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Artificial neural network‑based 
model to predict the effect 
of γ‑aminobutyric acid 
on salinity and drought 
responsive morphological traits 
in pomegranate
Saeedeh Zarbakhsh & Ali Reza Shahsavar*

Recently, γ‑Aminobutyric acid (GABA) has been introduced as a treatment with high physiological 
activity induction to enhance the ability of plants against drought and salinity stress, which led to 
a decline in plant growth. Since changes in morphological traits to drought and salinity stress are 
influenced by multiple factors, advanced computational analysis has great potential for computing 
nonlinear and multivariate data. In this work, the effect of four input variables including GABA 
concentration, pomegranate cultivars, days of treatment, and drought and salinity stress evaluated 
to predict and modeling of morphological traits using artificial neural network (ANN) models including 
multilayer perceptron (MLP) and radial basis function (RBF). Image processing technique was used 
to measure the LLI, LWI, and LAI parameters. Among the ANNs applied, the MLP algorithm was 
chosen as the best model based on the highest accuracy. Furthermore, to predict and estimate the 
optimal values of input variables for achieving the best morphological parameters, the MLP algorithm 
was linked to a non‑dominated sorting genetic algorithm‑II (NSGA‑II). Based on the results of MLP‑
NSGA‑II, the best values of crown diameter (18.42 cm), plant height (151.82 cm), leaf length index 
(5.67 cm), leaf width index (1.76 cm), and leaf area index (13.82 cm) could be achieved with applying 
10.57 mM GABA on ‘Atabaki’ cultivar under control (non‑stress) condition after 20.8 days. The results 
of modeling and optimization can be helpful to predict the morphological responses to drought and 
salinity conditions.

It is well-concluded that plants are always exposed to several abiotic stresses simultaneously or in sequence under 
field  conditions1,2. Drought and salinity are the most frequent co-occurring abiotic stresses in natural environ-
ments that cause enormous losses in crop productivity  worldwide3. Both drought and salinity stress significantly 
impact on many aspects of plant morphology and physiology including the accumulation of reactive oxygen 
species, the disorderliness in the stomatal conductance, changes in the growth patterns and biomass (morphology 
of leaves and roots), respiration and photosynthesis rate, water uptake and nutrient balance and as well as induce 
the osmotic stress and ion toxicity in  plants4,5. Hence, plant growth, yield, and distribution of plant species are 
remarkably influenced by drought and salinity  stress6,7.

In the last decade, the application of many treatments has been comprehensively investigated to mitigate the 
negative impacts of stressful conditions on plant growth. Besides this, the application of natural products or plant 
growth regulators (PGRs) as bio-stimulants and organic nature has been popularized due to a cost-effective, 
safe, and eco-friendly  way8. γ-Aminobutyric acid (GABA), one of the PGRs with four-carbon non-protein 
amino acid, is well documented as an endogenous plant metabolite or novel signaling molecule that can rapidly 
accumulate in a plant cell under stressful conditions and become involved in physio-biochemical functions for 
surviving the  plants9,10. Therefore, the great majority of studies have pronounced that the exogenous applica-
tion of GABA has a key role to mitigate the undesirable effects of various abiotic stresses in different plants 
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such as prunus (Prunus avium)11,  pepper12 and tea (Camellia sinensis)13. It is important to highlight that a very 
low level of endogenous GABA produces in plants and subsequently, the exogenous treatment of GABA leads 
to an increase in the level of internal GABA under both environmental and normal  conditions10. Activation of 
enzymatic, and non-antioxidant defense system, maintaining the balance of carbon to nitrogen ratio, regulating 
the plant growth and development, involving in the carbohydrate and amino acid metabolism, enhancing the 
morphological growth and function of the photosynthetic machinery, chlorophyll biosynthesis and membrane 
stabilization, osmoregulation, pH change, and glutamate homeostasis are the important candidate-roles by boons 
of exogenous GABA in plant under stressful condition such as drought and  salinity14,15.

