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Identidication of novel biomarkers 
in non‑small cell lung cancer using 
machine learning
Fangwei Wang1, Qisheng Su2 & Chaoqian Li1*

Lung cancer is one of the leading causes of cancer‑related deaths worldwide, and non‑small cell 
lung cancer (NSCLC) accounts for a large proportion of lung cancer cases, with few diagnostic and 
therapeutic targets currently available for NSCLC. This study aimed to identify specific biomarkers 
for NSCLC. We obtained three gene‑expression profiles from the Gene Expression Omnibus database 
(GSE18842, GSE21933, and GSE32863) and screened for differentially expressed genes (DEGs) 
between NSCLC and normal lung tissue. Enrichment analyses were performed using Gene Ontology, 
Disease Ontology, and the Kyoto Encyclopedia of Genes and Genomes. Machine learning methods 
were used to identify the optimal diagnostic biomarkers for NSCLC using least absolute shrinkage 
and selection operator logistic regression, and support vector machine recursive feature elimination. 
CIBERSORT was used to assess immune cell infiltration in NSCLC and the correlation between 
biomarkers and immune cells. Finally, using western blot, small interfering RNA, Cholecystokinin‑8, 
and transwell assays, the biological functions of biomarkers with high predictive value were validated. 
A total of 371 DEGs (165 up‑regulated genes and 206 down‑regulated genes) were identified, and 
enrichment analysis revealed that these DEGs might be linked to the development and progression 
of NSCLC. ABCA8, ADAMTS8, ASPA, CEP55, FHL1, PYCR1, RAMP3, and TPX2 genes were identified 
as novel diagnostic biomarkers for NSCLC. Monocytes were the most visible activated immune cells 
in NSCLC. The knockdown of the TPX2 gene, a biomarker with a high predictive value, inhibited A549 
cell proliferation and migration. This study identified eight potential diagnostic biomarkers for NSCLC. 
Further, the TPX2 gene may be a therapeutic target for NSCLC.

Non-small cell lung cancer (NSCLC), a subtype of lung cancer, is one of the most prevalent malignancies world-
wide. According to studies, the prognosis for NSCLC is highly dependent on the stage of disease progression, and 
the earlier the disease is detected, the better the chances of survival within 5  years1. Patients with early-stage lung 
cancer often have no obvious symptoms and thus miss the best time for treatment. Moreover, metastasis is the 
most devastating feature of the tumor, ultimately leading to a high mortality  rate2. Although some advances in 
lung cancer treatment and pharmaceutical research have been made, serious complications such as anemia and 
neutropenia persist, and recurrence rates and mortality in NSCLC patients are still not effectively  controlled3. 
Therefore, there is an urgent need to identify reliable biomarkers in the diagnosis and prognosis of NSCLC.

With the significant advancement of microarray and sequencing technology in recent years, gene characteri-
zation based on messenger RNA expression levels has shown great promise in diagnosing cancer. For instance, 
the breast cancer susceptibility protein-1 (BRCA1) gene has been considered a predictor in breast cancer risk 
models. It is used as a clinical genetic test standard, while the tumor germination (Bd) gene is also considered 
a prognostic biomarker and has an independent prognostic value for disease-free survival (DFS) and overall 
survival (OS) in colon  cancer4.

It has previously been reported that bioinformatics methods are used to analyze comprehensive gene expres-
sion data to obtain cancer-related biomarkers for effective prevention, diagnosis, and treatment of cancer. 
Machine learning (ML) methods are a branch of bioinformatics applied to various aspects of cancer research 
and are a hot topic in lung cancer research. For example, ML methods successfully developed and validated a 
predictive model for cancer-related deep vein  thrombosis5. Lai et al. used ML methods to create gene signatures 
that accurately predicted prostate cancer  prognosis6. Zheng et al. developed an integrated radiomic model using 
the ML method to predict the prognosis of prostate cancer  patients7. ML methods have also been used to screen 
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for potential biomarkers of prostate cancer and  osteosarcoma8,9. Support vector machines (SVM), a linear clas-
sifier with maximum intervals defined in the feature space, have gradually been applied to machine learning of 
cancer using its efficient two-class model to classify cancer with high accuracy from a large number of genomes 
and efficiently extract key genes to achieve high-accuracy, low-error sample classification. In recent years, many 
researchers have used SVM methods to study cancer and have made significant advances. For example, Luo et al. 
used SVM methods to construct predictive models for synchronous lung metastases (SLM) in  osteosarcoma10. Su 
et al. identified eight genes associated with colon cancer prognosis using the SVM  method11. Cai et al. used SVM 
methods to construct radiomics-based models for diagnosing lung adenocarcinoma (LUAD)12. SVM methods 
also differentiated between epithelial ovarian cancer (EOC) and surrounding tissues, aiding EOC  diagnosis13. In 
addition, the SVM methods successfully screened colorectal biomarkers for personalized treatment of patients 
with post-operative liver  metastases14. However, there have been few studies on potential NSCLC biomarkers.

