable. D(Xn) may be interpreted as the amount of uncer-

tainty that can be explained only by observing more than one variable at once: for this reason, dual total cor-
relation is a measure of the synergy present in the system at global level. Crucially, it can be easily shown that 
both T (Xn) and D(Xn) are  nonnegative38 and then can be used as proper measures of redundancy and synergy.

The following quantity, called O-information12, represents the balance between the redundant and the syn-
ergistic dependencies in Xn:

Accordingly, if this quantity is greater than 0, we say that the system is redundancy-dominated, whilst if 
� < 0 the system is synergy-dominated.

Now, we introduce a target variable y to study whether the high-order dependencies between a multiplet of n 
variables Xn with y are redundant or synergistic. We can express the O-information of the system jointly formed 
by the multiplet and the target as follows

where �y the contribution of a variable to the O-information and reads:

where I(y;Xn) = H(y)+H(Xn)−H(y;Xn) denotes mutual information.
Now we turn to consider n time series {Xi,t} and a target {Yt} , where t = 1, . . . ,T  and i = 1, . . . , n ; the 

informational character of the information flow from the multiplet of X variables (considered as sources) to the 
target, can be assessed introducing stochastic variables Xn− = (X−

1 ,X
−
2 , . . . ,X

−
n ) , Y− and y representing the 

sources, the target and the future of the target respectively, whose realizations can be obtained from the samples 
multivariate time series.

Hence, the dynamical version of the O-information, introduced  in39 for the analysis of neural signals, reads

This quantity can be also thought as a high-order version of the Granger causality and its sign has the same 
interpretation of the O-information in terms of redundancy and synergy.

In order to analyse the dataset, we proceed as follows. First, we fixed a target variable y; then, we searched 
among the remaining n− 1 variables for the pair that maximize and minimize the quantity

Then, d�y
red(X

2) and d�y
syn(X

2) is the highest and lowest dynamic O-information to the target y from the 
best multiplets X̃2 = {X∗

i X
∗
j } of size n = 2 . For sizes n > 2 , we used a greedy approach: for n = 3 , we start from 

the X̃2 = {Xi∗Xj∗ } found in the previous step, and for the remaining variables Xk we choose the one that maxi-
mizes and minimize d�y({XiXjXk}) . We repeated the same procedure for n = 4 and so on, and we stop at n = 5.

Data and preprocessing
The dataset investigated in this study is freely available from Kraken crypto  Exchange40 and contains traded 
prices in general between cryptocoins and currencies.

In the following we will use different names for cryptocurrencies according to their own properties. We refer 
more specific to a Coin to describe a cryptocoin with its blockchain, to a Token to describe a cryptocoin backed 
by a blockchain of another Coin. Also, we refer as Stablecoin to indicate to a Cryptocoin which has its price 

(9)D(Xn) = H(Xn)−

n∑

k=1

H(Xk|X
n
−k)

(10)�(Xn) = T (Xn)−D(Xn)

(11)= (n− 2)H(Xn)+

n∑

k=1

[
H(Xk)−H(Xn

−k)
]
.

(12)�(Xn ∪ y) = �(Xn)+�y

(13)�y = (1− n)I(y;Xn)+

n∑

k=1

I(y;Xn
−k),

(14)d�y(Xn) = (1− n)I(y;Xn−|Y−)+

n∑

k=1

I(y;Xn−
−k |Y

−).

(15)d�
y
red(X

2) =max
i,j

d�y({XiXj})

(16)d�
y
syn(X

2) =min
i,j

d�y({XiXj}).
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“pegged” to the price of another asset (usually the USD change value) and in general to a Fiat currency to any 
government-issued currency such as Euro, Dollar or others as described  in41.

Each file of the dataset is organized in “pairs”, where one pair consist of a cryptocurrency traded using a fiat 
currency, so it reports all trade on a specific market, which collect bid and ask orders on a corresponding order 
book, from cryptocurrency to fiat currency and vice-versa. Each line refers to a single trade or transaction. Since 
it is possible to have more than one transaction per second referring to the same timestamp, with different price 
and volume, they are reported on separate lines.

