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A Swin Transformer‑based model 
for mosquito species identification
De‑zhong Zhao1,2,4, Xin‑kai Wang2,3,4, Teng Zhao2,4, Hu Li3, Dan Xing2, He‑ting Gao2, 
Fan Song3*, Guo‑hua Chen1* & Chun‑xiao Li2*

Mosquito transmit numbers of parasites and pathogens resulting in fatal diseases. Species 
identification is a prerequisite for effective mosquito control. Existing morphological and molecular 
classification methods have evitable disadvantages. Here we introduced Deep learning techniques 
for mosquito species identification. A balanced, high‑definition mosquito dataset with 9900 original 
images covering 17 species was constructed. After three rounds of screening and adjustment‑testing 
(first round among 3 convolutional neural networks and 3 Transformer models, second round among 
3 Swin Transformer variants, and third round between 2 images sizes), we proposed the first Swin 
Transformer‑based mosquito species identification model (Swin MSI) with 99.04% accuracy and 
99.16% F1‑score. By visualizing the identification process, the morphological keys used in Swin MSI 
were similar but not the same as those used by humans. Swin MSI realized 100% subspecies‑level 
identification in Culex pipiens Complex and 96.26% accuracy for novel species categorization. It 
presents a promising approach for mosquito identification and mosquito borne diseases control.

Mosquitoes belong to Diptera, and transmit a number of parasites and pathogens resulting in hundreds of mil-
lions of infections and approximately 750,000 deaths worldwide each  year1. Therefore, mosquitoes are considered 
the number one "animal killer" and are among the most medically important insect taxa. Different species of 
mosquitoes have different habitats, biological habits and pathogen loads. For example, Anopheles mosquitos 
mainly transmit malaria, which caused an estimated 219 million cases globally, and resulted in more than 400,000 
deaths every  year2, Aedes mosquitos transmit dengue, which threaten more than 3.9 billion people in over 129 
countries with an estimated 96 million symptomatic cases every  year3,  Zika4 and  chikungunya5. Culex mosquitos 
transmit West Nile  virus6, Japanese encephalitis  virus7 and lymphatic  filariasis8. Because specific vaccines or drugs 
are not available for the majority of mosquito borne diseases, mosquito control is still the main measure used to 
prevent and control these diseases. Identifying the present mosquito species is a prerequisite and the basis for 
effectively preventing and controlling mosquito borne diseases. Only by accurately identifying mosquito species 
can we understand their breeding characteristics and behavioral habits to develop correct prevention strategies 
and take targeted measures to ensure rapid  control9–11.

Currently, mosquito species identification methods rely on the morphological characteristics of mosquitos; 
these methods are time-consuming, laborious and vulnerable to uncertainties associated with genetic variabilities 
and phenotypic  plasticity12,13. Even for experienced taxonomists, it is difficult to identify mosquito Complexes 
with subtle external morphological differences by their external morphological characteristics. For example, 
subspecies in the Culex pipiens Complex can be classified only by the dissected male  genitalia14,15. In addition, 
molecular identification methods are effective but expensive and have high technical requirements. In addition, 
it is difficult to fully meet the rapidly growing demand for rapid and intelligent mosquito species identification 
using these traditional classification methods.

With the improvements in computing power, the explosive growth of big data and the advancement of 
machine learning algorithms, deep learning techniques have been rapidly developed and have begun to be 
applied in image classification tasks. Convolutional neural network (CNN) models with different structures 
 (LeNet16,  AlexNet17,  GoogLeNet18,  VGGNet19,  ResNet20,  SqueezeNet21, etc.) have been successively applied to 
perform automatic mosquito recognition using images. However, due to defects associated with the layer struc-
tures of these networks, features are easily lost in the computation of each layer, causing gradient disappear-
ances or explosions; thus, these methods cannot effectively capture the relationships between pixel points. The 
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transformer model, which was originally applied in natural language processing research, can solve the above 
problems through its single-layer structure and multi-head self-attention mechanism. Therefore, attempts have 
been made to apply transformer models to in computer vision research, and the effects of these models can 
match or even outperform  CNNs22–24.

The main contributions of this study are summarized as follows. (1) We aimed to establish the highest-
definition and most-balanced mosquito image dataset to date, including 17 species and 3 subspecies, with a total 
of 9,900 images at an image resolution of 4464 × 2976 pixels. All the classification and identification features in 
this dataset achieved the discrimination ability of human eyes. (2) The first Swin Transformer-based mosquito 
species identification (Swin MSI) model was proposed herein, and the species and sex identification accuracies 
were 99.04% (F1-score 99.16%). (3) In the test set performed in this study, the subspecies and sex identification 
accuracies of mosquitos in the Cx. pipiens Complex, which are morphologically indistinguishable, were both 
100%. (4) The Swin MSI model could identify novel mosquitoes that were beyond our dataset with a 96.26% 
accuracy (F1-score 98.09%) correct genus attribution. (5) As determined by visualizing the identification process, 
the morphological keys used by the Swin MSI model were similar but not the same as those used by humans.