In this study, we obtained differentially expressed genes (DEGs) for NSCLC from the Gene Expression Omni-
bus (GEO) database. We used functional enrichment analysis to identify NSCLC-related biomarkers using an 
ML approach, followed by infiltrative immune cell analysis and in vitro validation of the biomarkers’ functions. 
Our findings may be useful in the early diagnosis of NSCLC and the mechanistic study of NSCLC.

Materials and methods
Data processing and DEGs screening. We obtained three microarray datasets (GSE18842, GSE32863, 
and GSE21933) from the Gene Expression Omnibus (GEO) public databases, and the organism parameter was 
set to “Homo sapiens”. The raw data from these datasets were processed using R language statistical software 
(version 4.1.2)15. Using the R ‘Limma’  package16, we identified DEGs between normal lung and NSCLC tissues, 
with an adjusted P-value < 0.05 and |logFC|≥ 2 as statistical significance. Heatmaps and volcano plots were plot-
ted to show the differential expression of DEGs.

Functional and pathways enrichment analysis. Gene Ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG)17–19, and Disease Ontology (DO) enrichment analyses of DEGs were performed using 
the R ‘clusterProfiler’  package20 and visualized using the R ‘ggplot2’  package21 with GO functional annotation, 
including biological process, cellular component, and molecular function terms. The R ‘clusterProfiler’ and R 
‘org.Hs.eg.db’  packages22 were used to enrich DEGs using gene set enrichment analysis (GSEA). A result with an 
adjusted P-value < 0.05 and a false discovery rate < 0.05 was considered statistically different.

ML methods to identify NSCLC biomarkers. For biomarker screening, two ML methods were used: 
least absolute shrinkage and selection operator (LASSO) logistic  regression23 and support vector machine-
recursive feature elimination (SVM-RFE)24. The algorithm LASSO used the R ‘glmnet’  package25, while the 
SVM-RFE algorithm used the R ‘e1071’  package26. The following are the model settings: LASSOcvfit = cv.glmnet 
(x,y,family = ‘binomial,” alpha = 1, type.measure = ‘deviance,’ nfolds = 10). SVM = rfeControl (functions = caret-
Funcs, method = “cv,” methods = “svmRadial”). The point with the lowest cross-validation in the vertical axis 
corresponds to the biomarker genes to be found; a difference of P < 0.05 was considered statistically significant.

Validation of biomarkers. The R ‘ggpubr’  package27 was used to examine the biomarker expression in 
GSE32864. In addition, the biomarkers’ diagnostic efficiency was validated using receiver operating characteris-
tic (ROC) curves generated with the R ‘pROC’  package28; P < 0.05 was considered statistically significant.

Assessment and correlation analysis of infiltrating immune cells. The CIBERSORT  algorithm29 
was used to analyze the relationship between infiltrating immune cells and biomarkers; a correlation heatmap 
was produced using the R ‘corrplot’  package30 to detect the association of each immune cell with the other cells 
in the LUAD sample; the violin map using the R “ggplot2” package showed differences in the expression of 22 
immune cells. A Spearman correlation analysis was performed between diagnostic biomarkers and infiltrating 
immune cells using the R “ggstatsplot” package.

