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Opioid addiction (OA) is moderately heritable, yet only rs1799971, the A118G variant in OPRM1, 
has been identified as a genome‑wide significant association with OA and independently replicated. 
We applied genomic structural equation modeling to conduct a GWAS of the new Genetics of 
Opioid Addiction Consortium (GENOA) data together with published studies (Psychiatric Genomics 
Consortium, Million Veteran Program, and Partners Health), comprising 23,367 cases and effective 
sample size of 88,114 individuals of European ancestry. Genetic correlations among the various OA 
phenotypes were uniformly high  (rg > 0.9). We observed the strongest evidence to date for OPRM1: 
lead SNP rs9478500 (p = 2.56 ×  10–9). Gene‑based analyses identified novel genome‑wide significant 
associations with PPP6C and FURIN. Variants within these loci appear to be pleiotropic for addiction 
and related traits.
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In 2020 the US recorded the highest 12-month count of opioid overdose deaths, > 70,0001, which represents a 40% 
increase since 2019, a > 250% increase since  20002, and is 1.7 times the number of deaths caused by automobile 
crashes in  20203. Approximately 4% of the US population aged 12 and older (10.1 million people) misused opioids 
in 2019, with 1.6 million people initiating new prescription opioid  misuse4. The most recent annual estimate of 
the total economic burden of prescription opioid abuse and dependence in the US (2013) is over $78  billion5, 
including Medicaid spending of more than $8 billion on opioid addiction (OA)  treatment6. By every metric, the 
opioid epidemic continues to be a tremendous burden, and the need to expand the medication-assisted treatment 
toolkit for OA through identification of new targets for drug development is  clear7.

Animal model and human neuroimaging studies have established a strong, albeit partial, understanding 
of the neurocircuitry of addiction as heuristically characterized in the Koob and Volkow  model8. The primary 
neurocircuitry elements involved (basal ganglia, extended amygdala, and prefrontal cortex) and their molecular 
connections to the cycle of addiction (intoxication, withdrawal, and preoccupation) are broadly understood. 
However, there is clear variability in the functioning of this neurocircuitry among individuals as evidenced by 
only 20–30% of people who use heroin becoming  addicted9,10 and only 8–12% of chronic pain patients prescribed 
opioids developing  OA11.

Genetics is a major contributor to individual variation in the risk of developing OA, with ~ 60% of the popula-
tion variability being attributable to genetic  factors12,13. This heritability estimate is comparable to other complex 
phenotypes, such as Alzheimer’s14, age-related macular  degeneration15, and  height16, which have conclusively 
associated genetic variants. However, few robust genetic variant associations with OA have been  identified17–20.

Eight genome-wide association studies (GWAS) of OA have been  reported21–28, in which the number of cases 
varied from 104 to 10,544 for ancestry specific analyses. Six of these GWAS identified genome-wide significant 
(GWS)  loci23,25–29. However, only the largest analysis, which combined results of European ancestry (EA) cohorts 
from the US Veterans Affairs Million Veteran Program (MVP), the Study of Addiction: Genetics and Environ-
ment (SAGE), and Yale-Penn (YP) cohorts (10,544 cases and 72,163 controls), identified a GWS association that 
replicated in an independent sample (additional YP data: 508 cases and 206 controls). The variant identified is the 
long-studied rs1799971 (OPRM1-A118G), a functional coding variant (encoding Asn40Asp) in the mu opioid 
receptor gene (OPRM1): discovery p = 1.51 ×  10−8, replication p = 0.049. The rs1799971-G protective association 
with OA was also extended at nominal significance to buprenorphine treatment status in the UK Biobank (240 
cases and 360,901 controls; p = 0.04).

To maximize discovery, we leveraged genomic structural equation modeling (gSEM)30 to combine new and 
existing GWAS data with varied, but closely related, phenotypes for OA to enable the largest GWAS of OA 
to date (23,367 cases, 384,629 controls: effective sample size 88,114). We brought together novel results from 
the Genetics of Opioid Addiction Consortium (GENOA) with publicly available summary statistics from the 
MVP-SAGE-YP27, the Psychiatric Genetics Consortium-Substance Use Disorder Group (PGC-SUD)26, and the 
Partners Health Group (PH)28. We examined SNP-based heritability and genetic correlation among the varied 
phenotypic definitions of OA across the contributing cohorts, including diagnostic and frequency of use-based 
cases and different types of controls: opioid exposed, unexposed, and population-based. We conducted a variant 
level gSEM analysis in the full complement of cohorts and a gene-based association test based on those results. 
Whereas gSEM accounts for the sample overlap among the GENOA, PGC-SUD, and MVP-SAGE-YP analyses, 
we were able to combine the samples and increase substantially available sample size compared to standard meta-
analysis. Follow-up analyses included: (1) evaluation of genetic correlation with brain-related phenotypes; (2) 
estimation of predicted genetically driven differential expression in brain tissues; (3) colocalization of genetic 
association loci with cis-eQTLs; (4) evaluation of loci pleiotropy, and (5) druggability of nominated targets.

This study provides an unequivocal GWS association signal for the intron 1 locus in OPRM1 and, through 
haplotype analysis, suggests that rs1799971 (A118G) may not be the driver of the locus’s association with OA. 
We also identified two novel GWS gene-based associations with OA: PPP6C and FURIN. Both genes have 
been previously associated with phenotypes correlated with OA (e.g. PPP6C with cigarette  smoking31,32, alcohol 
 consumption31, and depressive  symptoms33; FURIN with  schizophrenia34,35, risk  tolerance36, and  insomnia36). 
This study links these genes to predicted genetically driven differential expression in brain tissues by OA. Colo-
calization analysis supports a shared single variant between OA association and gene expression for PPP6C but 
the results for OPRM1 and FURIN are not as well defined. Collectively, these results provide extended insight 
into the association of OPRM1 with OA and implicate novel genes associated with this phenotype.

Results
Different approaches to defining OA are highly genetically correlated. Our gSEM for OA brings 
together novel GWAS data from GENOA and summary statistics from all prior GWAS of OA that included more 
than 1000 cases and 1000 controls of European ancestry (EA)26–28. GENOA is a new consortium comprised of 
investigators who attend the National Institute on Drug Abuse Genetics and Epigenetics Cross-cutting Research 
Team Meetings and who have GWAS data on OA (Supplementary Table 1). In this study, OA refers to a broad 
meaning of addiction to opioids defined by multiple approaches to measuring the phenotype. The success of 
both the GENOA and gSEM analyses to maximize sample size and discovery then depends on similar heritabil-
ity and high genetic correlations across the different measures of OA.

We focused on EA cohorts for the genetic correlation and gSEM analyses because these approaches, which 
allow us to maximize sample size by bridging phenotypes and accounting for cohort overlap, require linkage 
disequilibrium score regression (LDSC) results to model the genetic variance–covariance matrix. LDSC, in turn, 
depends on an ancestry-specific reference panel, which isn’t currently available for African Americans (AAs).