The Swin MSI model proposed in this study can perform mosquito species identification more accurately 
than previously established models and could assist taxonomists in identifying mosquito and achieving effective 
monitoring and prevention of mosquitoes and the associated transmitted diseases.

Results
The framework of Swin MSI. We established the first Swin Transformer-based mosquito species identifi-
cation (Swin MSI) model, with the help of self-constructed image dataset and multi-adjustment-test. Gradient-
weighted class activation mapping was used to visualize the identification process (Fig. 1a). The key Swin Trans-
former block was described on Fig. 1b. Based on practical needs, Swin MSI was additional designed to identify 
Culex pipiens Complex on the subspecies level (Fig. 1c) and novel mosquito (which was defined as ones beyond 
17 species in our dataset) classification attribution (Fig. 1d). Detailed results are shown in the following sections.

Mosquito datasets. We established the highest-definition and most-balanced mosquito image dataset to 
date. The mosquito image dataset covers 7 genera and 17 species (including 3 morphologically similar subspe-
cies in the Cx. pipiens Complex), which covers the most common and important disease-transmitting mosqui-
toes at the global scale, with a total of 9,900 mosquito images. The image resolution was 4464 × 2976 pixels. The 
specific taxonomic status and corresponding images are shown in Fig. 2. Due to the limitation of field collec-
tion, Ae. vexans, Coquillettidia ochracea, Mansonia uniformis, An. vagus and Toxorhynchites splendens only have 

Figure 1.  The Framework of Swin MSI. (a)The basic architecture for mosquito features extraction and 
identification. Attention visualization generated by filters at each layer are shown. (b) Details for Swin 
Transformer block. (c) For mosquito within our dataset 17 species, output is the top 5 confidence species. (d) 
For mosquito beyond 17 species (defined as novel species), whether the output is a species or a genus is decided 
after comparing with confidence threshold.
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females or only have males. In addition, each mosquito species included 300 images of both sexes, which was 
large enough and same number for each species, in order to balance the capacity and variety of training sets.

Workflow for mosquito species identification. A three-stage flowchart of building best deep learning 
model for identification of mosquito species model was adopted (Fig. 3). The first learning stage was conducted 
by three CNNs (the Mask R-CNN, DenseNet, and YOLOv5) and three transformer models (the Detection 
Transformer, Vision Transformer, and Swin Transformer). Based on the performance of the first-stage model 
and the real mosquito labels, the second learning stage involved adjusting the model parameters of the three 
Swin Transformer variants (T, B, and L) to compare their performances. The third learning stage involved test-
ing the effects of inputting differently sized images (384 × 384 and 224 × 224) to the Swin Transformer-L model; 
finally, we proposed a deep learning model for mosquito species identification (Swin MSI) to test the recognition 
effects of different mosquito species. The model was validated on different mosquito species, with a focus on 
the identification accuracy of three subspecies within the Cx. pipiens Complex and the detection effect of novel 
mosquito species.

Comparison between the CNN model and Transformer model results (1st round of learn‑
ing). Figure 4a shows the accuracies obtained for the six different computer vision network models tested on 
the mosquito picture test set. The test results show that the transformer network model had a higher mosquito 
species discrimination ability than the CNN.

In the CNN training process (applied to YOLOv5), the validation accuracy requires more than 110 epochs to 
grow to 0.9, and the validation loss requires 110 epochs to drop to a flat interval; in contrast, during the training 

Figure 2.  Taxonomic status and index of mosquito species included in this study Both male and female 
mosquitoes were photographed from different angles such as dorsal, left side, right side, ventral side, etc. Except 
for 5 species, each mosquito includes 300 images of both sexes, and the resolution of mosquito photos were 
4464 × 2976. Cx. pipiens quinquefasciatus, Cx. pipiens pallens, and Cx. pipiens molestus (subspecies level, in dark 
gray background) were 3 subspecies in Cx. pipiens Complex (species level).
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Figure 3.  Flowchart of testing deep learning model for intelligent identification of mosquito species.

