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Sound transmission 
loss of double‑walled 
sandwich cross‑ply layered 
magneto‑electro‑elastic plates 
under thermal environment
Nima Refahati1, Thira Jearsiripongkul1*, Chanachai Thongchom2, Peyman Roodgar Saffari2, 
Pouyan Roodgar Saffari2 & Suraparb Keawsawasvong2

This study offers a comprehensive investigation into the parameters affecting the sound transmission 
characteristics of a double‑walled sandwich magneto‑electro‑elastic cross‑ply layered plate resting 
on viscoelastic medium in thermal environment. To this end, the walls of this sandwich structure 
are modeled based on the assumptions of the first‑order shear deformation theory. The governing 
equations are derived via a coupled set of equations targeting vibration and acoustic aspects of the 
problem after the application of Hamilton’s principle. The obtained equations are then solved by 
the implementation of double Fourier series and the second velocity potential, giving an accurate 
estimation of sound transmission loss under initial magnetic and electric potentials, variations 
of temperature, ply angle, acoustic cavity depth, incident angle of sound waves, and viscoelastic 
parameters.

Recent years have seen a growing number of studies on the new applications and implementations of devices 
benefiting from smart  material1–6. Besides piezoelectric materials, electrorheological and magnetorheological 
fluids and shape memory alloys, magneto-electro-elastic (MEE) materials have proved to be viable choices thanks 
to offering the advantages of both composite materials and piezomagnetism/piezoelectricity. Pan et al.7 proposed 
an analytical study to calculate the natural frequencies of multilayered rectangular MEE plates. Vinyas et al.8 
investigated the free vibration problem of skew MEE plates using higher order shear deformation theory and 
finite element method (FEM). According to higher order shear deformation theory,  Vinyas9 studied free vibration 
carbon nanotube-reinforced MEE skew and rectangular plates. Vinyas et al.10 evaluated the natural frequencies 
of functionally graded (FG) carbon nanotube reinforced MEE plates utilizing higher order shear deformation 
theory under closed and open electro-magnetic circuit conditions. Based on Golla-Hughes-McTavish technique 
and geometrically nonlinear vibrations, Esayas et al.11 analyzed the influences of porosity and porosity distribu-
tion on the nonlinear natural frequencies of FG-MEE plate. Manyo et al.12 presented Kelvin–Voigt model to 
investigate time domains vibration behavior of MEE plates employing dual variable and position (DVP) method.

Such composite materials have been increasingly applied in different areas of technology, especially aerospace 
and automotive  engineering13,14. The existence of fibers allows us to refine different conflicting notions such as 
wear resistance and weight considerations. While there are innumerable geometries for engineering structures, 
composite laminated plates have gained an excessive amount of  attention15–18. Zhang et al.19 carried out the 
chaotic dynamic and the chaotic wave motions behaviors of piezoelectric composite laminated plate subjected 
to the transverse and the in-plane excitations. He et al.20 studied the effects of the damping ratio, shape, and 
frequency of delaminated composite plates and indicated that with increasing the delamination percentage, the 
modal damping ratio meaningfully increases. Hachemi and Hamza-Cherif21 proposed a numerical solution 
based on hierarchical finite element formulation for investigating the free vibration response of a composite 
laminated plate. Sharma et al.22 carried out the static and dynamic responses of the laminated composite plate 
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with piezoelectric layers employing FEM. Zhang et al.23 predicted the dynamic response of rectangular sandwich 
plates with Fiber metal laminate (FML) composites layers under blast loading for fully clamped boundary condi-
tions. Chen et al.24 used Rayleigh–Ritz method and Lagrange multiplier method to obtain the natural frequen-
cies of the trapezoidal bi-stable composite laminate plate. Kiani and Żur25 performed the dynamic behavior of 
graphene platelet reinforced composite skew plates using the first-order shear deformation theory (FSDT) and 
Halpin–Tsai rule.