Survival analysis. The GEIPA online website (http:// gepia. cancer- pku. cn/) is a dataset based on The Cancer 
Genome Atlas and Genotype-Tissue Expression that provides a fast and customizable web-based tool. A sum-
mary of the process is as follows: click on “survival plots” and enter the gene name, then select “LUAD,” “OS,” 
and “RFS,” and finally observe the P-value and output the graph; P < 0.05 was considered statistically significant.

Cell culture and cell transfection. A549 cells were purchased from the ATCC (Shanghai, China). A549 
cells were cultured in Dulbecco’s modified Eagle medium (Thermo Fisher Scientific, USA) containing 10% 
serum (Thermo Fisher Scientific, Wilmington, DE, USA). For si-RNA transfection, A549 cells were transfected 
with si-TPX2 using the Lipofectamine 2000 transfection reagent (Invitrogen, Waltham, MA, USA) according 
to the manufacturer’s instructions. To target TPX2, the following si-RNA sequences were used: AGC CTC AGA 
AGA TCT CTT AG (si-TPX2).

Western blotting. The total protein concentration extracted with lysis buffer containing protease inhibitors 
was measured using the bicinchoninic acid (BCA) protein assay kit (Beyotime Biotechnology Inc., Shanghai, 
China), and proteins were separated using a polyvinylidene fluoride membrane (Millipore, Billerica, MA, USA). 
Proteins were separated on 10% skim sodium dodecyl sulfate–polyacrylamide gel electrophoresis, blocked 
with 20% skim milk and incubated with primary antibody overnight at 4 °C. Western blotting was performed 
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using an enhanced chemiluminescence detection reagent (Beyotime Biotechnology Inc., Shanghai, China.) and 
according to the manufacturer’s protocol. P < 0.05 was considered statistically significant.

Statistical analysis. All statistical analyses were performed using the SPSS version 21.0 software pack-
age (SPSS, Chicago, Il, USA). The data are expressed as mean ± standard deviation. Categorical variables were 
analyzed using the χ2 or Fisher’s exact test. For paired samples, continuous variables were analyzed using the 
student’s t-test, and differences between groups were analyzed using an analysis of variance calculation. When 
the basic assumptions of the student’s t-test were not satisfied, the Wilcoxon–Mann–Whitney test was used. 
P-value < 0.05 was considered to indicate a statistically significant difference.

Results
Identification of DEGs. To analyze the diagnostic genes of NSCLC, we designed a flowchart (Fig. 1). Using 
the ‘Limma’ package in the R language, 371 DEGs, including 165 up-regulated genes and 206 down-regulated 
genes, were screened in NSCLC and normal lung tissue samples of GSE18842, GSE32864, and GSE21933 accord-
ing to the criteria (adjusted P-value < 0.05 and |logFC|≥ 1). The results were expressed in the heatmap (Fig. 2a) 
and a volcano plot (Fig. 2b).

Functional enrichment analyses of the DEGs. We investigated the possible biological functions of 
these 371 DEGs using the GO, KEGG, DO, and GSEA functional enrichment analyses. The GO analysis revealed 
that DEGs were primarily enriched in nuclear division and extracellular matrix organization, implying a link 
between tumor cell division and distant tumor metastasis (Fig. 3a). According to KEGG pathway analysis, the 
IL-17 signaling pathway, cell cycle, complement and coagulation cascades, and malaria were four significantly 

Figure 1.  a flowchart of the entire analysis process to the manuscript.
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Figure 2.  Identification of DEGs. (a) Heatmap of DEGs. (b) Volcano diagram of DEGs, red indicates 
up-regulated, blue indicates down-regulated.

Figure 3.  Functional enrichment analysis of DEGs. The P value represents the colour depth of the node. The 
size of the node implies the number of DEGs. (a) GO functional enrichment analysis results for DEGs, including 
Biological process(BP), molecular function(MF) and cellular component(CC). (b) KEEG enrichment analysis 
reveals signalling pathways highly relevant to NSCLC. (c) DO functional enrichment analysis results of DEGs. 
(d) GSEA shows the top six signalling pathways most associated with normal lung tissue. (e) GSEA shows the 
top six signalling pathways most associated with NSCLC.
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enriched pathways (Fig. 3b). The DO analysis revealed that these DEGs were remarkably enriched in lung dis-
ease, NSCLC, and integumentary system disease (Fig. 3c). Finally, the GSEA analysis revealed that in lung cancer 
tissue, complement and coagulation cascades, cytokine-cytokine receptor interactions, hematopoietic cell line-
age, leukocyte transendothelial migration, lysosome, and natural killer cell-mediated cytotoxicity were highly 
active (Fig. 3d), whereas base excision repair, cell cycle, DNA replication, mismatch repair, p53 signaling path-
way, and pyrimidine metabolism were highly active in normal nasopharyngeal tissue (Fig. 3e). All these findings 
indicate that these DEGs may be critical in NSCLC.