Figure 4.  Comparison of mosquito recognition effects of computer vision network models and variants. 
(a) Comparison of mosquito identification accuracy between 3 CNNs and 3 Transformer; (b) The best effect 
CNN (YOLOv5) training set loss curve(blue), validation set loss curve(green) and validation set accuracy 
curve(orange); (c) The best effect Transformer (Swin Transformer) training set loss curve, validation set loss 
curve and validation set accuracy curve. (d) Swin-MSI-T test result confusion matrix; (e) Swin-MSI -B test 
result confusion matrix; (f) Swin-MSI -L test result confusion matrix. Confusion matrix of mosquito labels in 
which odd numbers represent females and even numbers represent males. The small squares in the confusion 
matrix represent the recognition readiness rate, from red to green, the recognition readiness rate is getting 
higher and higher An. sinensis: 1, 2; Cx. pipiens quinquefasciatus: 3, 4; Cx. pipiens pallens: 5, 6; Cx. pipiens 
molestus: 7,8 Cx. modestus: 9,10; Ae. albopictus: 11, 12 Ae. aegypti: 13, 14; Cx. pallidothorax: 15, 16 Ae. galloisi: 
17,18 Ae. vexans: 19, 20; Ae. koreicus: 21, 22 Armigeres subalbatus: 23, 24; Coquillettidia ochracea: 25, 26 Cx. 
gelidus: 27, 28 Cx. triraeniorhynchus: 29, 30 Mansonia uniformis: 31, 32 An. vagus: 33, 34 Ae. elsaie: 35,36 
Toxorhynchites splendens: 37, 38.
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step, these losses represent a continuously decreasing process. These results indicate that the deep learning model 
derived based on the Swin Transformer algorithm was able to achieve a higher recognition accuracy in less time 
than the rapid convergence ability of the CNN during the iterative process (Fig. 4b).

The Swin Transformer model exhibited the highest test accuracy of 96.3%. During the training process, the 
loss of this model could stabilize after 30 epochs, and its validation accuracy could grow to 0.9 after 20 epochs; 
during the validation step, the loss can drop to 0.36 after 20 epochs, after which the loss curve fluctuated but did 
not produce adverse effects (Fig. 4c). Based on the excellent performance of the Swin Transformer model, this 
model was used as the baseline to carry out the subsequent analyses.

Swin Transformer model variant adjustment (2nd round of learning). Following testing per-
formed to clarify the superior performance of the Swin Transformer algorithm, we chose different Drop_path_
rate, Embed_dim and Depths parameter settings and labeled the parameter sets as the Swin Transformer-T, 
Swin Transformer-B, and Swin Transformer-L variants. Drop_path is an efficient regularization method, and an 
asymmetric Drop_path_rate is beneficial for supervised representation learning when using image classification 
tasks and Transformer architectures. The Embed_dim parameter represents the image dimensions obtained 
after the input red–green–blue (RGB) image is calculated by the Swin Transformer block in stage 1. The Depths 
parameter is the number of Swin Transformer blocks used in the four stages. The parameter information and test 
results are shown in Table 1. Due to the increase in the Swin Transformer block and Embed_dim parameters in 
stage 3, the recognition accuracies of the three variants were found to be 95.8%, 96.3%, and 98.2%, Correspond-
ingly, the f1 score were 96.2%, 96.7% and 98.3%; thus, these variants could effectively improve the mosquito spe-
cies identification ability in a manner similar to the CNN by increasing the number of convolutional channels to 
extract more features and improve the overall classification ability. In this study, the Swin Transformer-L variant, 
which exhibited the highest accuracy, was selected as the baseline for the next work.

By plotting a confusion matrix of the test set results derived using the three Swin Transformer variants, we 
clearly obtained the proportion of correct and incorrect identifications in each category to visually reflect the 
mosquito species discrimination ability (Fig. 4d–f). In the matrix, the darker diagonal colors indicate higher 
identification rate accuracies of the corresponding mosquito categories. Among them, five mosquito species 
were missing because the Ae. vexans, Coquillettidia ochracea, Mansonia uniformis, An. vagus and Toxorhynchites 
splendens species were represented in the dataset by only females or only males. The confusion matrix shown 
in Panel C lists the lowest number of mosquito species identification error points and the lowest accuracy level 
obtained in each category, suggesting that the Swin Transformer-L model has a better classification performance 
than the Swin Transformer-T and Swin Transformer-B models.

Effect of the input image size on the discrimination ability (3rd round of learning). To inves-
tigate the relationship between the input image size and mosquito species identification performance, in this 
study, we conducted a comparison test between input images with sizes of 224 × 224 and 384 × 384, based on the 
Swin Transformer-L model, and identified 8 categories of mosquito identification accuracy differences. These 
test results are shown in Table 2. When using an image size of 224 × 224 pixels, the batch_size parameter was 
set to 16, and when using an image size of 384 × 384 pixels, the batch_size parameter was set to 4; under these 

Table 1.  Parameters and test accuracy of three variants of Swin Transformer.

Model Drop_path_rate Embed_dim Depths Batch_size Accuracy (%) F1 score (%)

Swin-Transformer-T 0.2 96 [2, 6] 128 95.8 96.2

Swin-Transformer-B 0.5 128 [2, 18] 32 96.3 96.7

Swin-Transformer-L 0.2 192 [2, 18] 8 98.2 98.3

Table 2.  Comparison of recognition accuracy for different input image sizes. Mosquito species with same 
recognition accuracy between 2 input image sizes were not listed in the table. Acc was short for accuracy and 
F1 was shoret for f1-score.