Ever since the concept of modern laminated structures came into play, the study on double-walled struc-
tures in different areas of mechanical engineering for various applications such as aerospace vehicles increased 
 significantly26–28. These structures did not remain limited to the mentioned area and other fields such as acoustics 
and civil engineering began implementing  them29–32. One such application is their exceptional noise elimination 
properties when used correctly, corroborated by a vast array of experimental and analytical studies. The con-
tinuous research on their noise cancellation characteristics is one important area where their great potential is 
being exploited via empirical and analytical means. The literature is rich in studies focusing on the vibroacoustic 
features of noise transmission of single or double-walled shells and  plates33–40. Fu et al.41 investigated the STL 
across the stiffened double laminated composite sandwich plate structures under sound wave excitation. Danesh 
and  Ghadami42 predicted STL of a rigidly baffled finite rectangular double wall FG piezoelectric plate based on 
the third-order shear deformation theory (TSDT) and power law model. They indicated that by means of Helium 
and Hydrogen gases for filling the acoustic cavity between the two piezoelectric plates has a considerable effect 
on the sound isolation performance. Amirinezhad et al.43 analyzed STL across a polymeric foam plate via FSDT. 
Oliazadeh et al.44 experimentally and analytically developed a statistical energy analysis (SEA) model to evaluate 
the STL of honeycomb sandwich panels.

In spite of various studies on the noise transmission loss characteristics of double-walled plates, there has been 
no study on the STL of a double-walled sandwich cross-ply layered MEE plate resting on viscoelastic medium 
and in a thermal environment undergoing harmonic plane sound waves. This study considers the mentioned 
problem and utilizes the first-order shear deformation theory (FSDT) and Hamilton’s principle to obtain the 
governing vibroacoustic equations. In addition, the velocity potential technique allows us to solve the equations 
in view of the properties of the included cavity.

Preliminary formulations
The general assumptions of the problem according to Fig. 1 are discussed as follows. A plane sound wave hits 
the top side of the double-walled sandwich cross-ply layered MEE plate of the overall dimensions a× b . Also, 
the double-walled sandwich plate is supposed to be resting on the viscoelastic medium with dashpot coefficient 
cd and transverse stiffness kw . The azimuth and elevation angles of this time-harmonic sound wave are denoted 
by α and β . Furthermore, each side of this structure comprises two similar piezomagnetic layers made from 
 BaTiO3-CoFe2O4 of the thickness hm around a cross-ply layered core of the thickness hc . All MEE plates undergo 
both electric and magnetic potentials of, respectively, ϒ

(
x, y, z, t

)
 and ψ

(
x, y, z, t

)
 . Finally, the depth of formed 

cavity is L . Additionally, the system is exposed to a thermal environment with the temperature variation as �T.

Figure 1.  Configuration of double-walled sandwich composite MEE plate resting on viscoelastic medium 
under incidence wave and thermal environment.
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Constitutive relations. The underlying equations of motion according to the assumption of FSDT are 
derived by first considering a displacement field of three components (U ,V ,W) for every sandwich MEE plate 
as  in45

in which i = 1, 2 ,  w is the transverse unknown displacement, and for each sandwich composite MEE plate, v and 
u respectively denote the in-plane deflections of the mid-surface along y and x directions. Additionally, θx and θy 
respectively refer to the rotations of the middle plane along x and y directions. Regarding the linear strain–dis-
placement relation, particular components of the normal strains 

(
εxx , εyy

)
 and shear strains 

(
γxz , γyz , γxy

)
 are 

presented as follows

in which i = 1, 2 . The composite consists of orthotropic layers with different fiber angles. However, every layer 
must be transferred eccentrically to the coordinates on the axis. The structural stress–strain relationships based 
on the plane stress mode for cross-ply layered core taking into account the thermal environment are stated  as46

in which α represents the thermal expansion and Qij signifies the transformed reduced stiffness coefficients, and 
for various fiber angles (ϕ ) are defined as

where i can take the values 1 and 2, E is the elastic modulus and ϑ is the Poisson’s ration. For the sake of complete-
ness, the electric displacement, magnetic induction and stress tensor are described in the form for each MEE 
plate considering thermal  environment47

where terms [D] and [B] demonstrate the classical components of the electric displacement and magnetic, 
respectively; [c], [γ ], [µ], [κ],