Among the 10 independent EA cohorts contributing to GENOA, OA was defined by Diagnostic and Statisti-
cal Manual criteria for opioid abuse or dependence (DSM-based; N = 17,061) or by frequency of use (FOU) of 
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illicit opioids (e.g., injecting heroin 10 or more times in the past 30 days; FOU-based; N = 11,976; Supplementary 
Table 1). SNP-based heritability for both phenotypes was strong (DSM-based: h2 = 0.11, SE = 0.03; FOU-based: 
h2 = 0.18, SE = 0.04) and their genetic correlation robust (rg = 1.05, SE = 0.16; SNP-based genetic correlations are 
not bound by 1.0).

Across the full set of GWAS results contributing to the gSEM GWAS (i.e., GENOA, MVP-SAGE-YP, PGC-
SUD, and PH) there are additional OA definitions (MVP and PH used Electronic Health Record ICD-9 or 
ICD-10 codes for opioid use disorder [OUD]) and variation in type of controls used. GENOA cohorts used a 
combination of controls (opioid exposed, unexposed, and unknown exposure public controls). MVP and PH 
used opioid exposed controls, and the PGC-SUD results used here were based on unexposed controls. Regard-
less of the approach to defining OA or the type of controls, the LDSC genetic correlations across cohorts were 
very high (all pairwise rg > 0.9, Supplementary Table 2). These heritabilities and genetic correlations show that 
the genetics contributing to OA are highly shared regardless of OA case definition or opioid exposure status of 
controls to which the cases are compared.

GENOA GWAS identifies one European Ancestry specific OA association. Conducting ancestry 
specific and cross-ancestry meta-analyses of the GENOA cohorts (Supplementary Figs. 1–6 and Supplemen-
tary Tables 3–5) yielded one GWS association locus on chromosome 4 among EAs (rs28386916-A, beta = 0.17, 
p = 9.04 ×  10–9). The rs28386916 variant was not associated with OA among AAs (beta = − 0.025, p = 0.51) and con-
sequently was no longer significant in the EA + AA meta-analysis. Rs28386916-A is common (EUR MAF = 0.40; 
AFR MAF = 0.81) and was well imputed (imputation quality > 0.8 across cohorts). However, it is an intronic 
variant located between (T)_11 and (A)_11 simple repeats within the long noncoding RNA ENST00000659878, 
which may undermine confidence in this result (Supplementary Fig. 7).

Genomic structural equation model GWAS of opioid addiction identifies two other GWS loci in 
European Ancestry. A single common factor gSEM (Fig. 1a) fit the GENOA, MVP-SAGE-YP, PGC-SUD, 
and PH summary statistics for OA well, with high Akaike information criterion and comparative fit index, and 
low standardized root mean squared root (SRMR) values (Fig. 1a). Testing the association of 2.4 million vari-
ants available across all cohorts (Supplementary Tables 6 and 7 for LDSC and gSEM SNP QC and derivation of 
available variants, respectively) with the latent genetic factor (effective sample size N = 88,114) identified two 
GWS loci (Fig. 1b; Q–Q plot Supplementary Fig. 8): one on chromosome 6 with 32 GWS variants (top variant 
rs9478500-C, beta = 0.136, p = 2.56 ×  10–9; Supplementary Table 8; forest plot Supplementary Fig. 9a) and the 
other represented by a single variant on chromosome 16 (rs13333582-C, beta = − 0.219, p = 3.58 ×  10–8; forest 
plot Supplementary Fig. 10, LocusZoom plot Supplementary Fig. 12). The LDSC intercept of approximately 1 for 
this model (Fig. 1b), indicates that these results are not due to uncontrolled inflation, as would be expected if the 
overlap in the cohorts contributing to some of the summary statistics used here was not adequately accounted 
 for30.

The associated locus on chromosome 6 was centered in intron 1 of the mu-opioid receptor gene OPRM1 (Sup-
plementary Fig. 11). The minor allele of the lead variant, rs9478500-C, was associated with increased risk of OA 
(beta = 0.136). All of the GWS variants were in high linkage disequilibrium (LD) with each other  (r2 > 0.88 and 
D’ > 0.93; Supplementary Table 9). The previously reported missense variant rs1799971 (OPRM1-A118G), which 
was GWS for OUD in MVP-SAGE-YP27, was less statistically significant in our gSEM analysis (rs1799971-G, 
beta = − 0.115, p = 1.94 ×  10–6; forest plot Supplementary Fig. 9b). In the MVP GWAS rs9478500-C was associated 
with OA, but with less statistical significance (MVP rs9478500-C, beta = 0.09, p = 4.31 ×  10–5).

Analyses of rs9478500 conditioning on rs1799971 and vice versa using GCTA-COJO37,38 showed only mod-
est decrements in statistical significance for each variant compared to their unconditional models: rs9478500 
(p = 2.56 ×  10–9 for the gSEM analysis vs. p = 2.04 ×  10–7 for the conditional analysis); rs1799971 (p = 1.94 ×  10–6 
for the gSEM analysis vs. p = 1.41 ×  10–4 for the conditional analysis). These results suggest that these variants 
have largely independent associations. However, GCTA-COJO only accounts for LD in terms of  r2, which is low 
between these variants among those of European ancestry  (r2 = 0.035). In contrast, perfect D’ (1.0) between these 
variants indicates a strong dependency in the haplotype structure and a need to examine haplotypes.

Prior candidate gene studies that examined OPRM1 haplotypes with rs1799971 suggested that other variants 
may explain its equivocal association with  OA39,40. Subject level genotypes for haplotype analysis were available 
from a subset of cohorts contributing to the gSEM analysis (Fig. 2). In this subset of cohorts, the single variant 
results for rs9478500 (beta = 0.205, p = 2.43 ×  10–9) were strong, but those for rs1799971 were weak (beta = − 0.058, 
p = 0.135). Comparison of the three haplotypes formed by rs1799971, rs9478500, and the other GWS OPRM1 
variants (Fig. 2a) further weakened evidence for an association with OA being driven by rs1799971 (Fig. 2b 
comparison 1: p = 0.52, beta = − 0.026, SE = 0.0397) and strengthened evidence for an association with OA being 
driven by the effect of the non-rs1799971 variants (comparison 2: p = 1.63 ×  10–10, beta = 0.2303, SE = 0.036, 
Fig. 2b).

Intergenic variant rs13333582 on chromosome 16 was also GWS (Supplementary Fig. 12), with the minor 
C allele decreasing risk of OA (beta = − 0.22). While rs13333582 passed QC, (MAF = 0.04, INFO > 0.8, for all 
cohorts), variants in strong LD showed weaker evidence for association (e.g., rs921982  r2 = 0.87, p = 2.25 ×  10–3). 
In addition, rs13333582 was not significant in the GENOA AA analysis (p = 0.28), and the direction of effect was 
opposite of that observed in the gSEM EA analysis.