Mosquito label

224 × 224 384 × 384

Acc (%) F1 (%) Acc (%) F1 (%)

An. sinenis female 91.11 95.35 86.67 92.86

Cx. pipiens molestus female 91.11 95.35 100 100

Cx. pipiens molestus male 91.11 95.35 100 100

Ae. aegypti male 95.56 97.73 97.78 98.88

Ae. koreicus male 86.67 92.86 91.11 95.35

Armigeres subalbatus female 91.11 95.35 95.56 97.73

Cx. triraeniorhynchus female 80.00 88.89 95.56 97.73

Ae. elsaie male 95.56 97.73 100 100
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conditions, the proportion of utilized video memory accounted for 67%, as shown in Eq. 4, and this was consist-
ent with the description of the relationship between the size of self-attentive operations during the operation of 
the Swin Transformer model when 384 × 384 pixels images were used. The time required for the Transformer-L 
model to complete all the training sessions was excessive, reaching 126 h and even exceeding the 124 h required 
by the YOLOv5 model, which was found to require the highest computation time during the training process 
in this work. Long-term training process could more fully reflect the performance differences between models. 
Fortunately and actually, the response speed of the model will not be affected by the training time. Compared to 
the accuracy of 98.2% obtained for 224 × 224 inputs, the 384 × 384 input image size derived based on the Swin 
Transformer-L model provided a higher mosquito species identification accuracy of 99.04%, representing an 
improvement of 0.84%.

Visualizing and understanding the Swin MSI models. To investigate the differences in the atten-
tional features utilized by the Swin MSI and taxonomists for mosquito species identification, we applied the 
Grad-CAM method to visualize the Swin MSI attentional areas on mosquitoes at different stages. Because the 
Swin Transformer has different attentional ranges among its multi-head self-attention steps in different stages, 
different attentional weights can be found on different mosquito positions. In stage 1, the feature dimension 
of each patch was 4 × 4 × C, thus enabling the Swin Transformer’s multi-head self-attention mechanism to give 
more attention to the detailed parts of the mosquitoes, such as their legs, wings, antennae, and pronota. In stage 
2, the feature dimension of each patch was 8 × 8 × 2C, enabling the Swin Transformer’s multi-head self-attention 
mechanism to focus on the bodies of the mosquitoes, such as their heads, thoraces, and abdomens. In stage 3, 
when the feature dimension of each patch was 16 × 16 × 4C, the Swin Transformer’s multi-head self-attention 
mechanism could focus on most regions of the mosquito, thus forming a global overall attention mechanism for 
each mosquito (Fig. 5). This attentional focus process is essentially the same as the process used by taxonomists 
when classifying mosquito morphology, changing from details to localities to the whole mosquito.

Ae. aegypti is widely distributed in tropical and subtropical regions around the world and transmits Zika, den-
gue and yellow fever. A pair of long-stalked sickle-shaped white spots on both shoulder sides of the mesoscutum, 
with a pair of longitudinal stripes running through the whole mesotergum, is the most important morphological 
identification feature of this species. This feature was the deepest section in the attention visualization, indicating 
that the Swin MSI model also recognized it as the principal distinguishing feature. In addition, the abdominal 
tergum of A. aegypti is black and segments II-VII have lateral silvery white spots and basal white bands; the 
model also focused on these areas.

Cx. triraeniorhynchus is the main vector of Japanese encephalitis; this mosquito has a small body size, a dis-
tinctive white ring on the proboscis (its most distinctive morphological feature), and a peppery color on its whole 
body. Similarly, the model constructed herein focused on both the head and abdominal regions of this species.

An. sinensis is the top vector of malaria in China and has no more than three white spots on its anterior wing 
margin and a distinct white spot on its marginal V5.2 fringe; this feature was observed in Stage 2, at which time 
the modelstrongly focused on the corresponding area.

The most obvious feature of Armigeres subalbatus is the lateral flattening and slightly downward curving 
of its proboscis; the observation of the attention visualization revealed that the constructed model focused on 
these regions from Stage 1 to Stage 3. The mesoscutum and abdominal tergum were not critical and were less 
important for identification than the proboscis, and the attention visualization results correspondingly show 
that the neural network focused less on these features.

Coquillettidia ochracea belongs to the Coquillettidia genus and is golden yellow all over its body, with the most 
pronounced abdomen among the analyzed species. The model showed a consistent morphological taxonomic 
focus on the abdomen of this species.

Mansonia uniformis is a vector of Malayan filariasis. The abdominal tergum of this species is dark brown, 
and its abdominal segments II-VII have yellow terminal bands and lateral white spots, which are more obvious 
than the dark brown feature on proboscis. Through the attention visualization, we determined that the Swin MSI 
model was more concerned with the abdominal region features than with the proboscis features.