Screening for NSCLC biomarkers and validation. The LASSO logistic algorithm was used in this 
study to identify, 26 characteristic genes (Fig. 4a), while the SVM-RFE method was used to identify 40 charac-
teristic genes (Fig. 4b). Eight biomarker genes were obtained as a result of the intersection, ABCA8, ADAMTS8, 
ASPA, CEP55, FHL1, PYCR1, RAMP3, and TPX2 genes (Fig. 4c). To further validate their potential as diagnostic 
biomarkers for NSCLC, we examined their expression in the GSE32863 dataset (Fig. 5), which revealed that 
ABCA8, ADAMTS8, ASPA, FHL1, and RAMP3 genes were down-regulated in NSCLC while CEP55, PYCR1, and 
TPX2 genes were up-regulated. The accuracy of these eight biomarkers in distinguishing NSCLC from normal 
individuals was evaluated using a receiver operating characteristic (ROC) analysis, and all eight biomarkers 
demonstrated high sensitivity and specificity. (The areas under the ROC curves (AUCs) = 0.999 in GSE18842 
and GSE 21993 and 0.910 in GSE32863 for the ABCA8 gene; AUCs = 0.998 in GSE18842 and GSE21993 and 
0.930 in GSE32863 for the ADAMTS8 gene, AUCs = 0.996 in GSE18842 and GSE 21993 and 0.941 in GSE32863 
for the ASPA gene, AUCs = 0.998 in GSE18842 and GSE21993 and 0.904 in GSE32863 for the CEP55 gene, 
AUCs = 0.998 in GSE18842 and GSE21993 and 0.945 in GSE32863 for the FHL1 gene, AUCs = 0.998 in GSE18842 
and GSE21993 and 0.921 in GSE32863 for the PYCR1 gene, AUCs = 0.993 in GSE18842 and GSE21993 and 0.936 
in GSE32863 for the RAMP3 gene, AUCs = 0.998 in GSE18842 and GSE21993 and 0.895 in GSE32863 for the 
TPX2 gene. All P < 0.05) (Figs. 6 and 7).

Figure 4.  Machine learning approach to screen for NSCLC-related biomarkers. The point corresponding to 
the smallest vertical coordinate is the characteristic genes. (a) Results of screening biomarkers based on LASSO 
algorithm. (b) Screening results for biomarkers based on the SVM-RFE algorithm. (c) The Venn diagram shows 
the results of the intersection of the LASSO algorithm and the SVM-RFE algorithm, with the intersection 
resulting in eight biomarkers.
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Assessment of immune cell infiltration. A comprehensive and dynamic understanding of the immune 
microenvironment is essential to develop effective therapeutic strategies. Therefore, in this study, we investigated 
immune cell infiltration in NSCLC and the relationship between biomarkers and infiltrating immune cells. First, 
we found significant differences in the composition of the 22 infiltrating immune cell types in each tissue sample 
(Fig. 8a). The correlation matrix showed the strongest positive correlation between eosinophils and monocytes 
and the strongest negative correlation between macrophage M0 cells and monocytes (Fig. 8b). Monocytes and 
eosinophils were the most down-regulated cells in NSCLC, while plasma cells and macrophage M0 were the 
most up-regulated, and activation of neutrophils, macrophage M1, and NK cells was low (Fig. 8c). Figure 8 
depicts the relationship between the expression of eight biomarkers and the infiltration of immune cells. Mono-
cytes, eosinophils, NK cells activated, neutrophils, mast cells resting, and T cells CD4 memory resting were posi-
tively correlated with with the ABCA8 gene expression, whereas plasma cells, macrophages M0, Follicular helper 
T (Tfh) cells, and macrophages M1 were negatively correlated (Fig. 9). The ADAMTS8 expression levels were 

Figure 5.  Expression of eight biomarkers in the validation group (GSE32863). (a) ABCA8. (b) ADAMTS8. 
(c) ASPA. (d) CEP55. (e) FHL1. (f) PYCR1. (g) RAMP3. (h) TPX2. P < 0.05 means difference is statistically 
significant.