[
f
]
, [e] refer to the components of elasticity tensor, magnetic constants, dielectric, 

magnetoelectric, piezomagnetic, piezoelectric, respectively. As well, [E] and [H] present the components of elec-
tric and magnetic fields, respectively. However, the Maxwell’s equations need two different assumptions to be 
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satisfied. First, the negative gradient of ϒ(x, y, z, t) must be equal to the electric field, and the negative gradient 
of ψ(x, y, z, t) must be equal to the magnetic field. Mathematically, these are expressed as

Considering the boundary condition of the top and bottom sides of MEE layers, one can blend the linear and 
cosine variations to write the electric potential and magnetic potential in the  form48

Here ϒ  and �  express the two-dimensional electric and magnetic potentials. Furthermore, V  refers to the 
electric voltage and ψ0 is the initial magnetic potential.

To obtain the governing equations, Hamilton’s principle is employed as follows

where �T denotes the virtual kinetic energy; �V is the virtual strain energy; �F indicates the virtual work done 
by external applied forces. However, the kinetic energy for double-walled sandwich composite MEE plate is 
presented as

in which A is the cross-sectional area, and ρm refers to the mass density of MEE layer. The strain energy term 
is expressed as

The virtual work done by external applied forces due to the thermal environment, viscoelastic medium, 
incidence sound wave, and initial electric and magnetic potentials is written as

where Ŵ1 , Ŵ2, and Ŵ3 are, respectively, the velocity potentials in the sound incident area, acoustic cavity, and the 
transmitted acoustic area. Furthermore, the angular frequency and the air density are displayed, respectively, 
with ω and ρ0 . Additionally, 
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initial electric voltage, and initial magnetic potential, along x and y directions, respectively. How-
ever, all these loads are expressed as
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It should be noted that in Eq. (11), Ŵ1 , Ŵ2 , and Ŵ3 respectively denote the velocity potential in the regions 1 to 3 
(i.e., the exterior, the cavity, and the sound transmitted region). Now, to find the velocity potential, both positive 
and negative sound waves are superimposed in all three regions. As a result, one can  write49

where j =
√
−1 and I states the incident sound amplitude. Furthermore, T1,T2,T3 and T4 refers to the unknown 

modal coefficients of reflected sound wave in the negative-going incident region, positive-going acoustic cavity, 
negative-going acoustic cavity, and positive-going transmitted wave. Moreover,kz = k0cosα,ky = k0sinβsinα 
and kx = k0sinβcosα , respectively, express the acoustic wavenumbers across z, y, and x directions. Additionally, 
k0 = ω

c0
 is the air acoustic wavenumber and c0 denotes the air sound velocity.

After substituting Eqs. (9), (10) and (11) into (8) and performing some manipulations, the final form of 
vibroacoustic equations governing the motion of considered system is written as

in which i = 1, 2 . Furthermore, q1 = jωρ0(Ŵ1 − Ŵ2), q2 = jωρ0(Ŵ2 − Ŵ3) . Besides, the forces, bending and shear 
moments Nxx ,Nxy ,Nyy ,Mxx ,Mxy ,Myy ,Qxz ,Qyz and mass inertia terms I0, I1, I2 are written as
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Here i = 1, 2 . Also, ks = 5/6 signifies the shear correction term.
Lastly, replacing Eq. (15) into Eq. (14), the governing vibroacoustic equations in terms of the double-walled 

sandwich plate displacement are obtained and provided in Appendix A. It is supposed that the electric and 
magnetic potentials at the ends of each MEE plate is zero, and the simply supported boundary conditions are 
considered for all four edges of each sandwich composite MEE plates

The following suitable expressions are used for the associated boundary conditions as

in which ũi , θ̃xi , ṽi , θ̃yi , w̃i , ϒ̃i , �̃i are the unknown modal coefficients. Furthermore, m and n express the half wave 
numbers along x and y directions, respectively.
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hc/2
ρmdz,