The GWS association locus on chromosome 4 from the GENOA EA analysis (rs28386916-A, beta = 0.17, 
p = 9.04 ×  10–9) was not included in the gSEM analysis as it was absent from the MVP and PH GWAS. However, 
several variants in high LD (D’ > 0.6) with it were not significant in the gSEM analysis (minimum p-value for 
rs11943738—p = 0.001, beta = 0.057, and SE = 0.017, Supplementary Table 10).
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Figure 1.  Genomic SEM model and Manhattan plot. (a) A common factor  (pg) gSEM model (using 
GenomicSEM) is fit with summary statistics from GENOA, MVP12-YP-SAGE, PGC, and Partners Health 
cohorts. Standardized estimates and standard errors are shown for each free parameter. Model fit is shown by 
a non-significant chi-square test, high Akaike information criterion (AIC, higher is better) and comparative 
fit index (CFI) equal to 1.0, and low standardized root mean squared root (SRMR) values (ideally < 0.05). (b) 
Manhattan plot for gSEM results with summary statistics from GWAS from each cohort. Bonferroni correction 
was used to correct for multiple comparisons; associations with P < 2 ×  10–8 (indicated by horizontal black bar) 
were genome-wide significant (top SNP highlighted in red).
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Figure 2.  Association of major haplotypes for genome-wide significant OPRM1 variants with OA. (a) The 3 
major haplotypes for genome-wide significant OPRM1 variants. Haplotype A is the predominant haplotype 
(frequency ~ 0.69 among contributing cohorts) and consists of major alleles for all variants. Haplotype B 
(frequency ~ 0.13 among contributing cohorts) consists of the minor allele for rs1799971 and the major allele 
for all other variants. Haplotype C (frequency ~ 0.16 among contributing cohorts) consists of the major allele 
for rs1799971 and minor allele for all other variants. The cohorts for whom we had the raw data to conduct 
the haplotype analyses were: UHS, VIDUS, ODB, Yale-Penn, CATS and Kreek (Supplementary Table 1). 
(b) Association of OPRM1 haplotypes with OA. Haplotype C is associated with increased risk of OA when 
compared to Haplotype A or Haplotype B, whereas Haplotype B does not have a significant impact on OA 
relative to Haplotype A. The single variant results using the cohorts contributing to the haplotype analyses were: 
rs1799971 beta = -– 0.058, p = 0.135; rs9478500 beta = 0.205, p = 2.43 ×  10–9.
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OA is genetically correlated with 21 other brain‑related traits. LDSC-based genetic correlation 
 (rG) analyses between OA (gSEM results) and 37 brain related traits (Fig. 3, Supplementary Table 11) yielded 
21 significant results (Bonferroni threshold of p < 1.35 ×  10–3). The highest  rGs were with cannabis use disorder 
 (rG = 1.0452, p = 9.40 ×  10–6) and alcohol dependence  (rG = 0.8183, p = 4.82 ×  10–10); smoking traits  (rG = − 0.4928 
to 0.6043, p = 1.82 ×  10–49 to 0.44) and other psychiatric disorders  (rG = − 0.2482 to 0.4849, p = 0.79 to 1.82 ×  10–49) 
were more modest. Expected inverse genetic correlations were also evident for age of initiation of cigarette smok-
ing  (rG = − 0.4928, p = 5.97 ×  10–17) and cognitive/educational traits  (rG = − 0.3722 to − 0.4033, p = 1.00 ×  10–4 to 
1.40 ×  10–22). There were no genetic correlations between OA and brain volume traits.

Gene‑based MAGMA GWAS of gSEM summary statistics for OA corroborates OPRM1 and 
identifies novel genes. Gene level analyses of gSEM GWAS results using  MAGMA41 showed significant 
associations with OPRM1 and two novel genes out of 15,977 genes tested (p < 3.13 ×  10–6; Fig. 4; Q-Q plot Sup-
plementary Fig. 13; full results in Supplementary Table 12). These novel gene-based associations include Pro-
tein Phosphatase 6 Catalytic subunit gene (PPP6C) and Furin Paired Basic Amino Acid Cleaving Enzyme gene 
(FURIN). The association between PPP6C and OA utilized 57 variants including several in LD that approached 
variant-level genome-wide significance (p = 3.37 ×  10–7 to 2.14 ×  10–5, Fig. 1b). This peak extended across three 
genes: PPP6C, SCAI, and RABEPK (Supplementary Fig. 14) but only PPP6C reached gene-based genome-wide 
significance (SCAI p = 0.0016; RABEPK p = 2.82 ×  10–5).

Figure 3.  Genetic correlations of opioid addiction (OA) with 38 other brain-related phenotypes. Correlations 
were calculated using linkage disequilibrium (LD) score regression with the gSEM OA GWAS meta-analysis 
results, compared with results made available via LD Hub or study investigators (see Supplementary Table 24 
for original references). Phenotypes were grouped by disease/trait or measurement category, as indicated 
by different colorings. Dots indicate the mean values for genetic correlation (rg); error bars show the 95% 
confidence intervals; the dashed vertical black line corresponds to rg = 0 (no correlation with OA), and the 
solid vertical black line corresponds to rg = 1.0 (complete correlation with OA). Phenotypes with significant 
correlation with OA are bolded (1 degree of freedom Chi-square test; Bonferroni adjusted p-value < 0.05 after 
accounting for 38 independent tests). Exact p-values are provided in Supplementary Table 10). CUD,  Cannabis 
use disorder; DPW,  drinks per week; FTND, Fagerström test for nicotine dependence; HSI, heaviness of 
smoking index; CPD, cigarettes per day; ADHD, attention deficit hyperactivity disorder; PTSD, post-traumatic 
stress disorder; MDD, major depressive disorder; ASD,  autism spectrum disorder; ICV,  intracranial volume.
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The gene-level association between FURIN and OA was based on a single variant (rs17514846-A, beta = − 0.08, 
p = 8.82 ×  10–7). While other FURIN variants were available in individual cohorts, the gSEM GWAS, and thereby 
the MAGMA analysis, included only one due to the gSEM method’s requirement that variants be present in every 
contributing cohort. A standard logistic regression meta-analysis of FURIN variants across the subset of GWAS 
cohorts without overlapping participants (GENOA, MVP, and PH) retained additional variants excluded from 
the gSEM analysis and identified 3 additional variants in strong LD with rs17514846  (r2 > 0.64, D’ = 1.0); all four 
variants were associated with OA (Supplementary Fig. 15; Supplementary Table 13), the weakest association 
being for rs17514846 (p = 1.67 ×  10–6) and the strongest being for rs11372849, which was GWS (rs11372849-TC, 
beta = -0.074, p = 4.11 ×  10–8; forest plot Supplementary Fig. 16).