Figure 6.  ROC curves for eight biomarkers in the training dataset(GSE18842 and GSE21933). (a) ABCA8. (b) 
ADAMTS8. (c) ASPA. (d) CEP55. (e) FHL1. (f) PYCR1. (g) RAMP3. (h) TPX2.
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negatively correlated with macrophages M1 T cells follicular helper, macrophages M0, and plasma cells, and 
positively correlated with monocytes, eosinophils, NK cells activated, neutrophils, T cells CD8, and T cells CD4 
memory resting. The with the APSA gene expression levels expression levels were negatively correlated with T 
cells follicular helper, macrophages M0, and plasma cells and positively correlated with monocytes, eosinophils, 
neutrophils, mast cells resting, and NK cells activated. With The CEP55 gene expression levels expression levels 
were positively correlated with plasma cells, macrophages M0, macrophages M1, and T cells follicular helper 
and negatively correlated with T cells CD8, NK cells activated, mast cells resting, neutrophils, eosinophils, and 
monocytes. With The FHL1 gene expression levels expression levels were positively correlated with monocytes, 
eosinophils, NK cells activated, neutrophils, T cells CD4 memory resting, mast cells resting, and T cells CD8 
and negatively correlated with T cells gamma delta, T cells regulatory, T cells CD4 memory activated, T cells 
follicular helper, macrophages M0, and plasma cells. With the PYCR1 gene expression levels were positively 
correlated with plasma cells, macrophages M0, T cells regulatory, T cells follicular helper, and macrophages M1 
and negatively correlated with mast cells resting, T cells CD4 memory resting, NK cells activated, neutrophils, 
eosinophils, and monocytes. With The RAMP3 gene expression levels were positively correlated with mono-
cytes, eosinophils, mast cells resting, T cells CD8, NK cells activated, and neutrophils, and negatively correlated 
with T cells follicular helper, macrophages M0, and plasma cells. The TPX2 expression levels were positively 
correlated with plasma cells, macrophages M0, macrophages M1, T cells follicular helper, and B cells naive 
and negatively correlated with T cells CD4 memory resting, NK cells activated, mast cells resting, neutrophils, 
eosinophils, and monocytes (P < 0.01).

Survival analysis. To determine the potential prognostic value of these eight biomarkers, we investigated 
the relationship between each biomarker’s expression and OS and DFS in NSCLC. The findings revealed that 
ABCA8 and FHL1 genes were associated with longer OS in lung cancer patients (P < 0.05), whereas TPX2 and 
CEP55 genes were associated with shorter OS (P < 0.05) (Figs. 10a–d), and other biomarkers were not signifi-
cantly associated with OS (P > 0.05). Notably, only the TPX2 gene was associated with poor DFS (Fig.  10e), 
suggesting that the TPX2 gene may have a potential prognostic value in NSCLC, which we investigated further.

Knockdown of the TPX2 gene inhibited the proliferation and migration of A549 cells. To 
investigate the potential role of the TPX2 gene in NSCLC, we used a western blot to compare the expression 
of TPX2 in A549 cells and BEAS-2B cells. We found that A549 cells had higher levels of TPX2 protein expres-
sion than BEAS-2B cells (P < 0.05) (Fig. 11a, b). Furthermore, we inhibited TPX2 expression by transfecting 
si-RNA-targeted TPX2 into A549 cells. The results of western blot analysis revealed that the levels of TPX2 
proteins were significantly lower in A549 cells after transfection with si-TPX2 compared to si-control (P < 0.05) 
(Fig. 11c, d), indicating that the transfection was complete and ready for the next step of the experiment. The 
CCK8 proliferation assays confirmed that the TPX2 gene knockdown significantly inhibited A549 cell prolifera-
tion (P < 0.05) (Fig. 12). Moreover, the results of the transwell migration assay revealed that the relative number 
ratios of migrating cells were significantly lower in the TPX2 gene knockdown cells compared to si-control cells 
(P < 0.05) (Fig. 13), indicating that the TPX2 gene knockdown resulted in A549 cell migration ability. Therefore, 