Subspecies‑level identification tests of mosquitos in the Culex pipiens Complex. Fine-grained 
image classification has been the focus of extensive research in the field of computer  vision25,26. Based on the test 
set (containing 270 images) constructed herein for three subspecies of the Cx. pipiens Complex, the subspecies 
and sex identification accuracies were 100% when the Swin MSI model was used.

The morphological characteristics of Cx. pipiens quinquefasciatus, Cx. pipiens pallens, and Cx. pipiens molestus 
within the Cx. pipiens Complex are almost indistinguishable, but their host preferences, self-fertility properties, 
breeding environments, and stagnation overwintering strategies are very  different27. Among the existing features 
available for morphological classification, the stripes on the abdominal tergum of Cx. pipiens quinquefasciatus 
are usually inverted triangles and are not connected with the pleurosternums, while those of Cx. pipiens pallens 
are rectangular and are connected with the pleurosternums. Cx. pipiens molestus is morphologically more simi-
lar to Cx. pipiens pallens as an ecological subspecies of the Cx. pipiens Complex. However, taxonomists do not 
recommend using the unstable feature mentioned above as the main taxonomic feature for differentiation. By 
analyzing the attention visualization results of these three subspecies (last three rows on Fig. 5), we found that 
the neural networks of Cx. pipiens quinquefasciatus, Cx. pipiens pallens, and Cx. pipiens molestus still focused 
on the abdominal regions, as shown in dark red. The area of focus of these neural networks differ from that of 

(1)�(W−MSA) = 4HWC2 + 2M2HWC
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the human eye, and the results of this study suggest that the Swin MSI model can detect finely granular features 
among these three mosquito subspecies that are indistinguishable to the naked human eye.

Figure 5.  Attention visualization of representative mosquitoes of the genera Ae., Cx., An., Armigeres, 
Coquillettidia and Mansonia. This is a visualization for identifying the regions in the image that can explain the 
classification progress. Images of Toxorhynchites contain only males, with obvious differences in morphological 
characteristics, are not shown.
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Novel mosquito classification attribution. After we performed a confidence check on the success-
fully identified mosquito images in the dataset, the lowest confidence value was found to be 85%. A higher 
confidence threshold mean stricter evaluation criteria, which can better reflect the powerful performance of the 
model. Therefore, 0.85 was set as the confidence threshold when judging novel mosquitoes. When identifying 10 
unknown mosquito species, the highest derived species confidence level was below 85%; when the results were 
output to the genus level (Fig. 1d), the average probability of obtaining a correct judgment was 96.26%accuracy 
and 98.09% F1-score (Table 3). The images tested as novel Ae., Cx. and An. mosquito were from Minakshi and 
Couret et al.28,29.

Discussion
In a previous study by Pataki et al.30, the highest mosquito species identification accuracy was 96%; this value was 
obtained with ResNet based on a public pest vector monitoring dataset (containing 6195 Ae. albopictus images out 
of 7686 images, accounting for 80.6%). In Motta et al.’s  study31, a dataset of 4056 adult mosquito images of three 
species (A. albopictus, A. aegypti, and Cx. pipiens quinquefasciatus) was constructed and trained using the LeNet, 
AlexNet, and GoogleNet CNNs, and the test results showed that the best precision was obtained with GoogleNet 
at 76.2%. Park et al. constructed a dataset containing 3578 images of eight mosquito species, and classification 
accuracies above 97% was achieved using VGG-16, ResNet-50, and SqueezeNet. Couret et al. constructed a 
dataset containing 14 species of mosquitoes, mainly within the genus An., for a total of 1709 images; using this 
dataset, a species identification accuracy of 96.96% and a sex prediction accuracy of 98.48% were achieved using 
the best-configured DenseNet-201 model.

Obviously, previous mosquito recognition studies used computer vision techniques mostly with ResNet, 
DenseNet and other classical CNNs. This study is the first to apply the recently emerged Transformer  model32 for 
mosquito species identification. CNNs complete the whole training process by using stacked convolutional layers 
and pooling layers to produce layer-level feature representations of different sizes and perceive image features 
on various scales. However, the structural design of a CNN itself focuses primarily on the extraction effects of 
local features and tends to ignore the connections among different elements in an image. The Swin MSI model 
proposed in this study combines the advantages of both the Transformer and CNN models. The architecture of 
the constructed model works similarly to CNNs by stacking Swin-transformer blocks and continuously increas-
ing the patch dimensions and sizes; in addition, the use of a self-attentive mechanism based on moving windows 
effectively reduces the number of parameters generated during the computation process. By dividing the feature 
map of size into nonoverlapping windows of size, the computation is linear in the square of the window size, 
thus solving the problem of the high computational complexity of traditional Transformer models. The Swin 
MSI model allows the new patches to expand in size through a merging process, thus playing the same role as 
the sensory field in a CNN. In the initial stage, only local features such as antennae, mesoterga, legs or wings 
can be sensed, but in the large-sized patches formed after several patch-merging steps, global features such as 
heads, thoraces and abdomens can be sensed, and focus on the mosquitoes overall can eventually be obtained.