Predicted genetically driven gene expression in brain tissue expands neurobiologically rele-
vant evidence for OA‑associated genes. We applied S-PrediXcan42 using GTEx version 8 eQTL gene 
models (http:// predi ctdb. org/) with the gSEM GWAS summary statistics as input to estimate genetically driven 
differential gene expression in human brain tissues associated with OA. Fourteen gene-tissue combinations 
surpassed correction for the total number of gene models and brain tissues (156,215 tests) with a false discov-
ery rate (FDR) less than 0.05 (Table 1; all results presented in Supplementary Table 14). Predicted genetically 
driven OPRM1 expression was significantly associated with OA in cerebellum. Only four brain tissues had gene 
models for OPRM1 (cerebellum, cerebellar hemisphere, hypothalamus, and nucleus accumbens; Supplemen-
tary Table  14). In contrast, PPP6C was predicted to be differentially expressed in nine of 12 available brain 
tissue models. Nearby SCAI was the only other gene to show statistically significant genetically driven expres-
sion associated with OA, doing so across four brain tissues. FURIN was nominally associated (p = 9.67 ×  10–5) 
in hippocampus but did not surpass the FDR < 0.05 threshold. RABEPK was not predicted to be differentially 
expressed by OA (best p = 0.055 in caudate).

Some OA associations colocalize with genetically driven gene expression. To estimate the likeli-
hood that the genetic loci associated with OA share a causal variant with the expression quantitative trait loci 
(eQTLs) for our nominated genes (OPRM1, PPP6C, and FURIN), we applied  coloc43 to our gSEM GWAS results 
and the GTEx eQTL results for these genes. Because the variants underlying the GWS association for PPP6C 
physically extend into SCAI and RABEPK (Supplementary Fig. 14), we included these genes in the analysis. We 
evaluated colocalization across the superset of 10 brain tissues which showed genetically driving differential 
expression for at least one gene in the S-PrediXcan analysis (Supplementary Table 14). OPRM1 is expressed at 
relatively low levels in the GTEx brain tissues (Supplementary Fig. 17a). Only six of 10 brain tissues showed 
variant associations with OPRM1 expression in GTEx and could be included in the coloc analysis. The poste-
rior probabilities for four tissues of the six tissues tested for OPRM1 favored the hypothesis that only a genetic 
association with OA at this locus is present (Fig. 5H2, Supplementary Table 15). However, in the cerebellum, 
where OPRM1 is most highly expressed and for which S-PrediXcan predicted differential expression by OA, 
the greatest posterior probabilities favored hypotheses for both the OA-associated locus and cis-eQTL traits 
being associated, but with different causal variants (H3) or a shared single causal variant (H4). Among the three 
genes at the PPP6C-centered locus, PPP6C shows the highest levels of gene expression in brain tissues (Sup-
plementary Fig. 17b–d) and the greatest support for colocalization of OA-associated variants with cis-eQTLs 
for PPP6C (Fig. 5, Supplementary Table 15). In contrast, the analysis for RABEPK uniformly indicated that the 
OA-associated variants do not colocalize with the RABEPK cis-eQTLs. The analyses for SCAI showed mixed 
results, indicating the OA-associated variants have a moderate probability of colocalization with SCAI cis-eQTLs 

Figure 4.  Gene-level Manhattan Plot. GWAS results were summarized at the gene-level using MAGMA. 
Bonferroni correction was used to correct for multiple comparisons; associations with P < 3 ×  10–6 (indicated by 
horizontal red dotted line) were genome-wide significant.

http://predictdb.org/
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Table 1.  Fourteen gene-brain region combinations exhibiting predicted genetically driven differential gene 
expression in human brain regions associated with OA (across tissue FDR < 0.05) in analysis of gSEM GWAS 
summary statistics with S-PrediXcan analysis using GTEx version 8 eQTL gene models.

Gene Tissue Across tissue FDR

OPRM1 Cerebellum 0.009

SCAI Cerebellum 0.009

SCAI Frontal cortex 0.009

SCAI Hippocampus 0.009

PPP6C Hippocampus 0.009

PPP6C Anterior cingulate cortex 0.01

PPP6C Cerebellar hemisphere 0.01

PPP6C Putamen basal ganglia 0.01

PPP6C Caudate basal ganglia 0.01

SCAI Cortex 0.01

PPP6C Cortex 0.01

PPP6C Frontal cortex 0.01

PPP6C Hypothalamus 0.01

PPP6C Nucleus accumbens basal ganglia 0.01

Figure 5.  Colocalization of GWAS loci and QTLs for selected genes across 10 brain tissues. Posterior 
probabilities of supporting hypotheses regarding the association of each trait with SNPs in a region were 
calculated using coloc. For OPRM1, SNP-gene cis-eQTL associations were reported in GTEx Analysis v8 for 
only 6 of the 10 tissues.
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for some tissues (cortex, frontal cortex, and hippocampus) but not for most, and not as high a probability as for 
PPP6C. For FURIN, the null hypothesis of neither trait being associated in this region has the highest posterior 
probability across all tested brain tissues (Fig. 5, Supplementary Table 15), which is consistent with (1) a single 
variant (rs17514846) driving the GWS gene-based association with OA, (2) no significant evidence for differen-
tial gene expression in the S-PrediXcan analyses, (3) limited evidence for this variant as an eQTL in brain tissues 
(Supplementary Table 16).

Drug repurposing analyses suggest druggability for OPRM1, PPP6C, and FURIN. To identify 
potential for new pharmacological treatments of OA through drug repurposing or compound development, we 
examined OPRM1, PPP6C, and FURIN across multiple drug repurposing databases (the Drug Gene Interac-
tion Database v.3.0  [DGIdb]44, Connectivity Map  [CMap]45, PHAROS [https:// pharos. nih. gov/]46). OPRM1 is a 
known target of more than one-hundred drugs and compounds, including illicit drugs, abused therapeutics (e.g., 
oxycodone), and OA treatments (e.g., methadone and buprenorphine) (Supplementary Table 17a–c). In con-
trast, PPP6C is not a target of any known drug or compound but has a 94% likelihood that its protein has ligand 
properties based on its  chemistry47. FURIN is the target of one approved drug, pirfenidone, which is indicated 
for treatment of idiopathic pulmonary fibrosis. There are more than 80 compounds identified targeting FURIN, 
most developed as inhibitors targeting FURIN function in infectious diseases (Supplementary Table 18a–c).