For each pair, data provided for each trade have the following information:

• timestamp represents the time when the trade occurs, with resolution in seconds. It is possible to have more 
than one trade with the same timestamp, in this case volume and price may be different for each trade;

• price is the price at which the cryptocurrency was traded, in terms of the corresponding fiat currency;
• volume is the amount of cryptocurrency exchanged on the corresponding trade;

Data were aggregated on the scale of minutes, considering the weighted mean over volume for the minute price 
of the trade, and the sum of volumes for the total volume exchanged at the current minute time. If there were no 
trade on a minute, in order to avoid discontinued time series, we hold the previous last price to fill the gap on 
the time series, setting the corresponding volume to zero. Then, we computed the logarithmic returns of each 
time series of the price, which will be divided into time series of weekly length, to see how the results vary over 
time and to take into account effect due to the different volume of transactions over the week (usually smaller 
volumes are traded during weekends). We divided the considered period in weekly time windows, each starting 
at 00:00:00 every Monday and terminating at 23:59:59 every Sunday (with the exception of last window because 
last day available on the dataset was Friday, 31 Dec 2021), thus obtaining 104 windows, each containing a total 
of 10080 points.

We remark that the analysis is performed just on the time series of logarithmic returns; the time series of 
volumes are used here only to compare the time evolution of information-theoretical quantities with the total 
volume of exchanges in US dollars. A cryptocurrency can be traded on the Exchange using more than one 
fiat, then there is the possibility to have more than one pair for each crypto, one for each available fiat market 
(i.e. Bitcoin can be traded in EUR, Dollar or other fiat currencies related to the country of the user). Also, the 
Exchange allowed to use some crypto coins (i.e. Bitcoin, Ethereum) as fiat, probably to speed up buying and 
selling operations.

Table  2  in section "Data Availability" reports a brief description of all data available on Kraken, grouped  by 
years, number of cryptos and fiat, while Table  3 shows which tickers are included on the dataset and some of 
their features.

As the cryptocoin market grows, the number of cryptos and fiat listed on Kraken increases to about hundred 
cryptocoins, traded up to 12 different market, for a total of about 450 crypto-fiat pairs.

Table 2.  Number of cryptocoins and fiat available on Kraken during years. At the beginning of the launch of 
the Kraken platform, there were available only two cryptos (Bitcoin as XBT and Litecoin as LTC) traded using 
2 fiat (Euro and Dollar, using EUR and USD as corresponding tickers). As far as the platform grow up, there 
were listed more cryptos and fiat, up to 2021 when there are more than 90 cryptos available, and traded using 
12 fiat. Since 2016, Bitcoin and Ethereum were also used as “fiat”, to simplify the process of buying and selling.

Year Number of crypto Number of fiat

2013
2 2

(XBT, LTC) (EUR, USD)

2014 2
4

(+ GBP,JPY only for XBT)

2015
3 5

(+ ETH) (+ CAD for XBT and ETH)

2016
9 7

(+ZEC,XLM,REP,XRP,XDG,ETC) (+XBT,ETH as fiat)

2017
16

7
(+ USDT,DASH,XMR,GNO,MLN,EOS,BCH)

2018
19

7
(+ ADA,QTUM,XTZ)

2019
30 10

(...) (+ USDT,CHF,DAI)

2020
60 11

(...) (+AUD)

2021
99 12

(...) (+DOT)
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Ticker Name Website Type Consensus mechanism