The most critical issue in any computer vision detection task is the manual establishment of image annotations 
(professional mosquito classification staff are required to perform these annotations)33,34. Therefore, obtaining a 
complete and clear dataset for accurate predictions can save considerable time and costs. Except for a study on the 
An. gambiae Complex group, which involving a subspecies-level analysis, previous mosquito classification stud-
ies have mostly focused on species with obvious biological taxonomic characteristics, such as A. aegypti and A. 
albopictus.31 Park et al. found that some mutilated field-collected mosquitoes prevented the neural network from 
being able to capture key features, thus causing classification  errors30. In addition, imbalances in the number of 
different mosquito species cause neural networks to tend to reduce the recognition quality of minority categories 
to maximize the overall recognition  rate35. Learning from previous experiences, the mosquito images collected in 
this study contain a large number of critical morphological feature, species and sex details and form the clearest 
and most balanced professional mosquito database thus far; this database ensures the optimal performance of 
the constructed Swin-MSI model in mosquito species identification tasks.

Table 3.  Probability of correct attribution of novel species. Acc was short for accuracy and F1 was shoret for 
f1-score.

Novel Species Acc (%) F1 (%) Tested Image numbers

Ae. infirmatus 80.00 88.89 10

Ae. taeniorhynchus 80.00 88.89 10

Cx. coronator 70.00 82.35 10

Cx. nigripalpus 90.00 94.74 10

An. albimanus 98.44 99.21 64

An. arabiensis 95.85 99.20 193

An. atroparvus 100 100 36

An. coluzzi 95.95 97.93 74

An. farauti 100 100 57

An. freeborni 98.97 99.48 97
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We found that the higher the resolution of the mosquito image training set was, the better the recognition 
effect was. The mosquito species identification accuracy was improved by 0.84%, to 99.04%, when the input 
image size was set to 384 × 384 compared to 224 × 224, other related research results confirm the superiority 
of large-size image  input36. Currently, the efficiencies of computer vision network models are limited by the 
abilities of hardware devices. Although we made some adjustments, including adjustments to the number of 
model parameters, the constructed model still required substantial computational times on high-performance 
hardware devices, such as the graphics processing unit (GPU) to perform the data computations and the central 
processing unit (CPU) to make resource calls. The video memory of the GPU determines the amount of data 
that can be computed in parallel, which directly affects the training time. Our mosquito dataset had a resolution 
of 4464 × 2976 pixels and had taken the appropriate redundancy of the image sizes into account. In the future, 
with the improvements in hardware computing power and adjustments to the patch-merging process to optimize 
the Swin MSI model structure, the advantages of high-resolution datasets will be maximized, thus leading to 
even higher accuracies.

In this study, we attempted to combine the experience of professional taxonomists with the perspective of 
artificial intelligence to determine whether the Swin Transformer model uses similar morphological keys as 
those used by human experts to classify mosquito species and subspecies. The evolutionary statuses of subspecies 
within mosquito Complexes are similar, and subspecies within the same Complex have subtle morphological 
characteristic differences. Unlike the An. gambiae Complex, which is mainly found in limited geographic  areas37, 
the Cx. pipiens Complex group targeted in this study is widely distributed  worldwide38, and their corresponding 
blood-sucking host preferences, self-fertility processes, breeding environments, and stagnant overwintering 
processes are significantly different. Thanks to the high-resolution dataset containing complete morphological 
characteristic information, 100% subspecies and sex identification accuracies were achieved at the subspecies 
level for the Cx. pipiens Complex. The visualization results suggested that the morphological keys used by the 
Swin MSI model were similar but not the same as those used by humans. The identification features derived at 
certain pixel-level details included mosquito heads, thoraces, abdomens, dorsal plates, and legs; these features 
may serve as useful supplements to traditional taxonomic features and provide a reference with which profes-
sional taxonomists can explore the subspecies-level morphological features of mosquitoes in depth.

Although the dataset established in this study already includes 17 species (including 3 subspecies) of mos-
quitoes, the need to identify novel mosquitoes is common and inevitable in realistic practical applications. The 
highest species confidence level achieved with the existing Swin MSI model was below 85%, and the correct 
attribution probability of the model reached 96.3%. This is a stop-gap measure under existing resource (pri-
oritizing coverage of the most dangerous and common mosquitoes), but it is sufficient to help inexperienced 
personnel on site identify dangerous mosquitoes. By expanding the number of species represented in specific 
area mosquito dataset and optimizing the model structure and parameters, the species confidence threshold can 
be continuously increased, leading to higher attribution accuracies for novel mosquitoes. More developed ver-
sion for different countries and regions to cover their local mosquito species will be move forward in the future. 
The Swin MSI model can help mosquito taxonomists quickly distinguish new species from a large number of 
specimens identified in field biodiversity  surveys39. The model also has a high identification accuracy for dam-
aged mosquito samples collected in the field, as long as the training set contained sufficient recognition features, 
which makes mosquito surveillance tasks more effective and  efficient40.