Testing previously reported GWAS associations supports three variants & two genes: 
rs1799971, rs62103177, rs640561, BEND4, and PTPRF. Among the previously reported associa-
tions, the strongest association in the current results was observed for rs1799971 (p = 1.94 ×  10–6, see Supple-
mentary Table 20 for previously GWAS associated variants and genes)27. The only other previously reported 
variant tested in our gSEM was rs62103177 in the KCNG2  gene23, which was nominally associated with OA 
in our EA cohort (p = 0.0024). To capture variants reported to be association with OA that were not included 
in the gSEM results, we extended our lookup to standard logistic regression meta-analysis of the subsets of 
EA GWAS cohorts that were not included in the originally reported findings. The CNIH3 variant, rs10799590, 
reported by Nelson et  al.24 and the PGC-SUD  reported48 variant, rs201123820, were not statistically signifi-
cant in our standard meta-analysis (p = 0.49 and p = 0.63, respectively). Of the two PH reported  variants28, only 
rs10014685 was present in independent cohorts, but it was not significant in either (deCODE p = 0.89; UHS 
p = 0.36). Examining a recently reported GWAS of prescription opioid misuse (POU)49, we see a genetic correla-
tion between OA and POU  (rg = 0.74, p = 2.24 ×  10–12) and extend their association of rs640561 to OA (rs640561-
T, beta = -0.061, p = 0.009). Finally, we examined our gene-based GWAS results for evidence supporting previ-
ously reported genes and found no support for GRM822 (p = 0.655), CNIH324 (p = 0.174), CCDC4250 (p = 0.307) 
or SPDYE450 (p = 0.856). However, we found nominal support for BEND4 (p = 0.0023) association with OA, 
which was reported in the PGC-SUD GWAS for the opioid use phenotype (exposed vs. unexposed controls)26 
and PTPRF for POU (p = 0.026)49.

Discussion
In this study, we demonstrated a high degree of genetic correlation between differing diagnostic and frequency-
based case definitions of OA and across different types of controls (opioid exposed, unexposed, and public 
controls), which allowed us to conduct the GENOA meta-analysis and apply gSEM successfully to GENOA and 
existing summary statistics to conduct the largest GWAS among European ancestry cohort participants to date 
(23,367 cases and total effective sample size of 88,114 individuals) with the OA case definition. The GENOA 
GWAS of European ancestry identified a single GWS association (rs28386916), but the variant was not available 
in the MVP or PH cohorts and, consequently, was not tested for replication and was not present in the gSEM 
GWAS. Given the position of this variant between simple repeats and that variants in high LD with it were not 
significant in the gSEM GWAS, it seems likely that it represents a false positive. In the gSEM GWAS we found the 
strongest statistical evidence to date linking variants in intron 1 of the OPRM1 gene to OA, extending previous 
candidate gene studies focused on this  gene39,51,52. Gene-based analyses also identified two novel GWS genes for 
OA: PPP6C and FURIN. Examining the predicted differential expression of these genes in brain tissue and their 
colocalization with OA association signals suggest that the effect of the PPP6C locus on risk of OA is likely to 
be through effects on PPP6C expression, while the signal for OPRM1 is more complex; there is limited evidence 
that expression differences explain the association of FURIN with OA.

The top finding of this gSEM GWAS for OA was centered in intron 1 of the OPRM1 gene (lead SNP rs9478500-
C). Prior candidate gene studies of this region have found nominal associations of variants in intron 1, including 
some of those that are GWS here (e.g., rs1381376, rs3778151, & rs3778150)39,51,52. The mu-opioid receptor gene, 
OPRM1, has long been a target of OA research and drug development. The functional coding variant rs1799971 
(A118G; Asn40Asp) has been studied at length with equivocal  results39,53,54. In the current GWAS era, only the 
MVP GWAS of OUD found rs1799971 to be GWS (p = 1.51 ×  10–8)27. Adding cohorts to the MVP summary 
statistics in the current study reduced the variant’s association with OA to p = 1.94 ×  10–6.

Conditional analyses using GCTA-COJO37,38 to evaluate the independence of rs9478500 and rs1799971 sug-
gested that each association was independent of the other. However, GCTA-COJO only accounts for LD in terms 
of  r2 which is low between these variants in EA (0.035), whereas D’ is 1.0. Thus, following prior candidate gene 
 studies39,40, we examined the associations of specific OPRM1 haplotypes with OA. The OA association was strong-
est with the haplotype consisting of the major rs1799971-A allele and minor alleles at all GWS OPRM1 variants 
from our study, which was associated with increased risk compared to the other haplotypes. The association with 
the haplotype consisting of the minor rs1799971-A allele and major alleles at all other GWS OPRM1 variants was 
not significant. In the subset of cohorts used in the haplotype analysis, the variant level association for rs1799971 

https://pharos.nih.gov/
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was also not significant, which limits the strength of our haplotype-based conclusions. However, our earlier hap-
lotype analyses of OPRM1 intron 1 variants and rs1799971 came to similar conclusions, albeit in more limited 
 datasets39,40. This relationship between the underlying EA haplotype structure and risk for OA may explain the 
equivocal findings at the individual rs1799971 variant level, but it may be that other, as-yet-unidentified vari-
ants could be the true causal variants driving these haplotype associations. Given the GCTA-COJO conditional 
analysis, the haplotype analysis, and the potential for as-yet-unidentified variant the exact nature of this locus’ 
association with OA remains to be determined.

The role of genetically driven OPRM1 expression also appeared complex in this study. In our S-PrediXcan 
analysis, we observed statistically significant, predicted differential expression of OPRM1 for OA in cerebel-
lum, the brain tissue with the highest level of OPRM1 expression in GTEx. Moreover, one of the two cis-eQTL 
variants in the version 8 GTEx model for OPRM1 expression (rs478498) is in high LD with our top association 
variant (rs9478500;  r2 = 0.56, D’ = 0.98), suggesting that the intron 1 locus may have its effect on OA through 
OPRM1 expression. However, the colocalization analysis was more equivocal. The hypotheses with the greatest 
posterior probabilities were that both OPRM1 expression and OA risk are associated with this locus, but with 
different causal variants (H3, posterior probability = 0.46) and with a single causal variant (H4, posterior prob-
ability = 0.38). Given the generally low level of OPRM1 expression across bulk brain tissues, larger sample sizes 
and single nuclei experiments will be needed to further distinguish which of these hypotheses is most likely. 
Ultimately, model organism or organoid experiments are likely to be necessary to fully test gene expression as a 
potential mechanism for the association of this locus with OA.

Beyond OPRM1, we also observed a GWS association with OA for the intergenic variant rs13333582. The 
observations that variants in high LD with rs13333582 had much weaker associations and that rs13333582 is 
located in a repetitive sequence both suggest the association with OA was a false positive.