I1 =
∫ −hc/2

−hm−hc/2
ρmzdz +

1

2

N∑

0

ρk
(
hk

2 − hk−1
2
)
+

∫ hc/2+hm

hc/2
ρmzdz

I1 =
∫ −hc/2

−hm−hc/2
ρmz

2dz +
1

3

N∑

0

ρk
(
hk

3 − hk−1
3
)
+

∫ hc/2+hm

hc/2
ρmz

2dz

(16)

ui(x, 0, t) = ui(x, b, t) = vi
(
0, y, t

)
= vi

(
a, y, t

)
= 0,

wi(x, 0, t) = wi(x, b, t) = wi

(
0, y, t

)
= wi

(
a, y, t

)
= 0,

θxi(x, 0, t) = θxi(x, b, t) = θyi
(
0, y, t

)
= θyi

(
a, y, t

)
= 0,

ϒ i(x, 0, τ) = ϒ i(x, b, t) = � i

(
0, y, t

)
= � i

(
a, y, t

)
= 0,

ϒ i

(
0, y, τ

)
= ϒ i

(
a, y, t

)
= � i(x, 0, t) = � i(x, b, t) = 0,

Mxxi

(
0, y, t

)
= Mxxi

(
a, y, t

)
= Myyi(x, 0, t) = Myyi(x, b, t) = 0, i = 1, 2.

(17)

{ui , θxi} =
∞∑

m=1

∞∑

n=1

cos(mπx/a)sin
(
nπy/b

){
ũi , θ̃xi

}
ejωt ,

{
vi , θyi

}
=

∞∑

m=1

∞∑

n=1

sin(mπx/a)cos
(
nπy/b

){
ṽi , θ̃yi

}
ejωt ,

{
wi ,ϒ i ,� i

}
=

∞∑

m=1

∞∑

n=1

sin(mπx/a)sin
(
nπy/b

){
w̃i , ϒ̃i , �̃i

}
ejωt , i = 1, 2

(18)

Ŵ1

(
x, y, z; t

)
=

∞∑

m=1

∞∑

n=1

ImnAmn

(
x, y

)
e−j(kzz−ωt) +

∞∑

m=1

∞∑

n=1

T1Amn

(
x, y

)
e−j(−kzz−ωt)

Ŵ1

(
x, y, z; t

)
=

∞∑

m=1

∞∑

n=1

T2Amn

(
x, y

)
e−j(kzz−ωt) +

∞∑

m=1

∞∑

n=1

T3Amn

(
x, y

)
e−j(−kzz−ωt),

Ŵ1

(
x, y, z; t

)
=

∞∑

m=1

∞∑

n=1

T4Amn

(
x, y

)
e−j(kzz−ωt)
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Imn = 4(I0/ab)
∫ a
0

∫ b
0e

−j(kxx+kyy)sin(mπx/a)sin(nπy/b)dydx , where I0 is the incident wave amplitude. At this 
point, one should find T1 to T4 . To this aim, the normal velocity at the shared boundary of fluid and structure for 
each sandwich composite MEE plate should be equal as in

All of the unknown modal coefficients T1 to T4 can be obtained by replacing Eqs. (17) and (18) in Eq. (19) as

Substituting Eqs. (17) and (18) in the previously-obtained governing equations, i.e., equations (A1)–(A7), 
leads to the equilibrium equations in a 14× 14 matrix format:

in which κi,j and F are stated in Appendix B.

STL relation. Finally, the sound transmission loss can be obtained by inversing the value of power transmis-
sion coefficient. STL is primarily expressed in decibels (dB). For the problem at hand, this is written  as50

(19)
−

∂Ŵ1

∂z

∣∣∣∣ z = L+ 2hm + hc
= jωw1, −

∂Ŵ2

∂z

∣∣∣∣ z = L
= jωw1,

−
∂Ŵ2

∂z

∣∣∣∣ z = 0
= jωw2, −

∂Ŵ3

∂z

∣∣∣∣ z = −(2hm + hc)
= jωw2.

(20)

T1 = Imne
−2jkz (L+2hm+hc) − ω

w̃1e
−jkz (L+2hm+hc)

kz,air
,T2 = ω

(
w̃1 − w̃2e

jkzL
)

kz
(
e−jkzL − ejkzL

)

T3 = ω

(
w̃1 − w̃2e

−jkzL
)

kz
(
e−jkzL − ejkzL

) , T4 = ω
w̃2e

−jkz (2hm+hc)

kz
.