In summary, the first transformer-based mosquito species identification model was proposed in this study. 
With the help of a self-constructed high-precision mosquito image dataset, the Swin MSI model achieved a spe-
cies recognition rate greater than 99%. The identification effect is also tested and discussed at various input image 
sizes, at the subspecies level (at which the morphological features of mosquitos are difficult to distinguish), and 
for novel species. The excellent performance of the Swin MSI model makes it an accurate and efficient techni-
cal tool that will help taxonomists quickly identify mosquito species and contribute to the control of mosquito 
borne diseases.

Methods
Ethic statements. The study was approved by Institutional Animal Care and Use Committee of Beijing 
Institute of Microbiology and Epidemiology (IACUC-IME-2021-021). The mosquito field sampling was con-
ducted without harming any other animal species.

Mosquito datasets. In this work, mosquitoes were identified by taxonomists using morphological indica-
tors identified through a standard stereomicroscope. All mosquitoes were killed by anesthesia, and pictures 
were taken of the mosquitos in the form of natural death. We built a macro-photography platform of mosquito 
images using of a Canon electro-optical system (EOS) 5D Mark IV digital camera with a Laowa 100-mm F2.8 
Macro 2X lens and a Kuangren KR-888 macro flash to capture the dorsal, ventral, left, and right sides of each 
mosquito, covering the key identification features. Three to five images were taken of each mosquito. the camera 
and flash parameters were set to ISO400, the shutter speed was set to 1/100 s, the aperture was set to 22, and the 
flash index was set to 1/16.

Data division, preprocessing and augmentation steps. The captured mosquito images were labeled 
using LabelImg software to generate corresponding .txt files containing category, sex, and location coordinate 
information. A total of 9900 images captured of 17 species(and 3 subspecies) were used according to the prin-
ciple of 50/50 males and females (since identifying features of males and females were different, each species 
included 300 images of both sexes. If one sex was missing from the samples, the number of mosquitoes extracted 
from that species was halved). The images were partitioned randomly into training, validation, and test sets 
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comprising 6930 (70%), 1485 (15%), and 1485 (15%) images in the dataset, respectively. To prevent underfitting, 
reduce the probability of overfitting, and prevent classification imbalances resulting from unbalanced category 
shares, we applied 24 rotations with 15-degree increments to substantially increase the size and diversity of the 
training image set by using rotations, flips, and resizing methods.

Comparison of the CNN models and transformer model test results. Six computer vision models 
(the Mask R-CNN, DenseNet, YOLOv5, Swin Transformer, Detection Transformer and Vision Transformer 
models) were first selected for testing (Table 4)22–24,41,42. The Mask R-CNN model uses a feature pyramid net-
work (FPN) architecture to enhance its multiscale feature extraction  capability41. DenseNet further mitigates 
the gradient disappearance problem by establishing connections among different  layers42. YOLOv5 surpasses 
various previous versions of the YOLO model with a small number of parameters and a strong rapid deployment 
advantage. Detection Transformer used a CNN to extract features and then used a transformer to perform iden-
tification, which truly achieves end-to-end detection with less prior. Dosovitskiy proposed a pure transformer, 
namely, the Vision Transformer (ViT), to serialize images and applied the transformer to image classification 
tasks with good results. The Swin Transformer uses a sliding window and introduces a concept similar to the 
expanded field of perception used in CNNs. The above six models are excellent representatives of CNNs and 
transformers and have achieved high accuracies when analyzing datasets such as ImageNet in various applica-
tion scenarios.

MSI model design. By screening the six models described above, the Swin Transformer algorithm model 
was found to have the best performance in the first testing phase and was ultimately selected for further analysis. 
The parameter configuration was further adjusted to test the effects of the variants (T, B and L) and input image 
sizes (384 × 384 and 224 × 224) on the species recognition accuracy. The specific steps will be further explained 
in the following section.

Swin MSI framework. The Swin MSI model splits the preprocessed mosquito image into many nonover-
lapping patches using a patch-splitting model. The number of patches is H4 × W

4  , each patch is considered a token 
with dimensions of 4 × 4, and the features of each patch are set as a series of pixel values in the preprocessed 
mosquito image; thus, the number of features in each patch is 4 × 4 × 3 = 48. The linear embedding layer is then 
applied to the segmented patches to project them to the set dimensions (C).