Increasing statistical power through a gene-based GWAS of the gSEM summary statistics identified two novel 
GWS genes for OA: PPP6C and FURIN. PPP6C (Protein Phosphatase 6 Catalytic subunit gene) is a component 
of a signaling pathway that regulates cell cycle progression known to be involved with the immune system and 
cancer (https:// www. unipr ot. org/ unipr ot/ O00743# funct ion). However, the gene is also strongly expressed in a 
variety of adult human brain tissues (Supplementary Fig. 17c) and is linked to abnormal locomotor behavior in 
mice (http:// www. infor matics. jax. org/ disea sePor tal/ genoC luster/ view/ 2062856). Predicted biological processes 
for PPP6C include G-protein coupled purinergic nucleotide receptor signaling pathway (GO:0035589) (https:// 
maaya nlab. cloud/ archs4/ gene/ PPP6C), which affects regulation of neurons, microglia and  astrocytes57. Predicted 
genetically driven differential expression of PPP6C by OA was significant across several brain regions, and colo-
calization analysis of PPP6C cis-eQTLs and the OA-variant association signal at this locus also showed a high 
probability of being driven by a shared single variant. Because the PPP6C-centered association locus extends 
into the nearby genes SCAI and RABEPK, and significant predicted genetically driven differential expression of 
SCAI was also observed, we cannot exclude the possibility that these other genes play a role in, or are responsible 
for, the PPP6C-OA association. However, the degree of gene expression/variant association colocalization for 
PPP6C across brain tissues suggest it as the leading candidate for follow-up studies.

The GWS gene-based association of OA with FURIN was driven by a single variant, rs17514846. However, this 
signal was supported by analysis of additional FURIN variants in a subset of cohorts where more FURIN variants 
were available, including a GWS association with OA at the variant level for rs11372849. FURIN is a member of 
the convertase family and encodes a type 1 membrane bound protease that is expressed in neuroendocrine and 
brain tissues, among others (https:// www. ncbi. nlm. nih. gov/ gene/ 5045). Although FURIN shows higher expres-
sion across brain tissues than OPRM1, the S-PrediXcan analysis did not show significant predicted genetically 
driven expression differences associated with OA for this gene, and the highest posterior probabilities from the 
colocalization analysis favored no association of either eQTLs or the OA-variant association signal at this locus. 
However, this may reflect the single variant association with OA in the gSEM GWAS and an effect on OA through 
mechanisms other than gene expression.

LDSC analyses demonstrated moderate to strong genetic correlations between OA and a variety of substance 
use, psychiatric, and cognitive phenotypes in expected directions (e.g., positive correlation with cannabis use 
disorder, inverse correlation with age of smoking initiation). Moving from the general genomic signal to the 
specific OA-associated genes, we observed important differences in OPRM1, PPP6C, and FURIN associations 
with brain- and SUD-related phenotypes. Although OPRM1 has been broadly studied, only GWAS of  OUD58 
and methadone  dose59 have identified GWS associations with OPRM1 variants (Supplementary Fig. 18; Supple-
mentary Table 19a)60,61. The variant associated with methadone dose, rs73568641, was not associated with OA in 
this gSEM GWAS (p = 0.328). In contrast with OPRM1, variants in PPP6C have been associated with numerous 
brain- and SUD-related phenotypes, notably opioid medication use, alcohol consumption, numerous smoking 
phenotypes, and depression among others (Supplementary Fig. 19; Supplementary Table 19b). The specific PPP6C 
variants nominally associated with OA in this gSEM GWAS have been associated with neuroticism, depres-
sive symptoms and a number of smoking phenotypes at genome-wide significance (Supplementary Table 19b). 
Variants in FURIN have been associated with other brain- and SUD-related phenotypes, most predominantly 
schizophrenia, but also risk taking, number of sexual partners, and insomnia (Supplementary Fig. 20; Supple-
mentary Table 19c). The variant driving the GWS gene-based result here (rs17514846) and the GWS variant in 
our subset meta-analysis for OA (rs11372849) are associated with each of these phenotypes at genome-wide 
significance (Supplementary Table 19c).

Similar variability was seen across OPRM1, PPP6C, and FURIN in drug repurposing analyses. While OPRM1 
is the known target of more than 100 drugs and compounds, FURIN is the target of one approved drug (pir-
fenidone), and PPP6C is not a target of any known drug or compound However, FURIN is the target of more 
than 80 compounds and the PPP6C protein has a 94% likelihood of being ligandable. Should these novel gene 
associations be validated in subsequent studies they appear to be potentially important drug development targets.

https://www.uniprot.org/uniprot/O00743#function
http://www.informatics.jax.org/diseasePortal/genoCluster/view/20628
https://maayanlab.cloud/archs4/gene/PPP6C
https://maayanlab.cloud/archs4/gene/PPP6C
https://www.ncbi.nlm.nih.gov/gene/5045
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Among this study’s limitations, the most notable is the focus on cohorts of European ancestry. This focus was 
required to maximize sample size and statistical power by combining summary statistics across GENOA, PGC-
SUD, MVP and PH GWAS through application of the gSEM GWAS method. This approach allowed us to more 
than double the number of cases used in the EA-focused MVP-SAGE-YP analyses that yielded genome-wide 
significance for rs1799971 (n = 23,367 vs n = 10,544) by leveraging gSEM’s ability to model multiple correlated 
phenotypes and account for sample overlap. These gSEM analyses will be extended to African Americans when 
the needed ancestry-specific LDSC reference panel becomes available.

An additional potential limitation is the variability in OA case definitions (e.g., diagnostic and frequency 
of use) and types of controls (e.g., exposed, unexposed, and population-based) used to define OA phenotypes 
across the cohorts within the GENOA and across the other contributing GWAS. However, the genetic correla-
tions across phenotypes were uniformly high (rg > 0.9) and resulted in a well-fitting single latent factor gSEM 
model. An important caveat to the high correlations observed across cohorts with exposed, unexposed, and 
public controls is that the exposure to opioids was often based on prescribed medication (MVP and PH), which 
differs in risk of OA from exposure to illicit heroin use. Fine-grained comparison of large samples with different 
types of exposure to opioids will be needed to resolve this question. Because we have incorporated GENOA and 
previously published GWAS of OA for our discovery analyses, we do not have independent replication cohorts 
available in which to test the identified associations. However, OA associations with the intron 1 locus have 
been previously  reported29,39,51,52, the chromosome 16 (rs13333582) is an eQTL for a gene previously reported 
as associated with  OA55, and variants in both PPP6C and FURIN have previously been associated with substance 
use and psychiatric disorder traits that are highly associated with OA (Supplementary Figs. 12 and 13). Thus, 
independent replication remains to be demonstrated, but the available evidence supports the identified variants 
and genes as associated with OA.