(21)




κ1,1 κ1,2 0 κ1,4 κ1,5 κ1,6 κ1,7 0 0 0 0 0 0 0
κ2,1 κ2,2 0 κ2,4 κ2,5 κ2,6 κ2,7 0 0 0 0 0 0 0
0 0 0 κ3,4 κ3,5 κ3,6 κ3,7 0 0 κ3,10 0 0 0 0
κ4,1 κ4,2 κ4,3 κ4,4 κ4,5 κ4,6 κ4,7 0 0 0 0 0 0 0
κ5,1 κ5,2 κ5,3 κ5,4 κ5,5 κ5,6 κ5,7 0 0 0 0 0 0 0
κ6,1 κ6,2 κ6,3 κ6,4 κ6,5 κ6,6 κ6,7 0 0 0 0 0 0 0
κ7,1 κ7,2 κ7,3 κ7,4 κ7,5 κ7,6 κ7,7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 κ8,8 κ8,9 0 κ8,11 κ8,12 κ8,13 κ8,14
0 0 0 0 0 0 0 κ9,8 κ9,9 0 κ9,11 κ9,12 κ9,13 κ9,14
0 0 κ10,3 0 0 0 0 0 0 κ10,10 κ10,11 κ10,12 κ10,13 κ10,14
0 0 0 0 0 0 0 κ11,8 κ11,9 κ11,10 κ11,11 κ11,12 κ11,13 κ11,14
0 0 0 0 0 0 0 κ12,8 κ12,9 κ12,10 κ12,11 κ12,12 κ12,13 κ12,14
0 0 0 0 0 0 0 κ13,8 κ13,9 κ13,10 κ13,11 κ13,12 κ13,13 κ13,14
0 0 0 0 0 0 0 κ14,8 κ14,9 κ14,10 κ14,11 κ14,12 κ14,13 κ14,14







�u1
�v1
�w1
�θx1
�θy1
�ϒ1
��1

�u2
�v2
�w2
�θx2
�θy2
�ϒ2
��2




=




0
0
F
0
0
0
0
0
0
0
0
0
0
0




Table 1.  Material characteristics of sandwich cross-ply layered MEE plate and acoustic medium.

Properties (MEE layer) BaTiO3 − CoFe2O4

Elastic (GPa) c11 = 226, c12 = 125, c22 = 226, c44 = 44.2, c55 = 44.2, c66 = 51

Piezoelectric ( Cm−2) e31 = −2.2, e32 = −2.2, e24 = 5.8, e15 = 5.8

Dielectric ( 10−9CV−1m−1) κ11 = 5.64, κ22 = 5.64, κ33 = 6.35

Piezomagnetic ( NA−1m−1) f31 = 290.1, e32 = 290.1, e24 = 275, e15 = 275

Magnetoelectric ( 10−12NSV−1C−1) µ11 = 5.367,µ11 = 5.367, µ33 = 2737.5

Magnetic ( 10−6Ns2C−2) γ11 = −297, γ22 = −297, γ33 = 83.5

Mass density ( kg m−3) ρm = 5550

Thermal moduli ( 10−5N/Km2) �1 = �2 = 4.74

Properties (composite core) Graphite/epoxy

Elastic (GPa) E1 = 181, E2 = 103, G12 = 7.17, G13 = 7.17, G23 = 2.87

Poisson’s ratio ϑ12 = 0.28

Mass density ( kg m−3) ρ = 1580

Properties (acoustic medium) Air

Sound speed ( ms−1) c0 = 343

Mass density ( kg m−3) ρ0 = 1.21
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Results and discussion
Before offering the findings, some simplified cases are evaluated to show the accuracy of the developed method. 
The parameters used (except those in the verification section) are displayed in Table 151,52.

Convergence checking. The use of double Fourier series imposes the need for a sufficient num-
ber of modes so that the convergence is achieved. As a simple yet effective method, a classic trial-and-
error scheme is employed here where the parameters m and n are successively increased and the sta-
bility of the numerical value of the response is observed. For a sample case as in Fig.  2, one observes 
that 441 terms ( m, n = 21 ) are necessary before a converged response is found. Here, it is assumed that 
a = b = 0.8 m, L = 0.02 m, hm = 0.0005 m, hc = 0.001 m,β = 45

◦
, (0/90/90/0),V = 0 V,ψ0 = 0 A,

kW = 0 N/m3, cd = 0 Ns/m3,�T = 0 K.