Iran has the first rank in the world in terms of production, variety of cultivars, and quality of pomegran-
ate. In recent years, severe droughts, soil salinity, and reduction in groundwater resources in Iran have been 
the most important factors reducing appropriate pomegranate  yield16. Besides this, the leaf area and growth 
of the pomegranate plant as crucial parameters are affected by water and salinity  stress6. Therefore, it is crucial 
to improve the drought and salt tolerance of pomegranate through an economical and effective strategy in the 
large-scale area. Measurement of leaf morphological traits by conventional methods is time-consuming and has 
low accuracy. Also, human error reduces the accuracy of the measurement. Hence, image processing as a novel, 
reliable, simple, high-speed, and cost-effective machine vision method offers greater detailed information from 
the morphological  properties17. Image processing can be a useful method to evaluate and measure leaf morphol-
ogy using indexes derived from RGB (red–green–blue) images to reduce the errors caused by human bias and 
the conventional methods.

Since the effect of different concentrations of GABA, genotypes, salinity and drought stress on plant morphol-
ogy can be considered as a multivariable process; however, finding the association between several morphology 
traits requires dealing with uneven and nonlinear datasets which have been generated from the multivariable 
process. Nowadays, artificial intelligence models such as neural networks and genetic algorithms as advanced 
computational analysis are reliable prediction models for the analysis of large, multi-dimensional, uneven, and 
nonlinear  datasets18. Considering the information processing and decision-making capabilities of artificial neural 
networks (ANNs), this technology is similar to the structure of the human neural network. Statistical ANN has 
been extensively used in different fields of science including plant  sciences19, environmental  sciences20, remote 
 sensing21, and  engineering22. Generalized regression neural network (GRNN), multi-layer perceptron (MLP), 
multi-layer network with radial basis functions (RBF), and probabilistic neural network (PNN) are the different 
types of  ANNs23. One of the advantages of ANN is that it does not require any previous knowledge concerning 
the inter-relationships among input and output  variables24. MLP neural network model as one of the most well-
known neural network algorithms, like other ANNs, is made up of a large number of neurons, each neuron with 
its  weight25. In other words, in the hidden layers, the number of neurons plays a significant role in the MLP’s 
design. RBF, like the MLP, is another kind of statistical ANNs, that has the same functionality as MLP but is effec-
tive for use in more than one dimension. Wherever appropriate characteristics are included, RBF is claimed to be 
successful for predictions that use approximation multivariate  functions18. However, neural network models have 
good learning capabilities, while they cannot interpret  results26. In this regard, optimization techniques can help 
in interpreting the results. In general, there are two categories of optimization techniques including classical and 
evolutionary or metaheuristic  algorithms27. Evolutionary algorithms are the most widely used methods, since 
regardless of the type of problem in terms of being linear or nonlinear quickly converge to the globally optimal 
solution (close to optimal)28. Recently, the Genetic Algorithm (GA) as one of the most well-known evolutionary 
optimization algorithms is widely used for optimizing many important problems. However, as a single objective 
optimization algorithm, it can only find the optimal level of inputs for each target variable separately, not for 
all target variables  simultaneously29. Therefore, non-dominated sorting genetic algorithm-II (NSGA-II) as an 
evolutionary multi-objective optimization algorithm that is useful for finding the dominant responses through 
the Pareto front in a multi-objective function may be preferable. This searching algorithm was introduced by 
Deb et al.30,31 and inspired from natural selection and survival of the fittest. Furthermore, in large datasets, 
ANN-NSGA-II is an efficient tool for predicting and interpreting significant factors that cause an improvement 
of a specific  result32. In other words, the combination of ANNs with NSGA-II is able to reduce computational 
volumes and obtain simultaneously the best combination of inputs to improve a set of optimal responses for a 
specific  problem33. Recently, the efficiency of ANN-NSGA-II as an optimized algorithm for predicting and find-
ing the best morphological traits of citrus species under drought stress has been  demonstrated19. They reported 
that the constructed ANN-NSGA-II as a reliable computational tool had good efficiency in predicting citrus 
morphological responses to drought stress. However, there is a lack of a fundamental study on the effectiveness 
of the ANN-NSGA-II for modeling and optimizing plant morphology against the combination of drought and 
salinity stress.