In this study, we leveraged gSEM across new and existing OA GWAS that employed various opioid-related 
phenotypes to conduct the largest EA-focused GWAS to date. Our results show the strongest statistical evidence 
to date for an association between variants in intron 1 of OPRM1 with OA. Conflicting results from variant 
conditional analysis and haplotype analysis of the GWS variants and previously associated rs1799971 (A118G) 
indicate that further functional study of intron 1 variants will be needed to determine the causal variant(s) driving 
this association with OA. Gene-based analyses identified two GWS associations: PPP6C and FURIN. These genes 
are novel for OA, however, variants within them have been associated at genome-wide significance with related 
phenotypes, such as cigarette smoking, alcohol consumption, general risk taking, and schizophrenia. With strong 
SNP-based heritability for these OA phenotypes, but only these few GWS findings, it is clear that increased sample 
sizes for GWAS and complementary approaches (e.g., gene regulation in postmortem brain tissues) are needed 
to identify much of the genetics driving risk of OA as well as to extend these studies to non-European ancestries.

Methods
Ethics declarations. All contributing cohorts obtained necessary patient/participant consent and appro-
priate institutional IRB approval received. Meta-analyses of these genetic data is approved under RTI Inter-
national IRB review (IRB ID: CR00000710 for 14107). All methods were performed in accordance with the 
relevant guidelines and regulations.

Cohorts and opioid addiction phenotype. Descriptive statistics for the GENOA studies contributing 
previously unpublished GWAS of opioid addiction (OA) to this investigation are provided in Supplementary 
Table 1, and full descriptions of the studies are provided in the Supplementary Methods. In total, this analysis 
provides new OA GWAS results for 304,831 individuals, including 7281 cases and 297,550 controls, with an 
effective sample size of 28,428 (4/((1/# Cases) + (1/# Controls)))62,63.

In the GENOA studies, OA was defined based either on the frequency of opioid use (FOU) or Diagnostic and 
Statistical Manual (DSM) of Mental Disorders criteria. Some studies included only opioid-exposed individuals 
in their control groups, while others included both exposed and unexposed individuals.

Genotype quality control and imputation. Sites in the GENOA consortium conducted standard geno-
type quality control using filters appropriate for their samples. SNPs were filtered based on call rate and deviation 
from Hardy–Weinberg equilibrium. Samples were filtered based on call rate, excessive homozygosity, related-
ness, and sex discrepancies. Classification of European ancestry individuals was based on comparison to refer-
ence populations using STRU CTU RE64. Specific filters used for each sample are provided in Supplementary 
Table 22.

For most samples, genotype imputation was performed with the Michigan Imputation  Server65 using the 
1000 Genomes Phase 3 v5 reference panel. For COGA, genotypes were phased with  SHAPEIT266 and imputed 
with  Minimac365 using the 1000 Genomes Phase 3 v5 reference panel. For deCODE, genotype imputation 
was conducted by long-range phasing and haplotype imputation of chip-genotyped individuals with methods 
described  previously67.

Association testing. Imputed genotypes for GENOA studies were tested for association with opioid addic-
tion case–control status, adjusting for sex, age, genotype principal components and in some cases recruitment 
site and other study-specific covariates. For all cohorts except deCODE, association testing was performed using 
the score test meta-analysis model of  rvtests68. For COGA, which is a family study, an empirically determined 
kinship matrix was used with rvtests to account for relatedness. For deCODE, data were analyzed using logistic 
regression treating disease status as the response and imputed genotype counts as covariates. Other available 
individual characteristics that correlate with disease status were also included in the model as nuisance variables 
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(sex, age, county of origin), blood sample availability, and an indicator function for the overlap of the lifetime of 
the individual with the time span of phenotype collection) using previously described  methods69. To account for 
inflation due to population stratification and relatedness, test statistics were divided by an inflation factor (1.10) 
estimated from linkage disequilibrium score regression (LDSR)70.

GENOA cohorts were combined via inverse variance-weighted meta-analysis of variants with MAF > 0.01 and 
Rsq > 0.8 using  METAL71 with genomic control enabled. For characterization of FURIN, an additional inverse 
variance-weighted meta-analysis of chromosome 15 was conducted including all studies with no overlapping 
samples (GENOA + MVP without SAGE and Yale-Penn + Partners; Cases N = 16,849, Controls N = 379,493, Total 
N = 396,342, Effective Total N = 52,508).

Cohort descriptions for GenomicSEM. The gSEM analysis includes results on EA from the GENOA 
meta-analysis, Million Veteran Program (MVP), Psychiatric Genetics Consortium Substance Use Disorders 
Group (PGC-SUD), and the Partners Health cohorts. The MVP results are based on a meta-analysis includ-
ing MVP parts 1 and 2 (total of 8529 OUD cases and 71,200 opioid-exposed controls), along with Yale-Penn 
and Study of Addiction: Genetics and Environment (SAGE) cohorts (total of 10,544 OUD cases and 72,163 
opioid-exposed controls)27. The PGC-SUD results include 4,503 opioid dependence cases and 4173 unexposed 
 controls26. Unexposed controls are used for the PGC-SUD because the exposed controls results have negative 
heritability estimates. The partners health cohort includes 1,039 OUD cases and 10,743 exposed  controls28. Note 
that the GENOA GWAS, Yale-Penn, and SAGE parts of the MVP, and the PGC-SUD results include overlapping 
samples. However, accounting for this sample overlap is a feature of the gSEM approach applied in this study. A 
total of 2,434,903 variants were present in all cohorts and tested for association with the OA latent variable in 
the gSEM analysis using a total sample size of 403,915 (23,367 cases and 384,619 controls; effective sample size 
of 88,114).

Genomic structural equation modeling. The GenomicSEM  package30 within R was used for genomic 
structural equation modeling (gSEM). The gSEM implemented multivariable LDSC function within this pack-
age was used to calculate single-nucleotide polymorphism heritability on the observed and liability scale (preva-
lence of 10%), genetic covariance matrices, and genetic correlation. The LD scores from 1000 Genomes Project 
phase 3  European70 were used as the reference population in this calculation. The sampling genetic covariance 
matrix is expanded to incorporate SNP effects by including the covariances between SNPs and each cohort. This 
expanded sampling genetic covariance includes the multivariate LDSC estimated genetic variances and covari-
ances, along with the sampling covariance matrix of the SNP effects on the cohorts, which are estimated using 
cross-trait LDSC with the sampling correlation weighted by the sample overlap. With the gSEM implemented 
LDSC, the overlap of samples between GENOA, MVP meta-analysis, and PGC-SUD is not a concern.

A single latent factor gSEM was used with the residual variance of the latent factor set to 1 to normalize the 
loading estimates. The loadings were calculated using diagonally weighted least squares and residual variances 
were bound to above 0.01 to avoid negative residual variance estimates.