Figure 7.  ROC curves for eight biomarkers in the validation dataset (GSE32863). (a) ABCA8. (b) ADAMTS8. 
(c) ASPA. (d) CEP55. (e) FHL1. (f) PYCR1. (g) RAMP3. (h) TPX2.
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Figure 8.  Correlation analysis among immune cells and Differential analysis of immune cells. (a) The 22 
immune cell populations in normal lung tissue and NSCLC. ‘con’ represents normal lung tissue, ‘treat’ represents 
NSCLC. The vertical coordinate represents the amount of immune cells. (b) Correlation heatmap Indicates the 
correlation analysis of immune cells. The redder of the point, the stronger the positive correlation, the reddest 
point represents the two immune cells with the most significant positive correlation. The bluer the colour of the 
point, the stronger the negative correlation, the two immune cells with the most significant negative correlation 
correspond to the bluest points. (c) The vioplot showed the difference in 22 immune cells between normal lung 
tissue and NSCLC. ‘con’ represents normal lung tissue, ‘treat’ represents NSCLC. P < 0.05 means difference is 
statistically significant.
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Figure 9.  Correlation analysis between eight biomarkers and immune cells. Colours represent P-values, P < 0.05 
means significant correlation and is indicated in red, the size of the circle represents the absolute value of the 
correlation coefficient. (a) ABCA8. (b) ADAMTS8. (c) ASPA. (d) CEP55. (e) FHL1. (f) PYCR1. (g) RAMP3. (h) 
TPX2.

Figure 10.  Survival analysis of eight biomarkers in GEPIA website. (a–d) Overall survival analysis of FLHI, 
ABCA8, CEP55, TPX2. (e) Disease Free survival analysis of TPX2. P < 0.05 means difference is statistically 
significant.
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we speculated that the TPX2 gene might act as an oncogene, promoting NSCLC progression. However, this 
conclusion needs to be verified via in vivo experiments.

Discussion
NSCLC is well known for being asymptomatic and can only be detected at an early stage through physical 
 examination1. As the tumor grows, develops, and spreads, serious symptoms emerge, including chest pain, breath-
ing difficulties, liver metastases, and a slew of seriously life-threatening symptoms. Given the lack of obvious 
symptoms in the early stages of NSCLC, which makes diagnosis difficult, “early diagnosis and early treatment” 
has become the treatment consensus for  NSCLC31. With the advancement of bioinformatics, effective analysis 
and exploration of cancer genes to find tumor biomarkers have become a hot topic for early cancer diagnosis 
expression profiles and treatment, For example, chen et al. have used new computational models in the field of 
miRNA to make great contributions to the pathogenesis of diseases and new drug development. For example, 
through the construction of Neighborhood Constraint Matrix Completion for MiRNA-Disease Association pre-
diction (NCMCMDA), deep-belief network for miRNA-disease association prediction (DBNMDA), Ensemble 
of Decision Tree based MiRNA-Disease Association prediction (EDTMDA) models to accurately predict the 
potential relationship between miRNA-disease and in breast neoplasms, lung neoplasms, esophageal neoplasms 

Figure 11.  (a, b) Western blot method to detect TPX2 protein expression in normal alveolar epithelial cells 
BEAS-2B and non-small cell lung cancer cells A549. (c, d) Western blot method to detect si-TPX2 transfection 
efficiency. ‘*’represents P < 0.05.

Figure 12.  CCK8 method to detect the proliferative ability of the si-NC and si-TPX2 groups. Silencing of TPX2 
inhibited the proliferative capacity of A549 cells. ‘*’ represents P < 0.05.
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have been  validated32–34. The study of chen et al. has greatly improved the experimental efficiency and provided 
a new theoretical basis for the prevention, diagnosis and treatment of complex human diseases by screening 
disease-associated miRNAs through computational models, but such methods have not been adequately studied 
and described for biomarkers of NSCLC progression. Therefore, it is critical to identify a sensitive, safe, and 
feasible NSCLC biomarker for diagnostic and therapeutic purposes and to improve patient  survival35.