1INCH 1inch https:// 1inch. io/ TOKEN

AAVE Aave https:// aave. com/ TOKEN

ADA Cardano https:// carda no. org COIN Proof of Stake

ALGO Algorand http:// algor and. found ation/ COIN Proof of Stake

ANKR Ankr https:// www. ankr. com/ TOKEN

ANT Aragon https:// aragon. org/ TOKEN

ATOM Cosmos https:// cosmos. netwo rk/ COIN Proof of Stake

AVAX Avalanche https:// avax. netwo rk/ COIN Proof of Stake

AXS Axie Infinity Shards https:// axiei nfini ty. com/ TOKEN

BADGER Badger DAO https:// app. badger. finan ce/ TOKEN

BAL Balancer https:// balan cer. finan ce/ TOKEN

BAND Band Protocol https:// bandp rotoc ol. com/ TOKEN

BAT Basic Attention Token https:// basic atten tiont oken. org/ TOKEN

BCH Bitcoin Cash http:// bch. info/ COIN Proof of Work

BNC Bifrost https:// bifro st. finan ce/ TOKEN

BNT Bancor https:// bancor. netwo rk/ TOKEN

CHZ Chiliz https:// www. chiliz. com/ TOKEN

COMP Compound https:// compo und. finan ce/ gover 
nance/ comp TOKEN

CQT Covalent https:// www. coval enthq. com/ TOKEN

CRV Curve https:// www. curve. fi/ TOKEN

CTSI Cartesi https:// carte si. io/ TOKEN

DAI Dai http:// www. maker dao. com/ TOKEN - USD StableCoin

DASH Dash https:// www. dash. org/ COIN Hybrid - PoW & PoS

DOT Polkadot https:// polka dot. netwo rk/ COIN Nominated Proof of Stake

DYDX dYdX https:// dydx. commu nity/ TOKEN

ENJ Enjin Coin https:// enjin. io/ TOKEN

EOS EOSIO https:// eos. io COIN Delegated Proof of Stake

ETC Ethereum Classic https:// ether eumcl assic. org/ COIN Proof of Work

ETH Ethereum https:// www. ether eum. org/ COIN Proof of Work

ETH2.S Ethereum 2.0 Staking Proof of Stake

EUR FIAT

EWT Energy Web https:// www. energ yweb. org/ COIN Proof of Authority

FIL Filecoin https:// filec oin. io/ COIN Proof-of-Replication and Proof-
of-Spacetime

GBP FIAT

GHST Aavegotchi https:// aaveg otchi. com/ TOKEN

GNO Gnosis https:// gnosis. io/ TOKEN

GRT The Graph https:// thegr aph. com/ TOKEN

ICX Icon https:// icon. commu nity/ COIN Proof of Stake

INJ Injective https:// injec tive. com/ TOKEN

KAR Karura http:// karura. netwo rk/ TOKEN

KAVA Kava https:// www. kava. io/ TOKEN

KEEP Keep Network https:// keep. netwo rk/ TOKEN

KILT Kilt Protocol https:// kilt. io/ TOKEN

KNC Kyber Network https:// kyber. netwo rk/ TOKEN

KSM Kusama https:// kusama. netwo rk/ COIN Nominated Proof of Stake

LINK Chainlin https:// chain. link/ TOKEN

LPT Livepeer https:// livep eer. org/ TOKEN

LRC Loopring https:// loopr ing. org/ TOKEN

LSK Lisk https:// lisk. com/ COIN Delegated Proof of Stake

LTC Litecoin https:// litec oin. org/ COIN Proof of Work

LUNA Terra https:// terra. money/ COIN Proof of Stake

MANA Decentraland https:// decen trala nd. org/ TOKEN

MATIC Polygon https:// polyg on. techn ology/ COIN Proof of Stake

MINA Mina https:// minap rotoc ol. com/ COIN Zk-SNARK

MIR Mirror Protocol https:// mirror. finan ce/ TOKEN

Continued
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https://axieinfinity.com/
https://app.badger.finance/
https://balancer.finance/
https://bandprotocol.com/
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Ticker Name Website Type Consensus mechanism