The computation results of stage 1 were combined with 2 × 2 similarly sized patches by patch merging, the 
size was increased to 8 × 8, and the number of patches became H8 × W

8  ; these patches were then used as the input 
in stage 2. After repeating the self-attention calculation of the Swin Transformer block, the output of stage 2 was 
obtained, and the calculations were continued in two stages (denoted as stage 3 and stage 4) until the patch size 
reached 32 × 32. At this time, the number of patches was H32 × W

32 , the dimension for 8C. In the process of mov-
ing the window, half of the patches were moved each time to ensure that no features were lost in the process. In 
this work, the input image sizes were set to 224 × 224 and 384 × 384 pixels, and the final patch numbers used in 
each window were set to 7 × 7 and 12 × 12.

Shifted windows multihead self‑attention. The Swin Transformer block consists of two consecutive 
Swin Transformer modules: multi-head self-attentive modules with a regular window configuration (W-MSA) 
and moving window configuration (SW-MSA). A layer normalization processing module (LN ()), a multilayer 
perceptron (MLP ()), the output feature of the SW-MSA module ( ∧

ZL ), and the output feature of the MLP features 
( ZL ) were also established.

The computation in the continuous Swin Transformer block can be expressed by Eq. (1) as follows:

Table 4.  Parameter settings of the six computer vision models.

Model Numbers of epochs Learning rate Batch-size

Detection Transformer 300 0.0001 2

Vision Transformer 500 0.03 512

Swin Transformer 300 0.0005 128

YOLOv5 300 0.001 16

Mask R-CNN 160 0.001 1

DenseNet 300 0.1 16
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The SW-MSA module derived for the nonoverlapping window X can be expressed by Eq. (2) as follows:

The multi-head self-attention on the windows was calculated using the query (Q), key (K), and value (V). 
During this process, the learnable relative position was used to encode B; this feature can be expressed by Eq. (3) 
as follows:

For the Swin Transformer, this multi-head self-attention feature was computed n times (the number of Swin 
Transformer Blocks used in different stages in the network) and then concatenated to obtain the final multi-head 
self-attention results.

Swin MSI model for novel mosquito classification. In the real environment, the need to identify 
novel mosquitoes is common and inevitable. Mosquito species not included in our dataset (which includes 17 
species 3 subspecies) are defined herein as novel species. When mosquito images were successfully analyzed by 
the Swin MSI model, a matrix of size [m, n] was output as C, where m is the number of mosquito images and n 
is the number of categories used in the process. At this point, the row vector was softmax-normalized to obtain 
the confidence level of each category in the target image, and this information was used for the species categori-
zation process. By determining the mosquito images in which the mosquito species was accurately identified in 
this work, the minimum confidence level could be checked and established as the confidence threshold required 
for novel species detection; if the highest species confidence level of the image to be identified is greater than this 
threshold, species-level information can be output; if the highest species confidence level is below the threshold, 
genus-level information can be obtained.

Identification of morphological keys used by the Swin MSI model. Using gradient-weighted class 
activation mapping (Grad-CAM)43, we visualized and identified the regions in each image that could explain 
the final classification results obtained by the Swin MSI model. First, the network was forward-propagated to 
obtain feature layer A (in this work, “feature layer A” refers to the output in each stage) and the network predic-
tion y. Assuming that the categorical prediction of the network for a given mosquito picture is  yc, the backward-
propagation step could provide gradient information A’, which was then back-propagated to feature layer A. By 
calculating the importance of each channel in feature layer A, weighting the sum, and performing the rectified 
linear unit (ReLu) calculation, the final result was the Grad-CAM. The regions of interest obtained in the atten-
tion visualization step were then compared with the morphological classification features that are of interest to 
mosquito taxonomists to explore whether the Swin Transformer model used similar morphological keys as those 
used by human experts to classify mosquito species.

Evaluation methodology. We reported accuracy (acc) and f1-score(f1) in each experiments, the acc can 
be define as:

The F1 can be formulated as:

where precision and recall can be defined as:

where TP is the number of true positive samples, TN is the number of true negative samples, FP is the number 
of false positive samples and FN is the number of false negative samples.

(2)

∧l
Z = W -MSA(LN(ZL−1))+ ZL−1,

Zl = MLP(LN(
∧l
Z ))+

∧l
Z ,

Ẑ
l+1

= SW - MSA(LN(Zl))+ Zl,

Zl+1 = MLP

(

LN

(

Ẑ
l+1

))

+ Ẑ
l+1

(3)
MultiHead(Q,K ,V) = Concat(head1, . . . , headh)W

O

where headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i )

(4)Attention (Q,K,V) = SoftMax(QKT/
√
d+ B)V

acc =
TP+ TN

TP+ TN+ FP+ FN

f1 =
2× precision× recall

precision+ recall

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.

Code availability
We have leveraged Github repository for Mask R-CNN, DenseNet, YOLOv5, Detection Transformer, Vision 
Transformer, and Swin Transformer implementation. The code for Swin MSi are publicly available through 
GitHub repository: https:// github. com/ zdz00 86/ Swin- msi. All are open source and publicly available.
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