Although the successful effect of GABA has been reported to protect different plants under different abiotic 
stresses; however, the protective effect of GABA under salinity-drought stress remains unknown. Therefore, the 
aim of the present study was: (i) investigate the role of exogenous GABA on morphological parameters under 
drought, salinity and their combination in two commercial cultivars of pomegranate (Punica granatum cv. Rabab 
and Atabaki), (ii) measuring the leaf dimensions by indexes derived from RGB as an appropriate method, (iii) 
using and comparing two well-known ANNs model including multilayer perceptron (MLP) and radial basis 
function (RBF) for predicting morphological parameters under mentioned conditions and link the best ANN 
model with NSGA-II to achieve optimal morphological parameters by optimal condition.
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Materials and methods
Plant materials and experimental design. Two cultivars of 2-year-old pomegranate (Punica granatum 
cv. ‘Rabab’ and ‘Atabaki’) were obtained from a commercial nursery and immediately transplanted into 10 L 
black plastic pots filled with a mixture of soil + leaf litter (3:2 w/w). Both cultivars were kept in the greenhouse 
(28 ± 1 °C, 60 ± 5% relative humidity, L16:D8 h photoperiod) at the College of Agriculture, Shiraz University, 
Iran. Plants were fertilized once a week using a half-strength Hoagland solution for 4 months until the beginning 
of the experiment. In June 2021, plants were exposed to drought stress (100% and 60% of field capacity (FC), 
salt stress (0 and 60 mM of NaCl), and drought stress plus salt stress (60% FC + 60 mM of NaCl) for 45 days. For 
the GABA treatment, pomegranate leaves were sprayed with (0, 10, 20, and 40 mM) GABA (Sigma Aldrich, St. 
Louis, MO, USA) three times at 15 days intervals and immediately exposed to abiotic stress. This experiment was 
conducted as a completely randomized design (CRD) with a factorial arrangement and 4 replicates.

Morphological evaluations. Growth and morphological characteristics including plant height (PH), 
crown diameter (CD), leaf length index (LLI), leaf width index (LWI), and leaf area index (LAI) were measured 
based on centimeter units before the beginning of stress treatments and after 14 days, 30 days and 45 days from 
the beginning of stress, respectively.

The CD and PH were measured based on manual measurements (Fig. 1a) and the image processing method 
was carried out to collect data of the LLI, LWI, and LAI traits from mature leaves of similar age. Images were 
captured using a smartphone camera (Huawei Y6 Prime 2019 MRD-LX1F with 13-megapixel resolution and 
auto-focus feature). Based on previous studies, smartphone-based imaging is a reliable method for studying the 
morphological traits of  plants32,34. Leaf images were captured from a vertical distance of 14 cm of the samples in 
the lightbox with white background as an image acquisition environment. White-colored LED lamps (2000 Lux) 
were used as a source of light in the lightbox. The dimensions of the lightbox were 20 cm × 33 cm. Image process-
ing-based measurements have been carried out with  MATLAB35 software (MathWorks, Inc., Natick, USA). The 
software-based on image processing, such as ImageJ, Macf-IJ, LAMINA, Lamina2-shape, and MATLAB have been 
proposed to describe plant’s phenotype, and leaf dimensions and classify plant  leaves36–38. However, to measure 
the leaf dimensions, the MATLAB software often provides outperforms and has higher accuracy than the other 
mentioned  software39. The image processing steps were performed as follows: (1) the image segmentation with 
threshold method to segment the leaf from the background and convert the image to grayscale; (2) components 
the split color to red, green, and blue color channels and generate a matrix of pixels from the binary image; (3) 
eliminating noises of binary images and filling holes; (4) recognizing the leaf tip and the petiole of pomegran-
ate; and (5) measuring the image LLI, LWI and LAI (Fig. 1b). Afterward, the LAI was determined based on the 
measurement of white pixels described by  Nguyen40. The LWI (pixels) was acquired based on the number of 
pixels at the widest points of the lamina perpendicular to the midrib and the LLI of the pomegranate (pixels) 
was determined using the two-point distance from the lamina tip to the petiole intersection along the midrib 
based on the formula in Eq. (1).

where D represents the distance between points a and b, ai, bi and aj, bj are the abscissa and the ordinates of 
points a and b, respectively.

The LLI and LWI were calculated based on the method of  Zhang39. Following the obtaining of the LLI, LWI, 
and LAI in pixels, based on the number of white pixels per centimeter, the pixel values were converted to actual 
values. Ultimately, measurements of leaf morphological traits were derived from the ratio of the number of pixels 
on a white background to the actual size. The Pearson correlation between morphological traits was estimated 
using corrplot  package41 in R software version 3.6.1.