The bioinformatics analysis of the microarray dataset from the GEO database identified 165 up-regulated 
and 206 down-regulated genes between NSCLC and normal lung tissue samples. Moreover, functional analy-
ses revealed that these DEGs were linked to lung cancer tumorigenesis and metastasis. The most significantly 
enriched pathway, the cell cycle signaling pathway, has been shown to have mutations that can affect the genomic 
and microenvironmental characteristics of LUAD  patients36 and can also be used as an assessment criterion for 
post-operative adjunctive therapy in LUAD  patients37. Furthermore, GSEA analysis revealed that these DEGs 
might affect base excision repair, the cell cycle, DNA replication, mismatch repair, and the p53 signaling path-
way. The most activated p53 signaling pathway, which has been linked to oncogenic  effects38, promotes tumor 
growth in NSCLC and pancreatic ductal adenocarcinoma (PDAC)39,40. However, these DEGs’ specific functions 
and molecular mechanisms need to be investigated further.

Because of its flexibility and power, ML is increasingly being used to screen novel biomarkers. We used two 
recently popular ML approaches, LASSO logistic regressions, and SVM-RFM, to identify the best diagnostic 
biomarkers for NSCLC. After combining the two methods and ROC analysis, eight NSCLC-related biomarkers 
with accurate predictive properties were identified (the AUCs of all these eight genes were greater than 0.89), 
including ADAMTS8, ABCA8, TPX2, CEP55, ASPA, FHL1, RAMP3, and PYCR1 genes. A disintegrin and metal-
lopeptidase with thrombospondin motif type 8 (ADAMTS8) is a member of the zinc metalloproteinase family 
and is considered a tumor  suppressor41. Wu et al. found that ADAMTS8 has been associated with clinical staging 
and lymph node metastasis in esophageal cancer  patients42. ADAMTS8 can also inhibit lung cancer by targeting 
Vascular endothelial growth factor (VEGFA)43. ATP-binding cassette subfamily A 8 (ABCA8) has been linked 
to tumors. Studies have shown that ABCA8 can inhibit the proliferation of breast cancer cells by regulating the 
AMPK/mTOR signaling  pathway44, and ABCA8 can also be used as a prognostic marker for hepatocellular 
 carcinoma45 and gastric  adenocarcinoma46. Centrosomal protein, 55 kD (CEP55) has been reported to be a 

Figure 13.  Transwell method to detect migration ability of si-NC group and si-TPX2 group. Silencing of TPX2 
suppressed migration ability in A549 cells. ‘*’ represents P < 0.05.
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potential biomarker and therapeutic target for PDAC and lung  cancer47. Several studies have shown that CEP55 
is carcinogenic in the colon and esophageal  cancers48,49. Targeting protein for xenopus kinesin-like protein 2 
(TPX2) is a cell cycle-associated gene that plays a pro-oncogenic role in hepatocellular carcinoma cells and acts 
synergistically with anti-cancer  drugs50. TPX2 can also be a therapeutic target for breast cancer and is associated 
with patient  prognosis51. Current studies have shown that recombinant Helicobacter Pylori aspartate ammonia-
lyase (ASPA) is an effective predictor of prognosis in colorectal cancer  patients52. Four-and-a-half LIM domains 
protein (FHL1) has a diagnostic value in microscopic papillary thyroid  carcinoma53, and it has been reported 
that FHL1 acts as an inhibitor in colorectal cancer  cells54–56. Receptor activity-modifying protein 3 (RAMP3) is 
an accessory molecule that forms complexes with and regulates the function of specific G protein-coupled recep-
tors (GPCRs). To date, studies have shown that RAMP3 is overexpressed in hepatocellular carcinoma patients 
and that RAMP3 is an independent prognostic factor for overall survival and  RFS57. Pyrroline-5-Carboxylate 
Reductase 1 (PYCR1) is a mitochondrial enzyme that is the final step in the proline biosynthetic pathway. Cur-
rently, PYCR1 has been reported to regulate tumour cell proliferation in hepatocellular carcinoma and cloud be 
an effective therapeutic target for multiple  myeloma58,59, as well as inhibit the development of clear cell renal cell 
carcinoma by causing mitochondrial dysfunction and interfering with oxidative stress  pathways60. Thus, accord-
ing to the available studies, the eight biomarkers mentioned above play an important role in tumorigenesis and 
progression, but their exact mechanisms in NSCLC remain unknown.