Post‑GWAS QC. Standard post-GWAS QC was performed on the association results for individual cohorts, 
the GENOA meta-analysis results, and the gSEM results. For the association results for individual cohorts, the 
following QC was performed on the summary statistics: (1) variants with MAF < 0.01, imputation quality < 0.8, 
missing values, or values outside expected ranges were removed; (2) variant IDs were standardized; (3) QQ 
plots were generated to confirm lack of excessive bias and genomic control was applied to remove residual bias 
(see Supplementary Table 23 for genomic control factors); and (4) LDSC was performed to confirm correlation 
among the different OA measures used by cohorts (Supplementary Table 2). For the meta-analysis and gSEM 
results, the following QC steps were performed: (1) QQ plots were generated to confirm lack of excessive bias 
and (2) GWS signals were examined for consistency of effect size and direction of effect across cohorts.

Conditional analyses. To assess the interdependence of OPRM1 signals, GCTA-COJO37,38 was used to 
conduct conditional analyses (using the --cojo-cond option to specify the variant to condition on) based on the 
summary statistics from the gSEM analysis. Separate analyses conditioning on rs1799971 and rs9478500 were 
performed. UHS was used as the genotype reference for these analyses.

Haplotype analyses. To conduct haplotype analyses raw genotype data is needed. Chromosome 6 geno-
types were available from UHS, VIDUS, ODB, Yale-Penn, CATS and Kreek (Supplementary Table 1). These 
cohorts’ data were phased with Eagle v2.4 via the Michigan Imputation  Server65. Haplotypes for samples from 
each study were constructed by extracting OPRM1 variants that were GWS in the gSEM analysis and concatenat-
ing ordered by genomic position. Supplementary Table 24 provides counts for the various haplotypes observed 
across the studies. The 3 most common haplotypes, which accounted for 98% of observed haplotypes, were 
tested for association with OA in R adjusting for sex and genotype principal components. Only individuals 
carrying exclusively these haplotypes were included in the analysis. Two models were run, one in which the 
haplotype containing all major alleles served as the reference haplotype and one in which the haplotype contain-
ing the minor rs1799971-G allele served as the reference. This approach provided three effective comparisons: 
(a) rs1799971-G haplotype versus the major allele haplotype; (b) minor allele+rs1799971-A haplotype versus 
the major allele haplotype; (c) minor allele+rs1799971-A haplotype versus rs1799971-G haplotype. Individual 
cohort results were combined in an inverse variance-weighted meta-analysis using METAL (N = 21,037).
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Gene‑based analyses. Gene-based associations with OA were calculated from the gSEM summary statis-
tics with MAGMA v1.0841 with a 10 kb gene window via the Functional Mapping and Annotation (FUMA) of 
GWAS web tool v1.3.6a72. The gSEM summary statistics were mapped to 15,977 protein coding genes, resulting 
in a Bonferroni-corrected threshold of p = 3.129e-6 for declaring genome-wide significance.

Cross‑trait genetic correlations with OA. Summary statistics from the gSEM were used as input into 
LD score regression (LDSC) with reference to the 1000 Genomes EUR panel to estimate genetic correlations 
between OA and 38 other complex phenotypes. These phenotypes were categorized into the following groups: 
drug and alcohol use, cigarette smoking, psychiatric, personality, neurological, cognitive/education, and brain 
volume. The full list of phenotypes and GWAS datasets, as obtained from LD Hub or shared by the original 
investigators, are provided in the Supplementary Table 25.

PrediXcan. To investigate the transcriptome-wide associations between predicted gene expression and OA, 
we employed the MetaXcan v0.6.642 method. Briefly, MetaXcan uses association summary statistics to predict 
associations between gene expression and a phenotype of interest association. Gene expression models were 
predicted from tissue-specific eQTL datasets. To increase the performance of our prediction models, we used 
the MASHR-M73 models built on fine-mapped variables from DAP-G74. The specific models we used were pre-
computed MetaXcan models available through PredictDB (http:// predi ctdb. org/) for 12 brain regions (Supple-
mentary Table 14) that were generated using the  GTEx75 version 8 datasets.

Summary level statistics from the Genomic SEM analysis were used as input to MetaXcan. Prior to input, 
summary statistics were harmonized according to the best practices guide outlined on the MetaXcan wiki. As 
part of this process, the gwas_parsing.py utility (https:// github. com/ hakyi mlab/ summa ry- gwas- imput ation) 
was used to lift summary statistics over to the human genome build version 38 and provide harmonized variant 
identifiers compatible with those used by GTEx v8. To increase the number of overlapping markers between our 
summary statistics and the fine-mapped pre-built MASHR models, we imputed missing summary associations 
as suggested by the best practices workflow. Imputation was performed separately for each chromosome using 
the gwas_summary_imputation.py utility (https:// github. com/ hakyi mlab/ summa ry- gwas- imput ation) and the 
pre-computed parquet genotype, genotype metadata files, and European LD block files available through the 
MetaXcan zenodo  repository76. Imputed summary statistics were finally re-combined using the gwas_sum-
mary_imputation_postprocess.py utility.

The resulting imputed, harmonized association summary statistics were then used as input to MetaXcan. 
The number of genes tested for each tissue is found in Supplementary Table 14. FDR correction was applied to 
account for the number of genes tested across all tissues (156,215 total tests). A gene’s predicted expression was 
considered significantly associated with OA if its FDR-adjusted p-value fell below a threshold of 0.05.

Colocalization. Co-localization analysis was performed using the coloc package in  R77. Cis-eQTL data for 
individuals of European ancestry from the GTEx v8 eQTL Tissue-Specific All SNP Gene Associations dataset 
(dbGaP Accession phs000424.v8.p2) were input as a quantitative trait into coloc (sample sizes for each tissue 
type indicated in Supplementary Table 15). Summary statistics from the gSEM analysis were input as a quantita-
tive trait, with a sample size of 403,915. Summary statistics from the standard meta-analysis of OA were input as 
a case–control trait with 16,849 cases and 379,493 controls. All SNP positions were lifted over to build 38. The 
cis-eQTL data was partitioned into blocks based on the gene in the SNP-gene pair. For each gene block, only 
SNPs in the gSEM or meta-analysis summary statistics overlapping with the cis-eQTL data were input into the 
coloc function for (approximate) Bayes Factor colocalization analysis.

Data availability
The GWAS summary statistics generated and/or analyzed during the current study will be made available via 
dbGAP; the dbGaP accession assigned to the UHS is phs000454.v1.p1. The website is https:// www. ncbi. nlm. nih. 
gov/ proje cts/ gap/ cgi- bin/ study. cgi? study_ id= phs00 0454. v1. p1.

Code availability
Docker images and WDL workflows for analyses of primary GENOA data and gSEM meta-analysis are available 
at the following Github repositories: https:// github. com/ RTIIn terna tional/ biocl oud_ docker_ tools; https:// github. 
com/ RTIIn terna tional/ biocl oud_ gwas_ workfl ows; https:// github. com/ RTIIn terna tional/ biocl oud_ wdl_ tools.
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