ANN modeling analysis. In this study, two of the most commonly-known feed-forward ANNs including 
MLP and RBF were employed to model and predict the morphological traits. Before using ANN modeling, data 
standardization was performed to improve the efficiency of the model and decrease the mean squared error 
(MSE). The datasets were standardized by the z-score normalization technique as follows:

where X ′

i , Xi and X  are standardized values of X , the value of the ith observation data and mean of observed 
values, respectively. σ is the standard deviation.

In the present study, independent variables including the concentration of GABA, days after applying treat-
ments, pomegranate species, and salinity-drought stress were considered as the input layer and CD, PH, LLI, 
LWI, and LAI were considered as targets of the ANN model. Like most ANN methods, the MLP and RBF oper-
ate through training and testing. To analyze the performance of each model, the dataset was randomly shuffled 
and divided into the training subset and test subset. The dividing of datasets plays an important role in the 
performance of ANN. The training and test set was employed to predict the model parameters and to check the 
generalization ability of the model, respectively. There are no generally accepted rules for determining the size 
of training data for proper training; however, the training set is representative of the entire input sample set and 
often requires a substantial amount of all spectra of the input sample  set42. To training and testing the neural 
network, 80% and 20% of data lines were randomly chosen, respectively.

(1)D =

√
(ai − bi)

2 −
(
aj − bj

)2

(2)X
′

i =
Xi − X
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MLP model. The MLP consists of three layers including one input layer, some hidden layers, and one output 
layer. Figure 1c shows an MLP model with one hidden layer. To train the MLP algorithm, a back-propagation 
Bayesian algorithm with bias learning function and momentum weight was used. To find the best topology 
of the MLP algorithm and maximize the accuracy of outputs, various values of hidden layers and neurons in 
each hidden layer should be determined based on trial and error to improve the overall performance of the 
optimally constructed model. Because, a large number of hidden layer neurons complicates the network, and a 
small number of neurons simplifies the network. Therefore, underfitting may happen by too simple a network; 
conversely, too complex a network can lead to  overfitting28–43. Hence, the MLP neural network was established 
based on four layers (an input layer, two hidden layers, and an output layer), and the optimal number of hidden 
layer neurons was considered fourteen and twelve, respectively. Each neuron unit produces an output based 
on a hyperbolic tangent sigmoid function (tansig) and linear function (purelin) from hidden layers and output 
layer,  respectively44. The error between the input and output of the variables is minimized through the following 
formula:

Figure 1.  Schematic diagram of the procedure used in this study (a,b) image processing and morphological 
measurements, (c,d) modeling morphological traits based on four input variables including pomegranate 
cultivars, GABA concentrations, stress treatments and days of treatment using multilayer perceptron (MLP) and 
radial basis functions (RBF), respectively, and (e) the step-by-step optimization process of morphological traits 
via non-dominated sorting genetic algorithm-II (NSGA-II).
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In a three-layer MLP with n inputs and m neurons in the hidden layer ŷ determined as the formula:

where xi , w0 , wj0 , f  , g , wji , and wj represent the ith input variable, the bias related to the neuron of output, the 
bias of the jth the neuron of the hidden layer, the transfer functions for the output layer, the transfer functions 
for the hidden layer, the weight connecting the jth the neuron of the hidden layer and the ith input variable, and 
the weight linking the neuron of output layer and the jth the neuron of the hidden layer.

RBF model. There are only three layers in the RBF: an input layer, a single hidden layer, and an output layer. 
Network structure RBF is shown in Fig. 1d. The input of the transfer function for each neuron in such a network 
is the Euclidean distance between the input and the center of that neuron. The RBF-ANN process works as fol-
lows: First, input data enter into the network (input layer), then, assesses the similarity between the input data 
and the prototype stored therein by hidden layer neurons through the Gaussian radial basis function (transfer 
function) defined in Eq. (5).

where ϕ , xi , ck , σk and �xi − ck� denotes the Gaussian function, the input vector of the neuron in the hidden layer, 
the center and the width of the kth RBF unit and the Euclidean distance norm.

Then, to calculate the RBF output, the outputs of the non-linear Gaussian function are integrated linearly 
using the weighted average method in the output layer by the following equation:

where wji denotes the ith weight between the hidden layer and output layer, and n represents the number of hid-
den nodes. When the similarity between the input and the prototype is high, the RBF neuron’s output is closer 
to 1, and when it’s not, it’s close to 0.