MKR Maker https:// maker dao. com/ TOKEN

MLN Enzyme Finance https:// enzyme. finan ce/ TOKEN

MOVR Moonriver https:// moonb eam. netwo rk/ 
netwo rks/ moonr iver/ TOKEN

NANO Nano https:// nano. org/ en COIN Delegated Proof of Stake

OCEAN Ocean https:// ocean proto col. com/ TOKEN

OGN Origin https:// www. origi nprot ocol. com/ TOKEN

OMG OMG Network https:// omg. netwo rk/ TOKEN

OXT Orchid https:// www. orchid. com/ TOKEN

OXY Oxygen https:// www. oxygen. org/ TOKEN

PAXG PAX Gold https:// www. paxos. com/ paxgo ld/ TOKEN

PERP Perpetual Protocol https:// perp. com/ TOKEN

PHA Phala https:// phala. netwo rk/ TOKEN

QTUM Qtum https:// qtum. org/ COIN Mutualized Proof of Stake

RARI Rarible https:// app. rarib le. com/ rari TOKEN

RAY Raydium https:// raydi um. io/ TOKEN

REN Ren https:// renpr oject. io/ TOKEN

REP Augur http:// www. augur. net/ TOKEN

REPV2 Augur v2 http:// www. augur. net/ TOKEN

SAND Sandbox https:// www. sandb ox. game/ en/ TOKEN

SC Siacoin https:// sia. tech/ COIN Proof of Work

SDN Shiden https:// shiden. astar. netwo rk/ TOKEN

SHIB Shiba Inu https:// shiba token. com/ TOKEN

SNX Synthetix https:// www. synth etix. io/ TOKEN

SOL Solana https:// solana. com/ COIN Proof of Stake

SRM Serum https:// proje ctser um. com/ TOKEN

STORJ Storj https:// storj. io/ TOKEN

SUSHI Sushi https:// sushi. com/ TOKEN

TBTC tBTC https:// tbtc. netwo rk/ TOKEN

TRX Tron https:// tron. netwo rk/ COIN Delegated Proof of Stake

UNI Uniswap https:// unisw ap. org/ blog/ uni/ TOKEN

USD FIAT

USDC USD Coin https:// www. centre. io/ usdc TOKEN - USD StableCoin

USDT Tether https:// tether. to/ TOKEN - USD StableCoin

WAVES Waves https:// waves. tech/ COIN Leased Proof of Stake

WBTC Wrapped Bitcoin https:// wbtc. netwo rk/ TOKEN LpoS

XBT Bitcoin https:// bitco in. org/ COIN Proof of Work

XDG Dogecoin http:// dogec oin. com/ COIN Proof of Work

XLM Stellar https:// www. stell ar. org/ COIN Stellar Consensus Protocol

XMR Monero https:// www. getmo nero. org/ COIN Proof of Work

XRP Ripple https:// ripple. com/ COIN Ripple consensus

XTZ Tezos https:// www. tezos. com/ COIN Liquid Proof of Stake

YFI yEarn https:// yearn. finan ce/ TOKEN

ZEC Zcash https://z. cash/ COIN Zk-SNARK

ZRX 0x https:// 0x. org/ TOKEN

Table 3.  Tickers description. Each row provides some information on the ticker, such as the name of the coin, 
the website of the project, its type (COIN for cryptocoin which hold their own blockchain, TOKEN for cryptos 
built on top of another cryptocoin, fiat for currencies and TOKEN - USD Stablecoin for token hooked to the 
USD dollar price) and what algorithm it is used as consensus mechanism (for COINS only).
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https://raydium.io/
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crypto firstday