Verification study. As the first comparison study, by eliminating plane sound wave, MEE layers, thermal 
environment, and viscoelastic medium, the first dimensionless natural frequency of a simply supported compos-
ite plate for two cases of lay-up orientations are calculated based on the current formulations and the results are 
compared with those of Ref.53 in Table 2.

In another comparison investigation, by ignoring composite core layer, thermal environment, and viscoelastic 
medium, the first dimensionless natural frequency ( ̃ω11 = ω11a

2√ρm/c11 ) of a MEE plate against the different 
aspect ratios are calculated based on the current formulation and listed in Table 3, which are then compared 
with those of Ref.54,55.

(22)STL = 10log10

(∑∞
m=1

∑∞
n=1 |Imn + T1|2∑∞

m=1

∑∞
n=1 |T4|2

)
,

Figure 2.  Mode convergence against the truncation numbers  m and n.

Table 2.  Comparison study of non-dimensional natural frequency of a composite plate.

a/h

Lay-up

(0
◦

/90
◦

) (0
◦

/90
◦

/90
◦

/0
◦

)

Study Ref.50 Present Ref.50 Present

20 8.558 8.715 12.277 12.401

100 8.568 8.659 12.277 12.389

Table 3.  Comparison study of non-dimensional natural frequency of a MEE plate.

Aspect ratio (a/b) Present (FSDT) Ref.51 (HSDT) Ref.52 (CPT)

0.5 0.341 0.343 0.366

1 0.532 0.535 0.585

2 1.232 1.233 1.463
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Finally, by removing MEE layers, thermal environment, viscoelastic medium, STL across double-walled 
elastic plate is predicted based on the FSDT for the normal incident sound ( β = 0

◦ ) and is compared with those 
of Ref.56 in Fig. 3 when E = 70 GPa , ρ = 2700 kg/m3, ϑ = 0.3, a = b = 0.3 m, L = 80 mm, hc = 1 mm . It is 
observed that the results are close together and are in good agreement.

Figure 3.  Comparison of STL through the double-walled elastic plate.

Figure 4.  STL of double-walled sandwich composite MEE plate against plate dimensions.

Figure 5.  STL of double-walled sandwich composite MEE plate versus the elevation angle.
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Benchmark results. A number of parameters are studied here to observe whether they have a major effect 
on the value of STL after a sound wave passes through the double-walled composite MEE plate. These param-
eters are initial electric and magnetic potentials, viscoelastic medium, variations of temperature, ply angle, cavity 
size and elevation angle of sound wave.

In Fig. 4, the STL through the double-walled sandwich composite MEE plate versus the frequency interval 
( 1 Hz ≤ f ≤ 5000 Hz ) is presented when L = 0.02 m, hm = 0.0005 m, hc = 0.001 m,β = 45

◦
, (0/90/90/0),

V = 0 V,ψ0 = 0 A, kW = 0 N/m3, cd = 0 Ns/m3,�T = 0 K. The mass-air-mass resonance as depicted in the 
dip of Fig. 4 is a special feature of double-panel systems, and is predicted  by42

The required condition for such a phenomenon is the resonance of the two sandwich composite MEE plates 
over the stiffness of the central air layer. This in turn creates an interval where STL is unsatisfactory. The dips 
observed before the mass-air-mass resonance are actually the natural frequencies of the overall system. For a 
larger plate, a smoother STL response whose dips and peaks are kept to a minimum is formed. For the double-
walled plate of infinite dimensions, an upper bound for the finite-size partitions is generated after the resonance 
dip associated with the mass-air-mass dip. This is because the mode-dominated STL is not present in this certain 
scenario. Over the frequencies smaller than the mass-air-mass resonance, the infinite plate performs better than 
the finite system in terms of STL response due to the impact of boundary constraints.