Assessment of statistical model performance. Three statistical models were employed to error esti-
mations and compare the accuracy and performances of ANN models in predicting the target values. The assess-
ment criteria included root mean square error (RMSE), mean bias error (MBE), and coefficient of determination 
 (R2) as follows:

where yi is the value of predicted datasets, n is the number of measured values, ŷi is the mean of measured values 
and y is the mean of measured values.

Sensitivity analysis. To identify which input variables were more important than the other to reach opti-
mal output variables in the model, sensitivity analysis was evaluated by the following criteria:

• The variable sensitivity error (VSE) value indicates the performance of the ANN model if that input variable 
is unavailable.

• The value of variable sensitivity ratio (VSR) value indicates the relative ratio between the error of the ANN 
model and VSE if all input variables are available. Therefore, the more important input variable can be ranked 
based on higher VSR.
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ŷ − �y

�





2

(8)RMSE =

√√√√
(∑n

i=1

(
yi − ŷi
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Optimization of ANN models using NSGA‑II (non‑dominated sorting genetic algo‑
rithm‑II). The trained MLP models were processed as the fitness function using NSGA-II to find the optimal 
input variables to produce the best values of targets. During the optimization process, the roulette wheel selec-
tion method was considered to select an elite population for crossover. Furthermore, to create the next genera-
tion of chromosomes, crossover function, and mutation were applied. Mutation can create random variations in 
chromosomes and reduce the possibility of having similar chromosomes, thus, local minima in the population 
are  decreased28. To achieve the best fitness, 2-point crossover was considered with an 80% possibility, 800 was 
fixed as the number of generations, initial population, and mutation rate was set to 100 and 0.04 respectively 
(Fig. 1e). The optimal values of the mentioned parameters should be estimated by using trial and error. Also, 
the fitness function based on the results of the MLP model was formulated (Eq. 10), to maximize CD, PH, LLI, 
LWI, and LAI traits.

where YCD , YPH , YLLI , YLWI , YLAI are CD, PH, LLI, LWI, and LAI traits, respectively, and c , d , e , f , and g are the 
maximum CD, PH, LLI, LWI, and LAI traits, respectively.

All statistical computational for assessing ANNs algorithm and ANN-NSGA model were conducted by 
 MATLAB35 software.

Statement on guidelines. All experimental procedures on pomegranate plants complied with relevant 
institutional, national, and international guidelines and legislation.

Results
Evaluation of pomegranate phenotypes with or without exogenous application of GABA 
under drought and salt stress. The obtained primary results demonstrated that morphological param-
eters of pomegranate including CD, PH, LLI, LWI, and LAI were influenced by the negative effects of drought 
and salinity stresses and their combination (Table S1). Under the mentioned conditions, the negative effect of 
salinity-drought stress on decreasing the morphological traits was more than of the drought and salinity stress 
alone. It is noticeable that the stress-treated plants were extremely affected by stressful conditions, especially at 
the initiation time of stress treatments (15 days); however, a slight decrease in morphological traits at the mid-
dle and the end of treatment time (30 and 40 days) were observed. Furthermore, the type of cultivar (‘Atabaki’ 
and ‘Rabab’) has a significant effect on resistance to the stressful condition and the ‘Atabaki’ cultivar was a more 
tolerant cultivar under stress treatment.

Noticeably, the growth of both pomegranate plants treated with exogenous GABA was effectively recovered 
under drought and salt stress, also GABA increased the growth traits of plants in non-stressed conditions. In 
stressful conditions, with increasing the concentration of GABA treatment (up to 40 mM), water scarcity exposed 
plants had higher growth traits than salinity alone and drought-salinity exposed plants (Table S1). Moreover, 
the maximum PH was observed through the application of 40 mM of GABA treatment. Similarly, LAI, LLI, 
LWI, and CD were enhanced significantly by increasing the application of GABA treatment in both cultivars 
at all experimental periods (Table S1). The  Pearson’s coefficients of correlation among all the morphological 
traits were quantified. The positive significant correlations were detected between morphological traits in two 
cultivars (Fig. 2a,b). The highest linear correlation in the ‘Atabaki’ cultivar was found between LWI and LAI and 
in the ‘Rabab’ cultivar was obtained between LWI and LLI with values of 0.82 and 0.77. In contrast, the lowest 
correlation was calculated between CD and LLI in ‘Atabaki’ (r = 0.35) and ‘Rabab’ (r = 0.16) cultivars (Fig. 2a,b).