2020 2021

EUR USD GBP CAD AUD CHF DAI JPY USDT USDC XBT ETH DOT EUR USD GBP CAD AUD CHF DAI JPY USDT USDC XBT ETH DOT

1INCH 20210810 144 144

AAVE 20201215 17 17 17 17 17 365 365 365 345 365 365

ADA 20191230 368 368 78 368 368 365 365 345 345 365 365 365

ALGO 20200122 345 345 346 345 365 365 345 365 365

ANKR 20210524 222 222 222 222

ANT 20201124 38 38 38 38 365 365 365 365

ATOM 20191230 368 368 368 368 365 365 345 345 365 365

AUD 20200616 199 199 365 363

AVAX 20211221 11 11

AXS 20210713 172 172

BADGER 20210803 151 151

BAL 20200917 106 106 106 106 365 365 365 365

BAND 20210810 144 144

BAT 20191230 368 368 368 368 365 365 365 365

BCH 20200616 368 368 246 199 71 246 368 246 365 365 365 365 365 365 365 365

BNC 20211026 67 67

BNT 20210524 222 222 222 222

CHZ 20210713 172 172

COMP 20200715 170 170 170 170 365 365 365 365

CQT 20210706 179 179

CRV 20200917 106 106 106 106 365 365 365 365

CTSI 20210803 151 151

DAI 20191230 368 368 368 365 365 365

DASH 20191230 368 368 368 365 365 365

DOT 20201015 136 136 78 136 136 365 365 345 345 365 365 365

DYDX 20210914 109 109

ENJ 20210520 226 226 225 226

EOS 20201015 368 368 78 368 368 365 365 365 365 365

ETC 20191230 368 368 368 368 365 365 365 365

ETH 20191230 368 368 368 368 198 368 368 368 368 359 368 365 365 365 365 365 365 365 365 365 365 365

ETH2.S 20211001 92

EUR 20200617 295 295 295 198 295 295 365 365 365 365 365 365

EWT 20210401 275 275 275 275

FIL 20201015 78 78 78 78 365 365 345 345 365 365

FLOW 20210127 339 339 339 339 339

GBP 20200312 295 365

GHST 20210517 229 229 229 229

GNO 20191230 368 368 368 368 365 365 365 365

GRT 20201218 14 14 14 14 365 365 345 345 365 365

ICX 20191230 368 368 368 368 365 365 365 365

INJ 20210810 144 144

KAR 20210720 165 165

KAVA 20200715 170 170 170 170 365 365 365 365

KEEP 20201124 38 38 38 38 365 365 365 365

KILT 20211130 32 32

KNC 20200715 170 170 170 170 365 365 365 365

KSM 20210121 106 106 106 106 365 365 345 344 365 365 267

LINK 20210121 368 368 78 368 368 365 365 345 345 365 365 365

LPT 20210520 226 226 226 226

LRC 20210803 151 151

LSK 20191230 368 368 368 368 365 365 365 365

LTC 20191230 368 368 245 198 71 246 368 246 365 365 365 365 365 365 365 365

LUNA 20211216 16 16

MANA 20201215 17 17 17 17 365 365 365 365

MATIC 20210517 229 229 229 229

MINA 20210601 214 214 214 214

MIR 20210810 144 144

MKR 20210514 232 232 232 232

MLN 20191230 368 368 368 368 365 365 365 365

MOVR 20210827 127 127

NANO 20191230 368 368 368 368 365 365 365 365

OCEAN 20210401 275 275 275 275

OGN 20210713 172 172

OMG 20191230 368 368 368 368 365 365 365 365

Continued
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In our analysis, we focus on the period 2020-2021 since the number of cryptos is large and the volume of 
the transaction is also large. It is possible to have an overview of the data related to each cryptos for 2020-2021 
on Table 5.

Results for other fiat. For completeness, in Fig. 9 we show the time correlation matrices obtained by using 
also the other fiat currencies of the dataset. Concerning the stability of the network, we see that results for 
EUR 9b are quite similar to USD 9a. On the other hand, in Figs. 9c and d it can be seen that the matrix of cor-
relation for XBT and ETH has low and often non-significant values, indicating that the network is quite unstable.

crypto firstday

2020 2021

EUR USD GBP CAD AUD CHF DAI JPY USDT USDC XBT ETH DOT EUR USD GBP CAD AUD CHF DAI JPY USDT USDC XBT ETH DOT

OXT 20200602 213 213 213 213 365 365 365 365

OXY 20210928 95 95

PAXG 20191230 368 368 368 368 365 365 365 365

PERP 20210713 172 172

PHA 20211008 85 85

QTUM 20191230 368 368 368 368 365 365 365 365

RARI 20210517 229 229 229 229

RAY 20210928 95 95

REN 20210514 232 232 232 232

REP 20191230 368 368 368 368 365 365 365 365

REPV2 20200804 150 150 150 150 365 365 365 365

SAND 20210520 226 226 226 226

SC 20191230 368 368 368 368 365 365 365 365

SDN 20210902 121 121

SHIB 20211130 32 32

SNX 20200917 106 106 106 106 365 365 345 345 365 365

SOL 20210617 198 198 198 198

SRM 20210617 198 198 198 198

STORJ 20200715 170 170 170 170 365 365 365 365

SUSHI 20210524 222 222 222 222

TBTC 20201125 38 37 37 38 365 365 365 365

TRX 20200305 302 302 302 302 365 365 365 365

UNI 20201015 78 78 78 78 365 365 365 365

USD 20200312 295 295 295 365 365 365

USDC 20200108 359 359 359 365 365 345 345 365

USDT 20191230 368 368 368 368 198 245 244 365 365 365 365 365 365 365

WAVES 20191230 368 368 368 368 365 365 365 365

WBTC 20210825 151 151 129

XBT 20191230 368 368 368 368 198 368 368 368 368 359 365 365 365 365 365 365 365 365 365 365

XDG 20191230 368 368 368 365 365 196 365

XLM 20191230 368 368 368 365 365 345 345 365

XMR 20191230 368 368 368 365 365 365

XRP 20191230 368 368 246 368 198 368 246 368 246 365 365 365 365 365 365 365 365 365

XTZ 20191230 368 368 368 368 365 365 345 345 365 365

YFI 20201015 78 78 78 78 365 365 345 345 365 365

ZEC 20191230 368 368 368 365 365 365

ZRX 20210514 232 232 232 232

Table 4.  Data coverage on 2020 (starting on Monday 30/12/2019) and 2021. Rows are cryptocoins, columns 
correspond to fiat coin used to trade. The crypto column reports the Ticker used to list the cryptocoin on the 
Kraken Exchange. Firstday column show when the cryptopair appear for the first time (on the 2020 or 2021) 
using the format yyymmdd. For each fiat, are shown the number of days available for the crypto-fiat pair in 
2020 and in 2021.
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Data availability
The original dataset can be download from the Kraker  website40. Other mid-computation data can be provided 
on request from the corresponding author, [T.S.]. In Tables 2, 3 and 5 we provide more details on the global 
Kraken dataset used in the analysis.
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