Given the importance of the immune microenvironment in the development of lung cancer, we also per-
formed immunological analyses. We found that monocytes differed most between normal and NSCLC tissue 
samples and correlated closely with all eight previously obtained biomarkers, implying that monocytes may be 
the most active immune cells in NSCLC. Monocytes have been shown to play a role in tumor  progression61. 
For example, up-regulation of monocytes promotes CT26 tumor  progression62,63. It has also been linked to the 
immune checkpoint matrix metalloproteinases in hepatocellular  carcinoma64. The findings of this study suggest 
that monocytes may contribute to clinical immunotherapy and warrant further investigation.

Another significant finding in our study was that TPX2 expression was linked to poor prognosis, and TPX2 
was up-regulated in both bioinformatics and western blot validation. We also found that TPX2 promoted the 
proliferation and migration of lung cancer A549 cells in vitro, suggesting that TPX2 was involved in developing 
NSCLC and could be a therapeutic target for NSCLC. However, the exact mechanism remains unknown, and 
we will investigate the role of TPX2 in vivo experiments.

ML methods have been successfully applied in cancer research in recent years, for example, for cancer 
 classification65, for analyzing gene chip data to screen for cancer-related biomarkers to assist doctors in mak-
ing better diagnoses and  decisions66, and for cancer prediction to significantly improve prediction  accuracy65. 
Notably, the ML method has been demonstrated to be effective in determining a non-invasive, accurate, and 
reliable diagnosis of NSCLC. Li et al. used specific carbonyl volatile organic compounds in exhaled breath as a 
biomarker for detecting lung cancer to distinguish lung cancer patients from healthy controls and patients with 
benign lung  nodules66. Zhang et al. suggest that 5-hydroxymethylcytosine in circulating cell-free DNA can be 
used to diagnose and treat  NSCLC67. Zhang et al. concluded that five circulating micro RNAs have important 
prognostic capabilities in lung  cancer68. Wang et al. identified eight differentially expressed long non-coding 
RNAs in LUAD that could be used as potential diagnostic  biomarkers69.

This study combines machine learning methods (LASSO algorithm and SVM-RFE algorithm) with medical 
experiments to identify non-small cell lung cancer (NSCLC)-related biomarkers through the GEO public data-
base, and finds that the progression of NSCLC is associated with immune cell infiltration, which greatly improves 
the efficiency of basic experiments for clinicians, and the screened NSCLC-related biomarkers is important for 
the prevention, diagnosis and treatment of NSCLC. Subsequently, we used in vitro functional assays to silence 
the prognostic TPX2 biomarker gene in NSCLC A549 cells and found that the proliferation and migration ability 
of A549 cells were significantly reduced, which further confirmed that the NSCLC-related biomarkers screened 
by the machine learning approach are novel and reliable. Our study provides a new idea for the pathogenesis 
and targeted therapy of NSCLC.

Conclusion
In conclusion, we used machine learning methods to identify eight diagnostic biomarkers for NSCLC, including 
ADAMTS8, ABCA8, TPX2, CEP55, ASPA, FHL1, RAMP3, and PYCR1 genes, followed by functional enrichment 
analysis and immune correlation analysis, and we validated the potential role of the TPX2 gene in vitro. Our 
findings identify new potential biomarkers for diagnosing and treating NSCLC and reveal new approaches that 
may have therapeutic potential for NSCLC.

Data availability
The datasets generated during the current study are available in the Gene Expression Omnibus (GEO) reposi-
tory, (https:// www. ncbi. nlm. nih. gov/ geo/), (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE18 842), 
(https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE21 933), (https:// www. ncbi. nlm. nih. gov/ geo/ query/ 
acc. cgi? acc= GSE32 863).
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