Evaluation of MLP and RBF model. In this study, MLP and RBF models were used to predict pomegran-
ate morphological parameters based on different GABA concentrations during salinity-drought stress. The per-
formances of the MLP and RBF models are presented in Table 1. The accuracy of both models was evaluated by 
MBE and RMSE, and the results show that both models had high accuracy. However, among the two ANN algo-
rithms tested, in most morphological parameters, the maximum value of  R2 and the lowest value of MBE and 
RMSE were obtained in the MLP model. In this regard, in LLI and LWI parameters, although RBF had higher  R2 
values than MLP, the MBE and RMSE values were lower in MLP (Table 1). In both the training and testing pro-
cesses of the model, the high  R2 and the low RMSE and MBE values between the experimental (observed) and 
output (predicted) values represent the good fit correlation and good performance of the model for the investi-
gated parameters. The plots of predicted stress against observed stress in the MLP model are shown in Fig. 3a–j.

Sensitivity analysis of the models. To determine the overall VSR, the importance of each independ-
ent variable was assessed overall 512 data lines (training and testing). The results of sensitivity analysis for the 
model output variables (PH, CD, LLI, LWI, and LAI) with respect to input variables are summarized in Table 2. 
According to sensitivity analysis, a higher VSR value represents the more important input variable. Hence, using 
VSR values, the input variables can be ranked in terms of their importance of effect on outputs. Sensitivity 
analysis indicated that CD, PH, LWI, and LAI were more sensitive to pomegranate cultivars followed by GABA 
concentrations, drought and salinity stress, and days of treatment, respectively (Table 2). Moreover, LLI was 
more sensitive to pomegranate cultivars followed by GABA concentrations, days of treatment, and drought and 
salinity stress (Table 2). Therefore, plant cultivar was the important factor that can affect morphological traits.

(10)F =

√
(YCD − c)2 + (YPH − d)2 + (YLL − e)2 +

(
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Optimization of the MLP model via NSGA‑II algorithm. NSGA-II as a multi-objective optimization 
algorithm was linked to the MLP (the best model of this study based on accuracy) to predict and estimate the 
optimal values of the GABA concentrations, pomegranate cultivars, drought and salinity stress, and days of 
treatment to find the best morphological traits. The results of optimizations via MLP-NSGA-II are shown in 
Table 3. The MLP-NSGA-II analysis showed that treatment with 10.57 mM of GABA on the ‘Atabaki’ cultivar 
under control (non-stress) conditions after 20.80 days can be achieved optimal values of 18.42 cm, 151.82 cm, 
5.67 cm, 1.76 cm, and 13.82 cm, respectively, for CD, PH, LLI, LWI and LAI (Table 3).

Discussion
Morphological traits are the most important indicators that can be influenced by drought and salinity stress. The 
mentioned stresses reduce leaf growth and leaf water potential, induce the leaf stomatal closure, and then limit 
the rate of photosynthesis per unit leaf  area6–45. Likewise, they greatly suppress cell division and growth due to 
the low turgor pressure. Also, the smaller leaves, decrease in plant height with a decline in the cell enlargement, 
reduction in diameter of the main stem, and a smaller root system are the negative consequences of drought 
and  salinity6–46. The main objective of the current study is to investigate the effect of exogenous GABA for pre-
dicting the morphological traits of pomegranate plants (e.g., CD, PH, LLI, LWI, and LAI) under drought and 
salinity stress. To assessment of the pomegranate leaf dimensions (LLI, LWI, and LAI), image processing as an 
automatic method was used. The application of image processing as a fast and accurate method for measuring 
the morphological traits of the plant, especially in the measurement of leaf dimensions that cannot be measured 