Figure 5 shows the effect of the elevation angle on the changes of STL across the double-walled sand-
wich composite MEE plate when a = b = 0.8 m, L = 0.02 m, hm = 0.0005 m, hc = 0.001 m, (0/90/90/0),

V = 0 V,ψ0 = 0 A, kW = 0 N/m3, cd = 0 Ns/m3,�T = 0 K. As observed, there is a direct relationship between 
the mass-air-mass resonance and the elevation angle. When the elevation angle is decreased, the STL increases, 
hence improving the noise cancellation behavior of the structure, and vice versa. Before the mass-air-mass 

(23)fm = (1/2πcosβ)
{
(ρ0c0

2[(I0)plate1 + (I0)plae2])/L[(I0)plate1 × (I0)plate2]
}1/2

.

Figure 6.  STL of double-walled sandwich composite MEE plate versus the electric voltage.

Figure 7.  STL of double-walled sandwich composite MEE plate against the external magnetic potential.
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resonance, the dips and elevation angle remain independent of one another, and therefore, the plate mode is also 
independent of the elevation angle of incoming sound wave.

The STL curves of the double-walled structure in terms of the electric voltage for 
a = b = 0.8 m, L = 0.02 m, hm = 0.0005 m, hc = 0.001 m,β = 45

◦
, (0/90/90/0),ψ0 = 0 A, kW = 0 N/m3,

cd = 0 Ns/m3,�T = 0 K is displayed in Fig. 6. The soundproofing capability of the developed system can be 
ameliorated by 20 dB with raising the external electric voltage from 0 to 100 V (see Refs.57,58 for given values), 
especially over the low-frequency values of mass-air-mass resonance. Expectedly, the amount of electric potential 
has no impact on the position of mass-air-mass resonance. Furthermore, the mass-air-mass resonance frequency 
is slightly shifted depending on the external electric voltage. This behavior may be due to the fact that by apply-
ing electric voltage to the MEE layers, tensile in-plane and compressive forces created. As a result, this effect can 
change the vibroacoustic coupling between the two-sandwich magneto-electro-elastic cross-ply layered plate.

Figure 7 indicates the influence of the initial magnetic potential on STL of the double-walled structure when 
a = b = 0.8 m, L = 0.02 m, hm = 0.0005 m, hc = 0.001 m,β = 45

◦
, (0/90/90/0),V = 0 V, kW = 0 N/m3,

cd = 0 Ns/m3,�T = 0 K. The performance of sound transmission loss curves can be enhanced by 29 dB by 
applying a higher external magnetic potential from 0 to 10A (see Refs.57,58 for given values). This is particularly 
true prior to the mass-air-mass resonance and for the low-frequency values of mass-air-mass resonance. Once 
again, the position of mass-air-mass resonance remains unrelated to the initial magnetic potential. However, in 
general, the external magnetic potential seems to be a more important player in the efficacy of sound transmission 
loss than the electric voltage. Additionally, similar to the effect of electric voltage, the mass-air-mass resonance 
frequency is slightly shifted depending on the external magnetic potential. This performance may be due to the 
fact that by exerting the magnetic potential to the MEE layers, tensile in-plane and compressive forces created. 
Consequently, this effect can change the vibroacoustic coupling between the two-sandwich magneto-electro-
elastic cross-ply layered plate.

Figure 8.  STL of double-walled sandwich composite MEE plate against the viscoelastic 
medium’s damping coefficient.

Figure 9.  STL of double-walled sandwich composite MEE plate against the viscoelastic medium’s stiffness.
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Figure   8  indicates  the  var iat ions  of  STL behavior  of  the  double-wal led struc-
ture against the different values of the  viscoelastic medium’s  damping  coefficient when 
a = b = 0.8 m, L = 0.02 m, hm = 0.0005 m, hc = 0.001 m,β = 45

◦
, (0/90/90/0),V = 0 V,ψ0 = 0 A, kW = 0 N/m3,�T = 0 K. It is observed 

from this figure that by considering damping coefficient from 0 Ns/m3 to 2000 Ns/m3 (see Refs.59,60 for given 

Figure 10.  STL of double-walled sandwich composite MEE plate against the temperature rise.

Figure 11.  STL of double-walled sandwich composite MEE plate against the air cavity depth.

Figure 12.  STL of double-walled sandwich composite MEE plate against the laminate layup.
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values), STL significantly increases in the whole frequency range, expressly at the mass-air-mass resonance, it 
increases by 16 dB.