Figure 2.  Pearson correlation analysis of morphological traits of (a) ‘Atabaki’ and (b) ‘Rabab’ in response to 
exogenous GABA application and drought and salinity stress. PH plant height, CD crown diameter, LLI leaf 
length index, LWI leaf width index, LAI leaf area index.
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via conventional measurement methods, such as area, length and width has been previously reported in several 
studies  methods17,36–39,43. In order to application of GABA treatment to suppress the drought and salinity stress, 
the approach of a machine vision method can be the best option to manage stresses in large-scale areas as well 
as to detect the changes in morphological plant responses over time. This approach clearly showed that the 
stress treatments reduced leaf parameters. In the current study, the primary result elucidated that drought and 
salinity had adverse effects on morphological traits in pomegranate. But it was observed that the negative effect 
of drought and salinity on PH, CD, and leaf parameters was mitigated when exogenous GABA was applied to 
pomegranate plants. Also, in control (non-stress) conditions, the GABA-treated pomegranate plants in com-
parison with untreated plants demonstrated higher plant growth parameters. The growth parameters improve-
ment by GABA application during stress could be due to stimulation of cell elongation and division, and/or 
maintenance of metabolic balance in plant tissues. Similarly, improving the morphological features by GABA 
application has been observed in several plant crops under abiotic stresses such as maize (Zea mays)47, Vicia 
faba15, Phaseolus vulgaris48, and sunflower (Helianthus annuus L.)49. For instance, Abdel Razik et al.49 reported 
that the effect of exogenous GABA under drought and heat stress lead to improve growth parameters such as 
plant height in sunflower.

In most cases, classical statistical methods have been commonly used to analyze morphological traits under 
stressful  conditions15–48. The classical statistical analyses (e.g., ANOVA, regression, t-tests, and correlation analy-
sis) are scheduled for small datasets and linear  datasets18–50. Since the morphological parameters of pomegranate 
are multivariable processes and are affected by different factors; however, classical statistics cannot be the best 
option. On the other hand, the complex and multi-factorial nature of biological studies makes these studies dif-
ficult to interpret. Powerful computational tools can help biological researchers to improve the efficiency of their 
techniques and to use better tools in complex biological processes. ANNs, Partial least squares regression (PLSR), 
random forest (RF), and support vector machines (SVM) using complex mathematical functions have a high 
potential to analyze non-deterministic, nonparametric, and nonlinear datasets of plant  studies28–50. Among these, 
the ANN technique has sufficient efficiency for both qualitative and quantitative analysis in pattern recognition 
in the appearance of complication conditions, when the analysis is frequently subjected to many of the noisy and 
imprecise input  patterns51. Thus, to discover the relationship among the input patterns and their targets, ANN 
can vie with biological  neurons51,52. Modeling and predicting biological studies such as the effects of abiotic and 
biotic stresses in plants through ANNs can be recognized as the influencing factors. Hence, we compared the 
prediction accuracy of MLP and RBF on morphological changes in the presence of exogenous GABA treatment 
and drought and salinity stress. Based on the results of this study, the MLP model has outperformed the RBF 
model, and the statistical error indices were within an acceptable range. The efficiency of MLP to predict the 
multi-factorial and unpredictable plant science datasets has been proved in several  studies17–24,50–53. In order 
to find the best morphological traits, attaining the optimization of experimental variables is very important. 
Therefore, after diagnosing the MLP model as the best model based on the highest accuracy, the NSGA-II 
algorithm was linked to the MLP. The results of MLP-NSGA-II showed the predicted optimal input variables 
included 10.57 mM of GABA treatment on the ‘Atabaki’ cultivar under control (non-stress) conditions after 
20.80 days to maximize morphological traits. The result of the MLP-NSGA-II algorithm was confirmed with the 
sensitivity analysis ranking, as the ‘Atabaki’ cultivar was the most important cultivar for morphological traits. 
In other words, the ‘Atabaki’ cultivar was more resistant to drought and salinity stress than the ‘Rabab’ cultivar. 
The results of this research demonstrated that the applied methodology is an efficient approach for estimating 
the effect of GABA concentrations and drought and salinity stress on the morphological traits in pomegranate. 
Although there is one investigation that exists for use of comparative analysis of ML algorithms and optimiza-
tion algorithms in the field of plant morphophysiological responses to  stress19, several other studies have previ-
ously reported the successful use of the NSGA-II algorithm for predicting optimized solutions in plant tissue 

Table 1.  Comparison statistics of multilayer perceptron (MLP) and radial basis function (RBF) for various 
morphological traits of pomegranate. PH plant height, CD crown diameter, LLI leaf length index, LWI leaf 
width index, LAI leaf area index, R2 coefficient of determination, RMSE root mean square error, MBE mean 
bias error.

Model Subset Criterion CD PH LLI LWI LAI

MLP

Training

R2 0.88 0.95 0.76 0.79 0.97

RMSE 0.46 2.1 0.30 0.11 0.47

MBE − 2.77 − 0.0001 − 6.33 0.0001 − 5.57

Testing

R2 0.76 0.89 0.83 0.8 0.96

RMSE 0.66 3.04 0.35 0.13 0.5

MBE − 0.02 − 0.34 − 0.04 0.0003 0.006

RBF

Training

R2 0.71 0.83 0.84 0.83 0.87

RMSE 0.7 3.82 0.31 0.11 0.98

MBE − 8.99 0.0002 − 1.9 8.83 0.0001

Testing

R2 0.74 0.86 0.74 0.84 0.85

RMSE 0.8 4.16 0.38 0.13 1.08

MBE 0.22 0.3 0.0001 0.01 0.07
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Figure 3.  The scatter plot of observed values vs. predicted values of (a,b) crown diameter (Training) and 
(Testing), (c,d) plant height (Training) and (Testing), (e,f) leaf length index (Training) and (Testing), (g,h) 
leaf width index (Training) and (Testing), (i,j) leaf area index (Training) and (Testing) obtained by multilayer 
perceptron (MLP) model.
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 culture54 and remote  sensing55. In line with our findings, Jafari and  Shahsavar19 reported that ANN-NSGA-II 
had good performance in modeling and optimizing morphological responses to drought stress in citrus plants. 
According to the author’s knowledge, this was the first time that ANN-NSGA-II was applied for modeling and 
optimization of pomegranate morphological traits under drought and salinity stress. The results of the advanced 
computational tool in this study can open a new window about the effect of exogenous GABA under drought 
and salinity stress in different plants.

Conclusion
This study was conducted with the aim of predicting and understanding the specific effect of GABA treatment 
and drought and salinity stress on pomegranate morphological traits by providing the two most well-known 
predictive models including MLP and RBF, for the first time. The results of comparison ANN models demon-
strated that MLP was more prediction accuracy than RBF. The MLP model was introduced with the NSGA-II 
algorithm to achieve the optimal morphological traits by the optimal input variables. The following conclusions 
have been obtained based on the results of the current study:

• Drought and salt stress, especially the combination of two stresses had negative impacts on morphological 
traits in pomegranate cultivars.

• The results obtained from the current study confirm the beneficial effects of exogenous GABA on morphologi-
cal traits in response to drought, salinity, and as well as non-stress conditions. Therefore, the use of GABA 
seems to be a promising method to reduce the adverse effects of drought stress.

• Based on the result of sensitivity analysis, the pomegranate cultivar was a very important parameter in 
comparison with other parameters that affect on morphological responses. Hence, the ‘Atabaki’ cultivar was 
introduced as a stress-resistant cultivar.

• MLP-NSGA-II was an efficacious algorithm to predict simultaneously the best morphological responses to 
multivariable parameters studied.

• This utilized advanced ML modeling techniques can be applied as an alternative approach to traditional sta-
tistics for optimization and predictions of morphophysiological responses of different plants against stressful 
conditions in future studies.

Data availability
The authors confirm that the datasets analyzed during the current study are available from the corresponding 
author on request.

Received: 31 January 2022; Accepted: 22 September 2022

Table 2.  The sensitivity analysis to rank the importance of each input for (PH) plant height, (CD) crown 
diameter, (LLI) leaf length index, (LWI) leaf width index and (LAI) leaf area index of pomegranate. VSE 
variable sensitivity error, VSR variable sensitivity ratio.

Output Item Pomegranate cultivars Different stresses GABA concentrations Days of treatment

CD
VSR 1.44 1.74 1.62 2.2

Rank 1 3 2 4

PH
VSR 1.69 2.47 2.19 3.65

Rank 1 3 2 4

LLI
VSR 1.11 1.57 1.37 1.56

Rank 1 4 2 3

LWI
VSR 1.11 1.39 1.33 1.85

Rank 1 3 2 4

LAI
VSR 2.74 3.9 3.23 4.56

Rank 1 3 2 4

Table 3.  Optimizing the concentration of GABA, days of treatment, pomegranate cultivars and salinity-
drought stress according to the MLP-NSGA-II for obtaining the best pomegranate morphological traits. PH 
plant height, CD crown diameter, LLI leaf length index, LWI leaf width index, LAI leaf area index.

Input variables

Pomegranate cultivars Different stresses GABA concentrations Days of treatment Predicted CD Predicted PH Predicted LLI Predicted LWI Predicted LAI

Atabaki Control 10.57 20.8 18.42 151.82 5.67 1.76 13.82
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