Figure 9 displays the effect of the viscoelastic medium’s stiffness on the variations of STL curves when 
a = b = 0.8 m, L = 0.02 m, hm = 0.0005 m, hc = 0.001 m,β = 45

◦
, (0/90/90/0),V = 0 V,ψ0 = 0

A, cd = 0 Ns/m3,�T = 0 K. It can be inferred that from this figure that with increasing viscoelastic medium’s 
stiffness coefficient from 0 N/m3 to 107 N/m3(see Refs.59,60 for given values), STL due to the increase in the stiff-
ness of the structure (stiffness-hardening effect) increases by 27 dB before the mass-air-mass resonance. However, 
it is observed that the effect of the viscoelastic medium’s stiffness on STL is less in the frequency range above 
the mass-air-mass resonance.

Depicted in Fig. 10 is the effect of temperature rise on the STL curves of sandwich composite MEE plate 
when a = b = 0.8 m, L = 0.02 m, hm = 0.0005 m, hc = 0.001 m,β = 45

◦
, (0/90/90/0),V = 0 V,ψ0 = 0 A,

kW = 0 N/m3, cd = 0 Ns/m3 . As can be seen in this figure, by increasing the temperature from 0 to 80 K (see 
Refs.61,62 for given values), the STL decreases by 14 dB before the mass-air-mass resonance. This is because that 
the temperature changes have a softening effect on the total stiffens of the structure (see Ref.63 for more detail).

Figure 11 exhibits the effect of air cavity depth on the STL across of the double-walled sandwich compos-
ite MEE plate when a = b = 0.8 m, hm = 0.0005 m, hc = 0.001 m,β = 45

◦
, (0/90/90/0),V = 0 V,ψ0 = 0 A,

kW = 0 N/m3, cd = 0 Ns/m3,�T = 0 K. Before the mass-air-mass resonance dip, the existence of acoustic 
cavity has no impact on the double plate resonance. However, STL response in terms of frequency is considerably 
altered when the cavity’s depth increases. If the frequency is higher than the mass-air-resonance, a higher depth 
is associated with a greater STL. In addition, the mass-air-mass resonance dips shift downwards with increasing 
cavity’s depth as the cavity stiffness decreases in this scenario.

Figure 12 describes the effect of the laminate layup on the changes of STL across the double-walled sandwich com-
posite MEE plate when a = b = 0.8 m, L = 0.02 m, hm = 0.0005 m, hc = 0.001 m,β = 45

◦
,V = 0 V,ψ0 = 0 A,

kW = 0 N/m3, cd = 0 Ns/m3,�T = 0 K . It is clearly seen from this figure that at the low-frequency band, 
laminate layup (0/90/90/0) increases the STL by 3.5 dB more than the other two cases before the mass-air-mass 
resonance dip. It is due to the fact this case has a higher bending stiffness and causes the first dip (natural fre-
quency) to shift upwards (see Ref.52 for more detail). Furthermore, it is seen that the “mass-air-mass” resonance 
is independent of the laminate layup.

Conclusions
This article investigated the parameters affecting the sound transmission behavior of a double-walled composite 
MEE rectangular plate filled with air resting on the viscoelastic medium in thermal environment. After apply-
ing initial magnetic and electric potentials to the structure, the FSDT is employed to model the mechanical 
response after applying the Hamilton’s principle and considering the normal velocity of fluid and solid on the 
shared boundaries. In addition to the inspection of transmission loss over the entire studied frequency range, 
particular attention was paid to the region of mass-air-mass resonance. Some of the most notable findings of 
this study are mentioned here:

• At the low-frequency band, laminate layup (0/90/90/0) increases the STL more than the other cases.
• The viscoelastic medium improves the STL, particularly, considering damping coefficient, STL significantly 

increases at the mass-air-mass resonance.
• By increasing the temperature, the STL curve tends to lower frequencies. This behavior is due to the fact that 

the natural frequencies decrease with increasing temperature changes.
• To improve the acoustic insulation performance, particularly before the mass-air-mass resonance, greater 

electric and magnetic potentials can be utilized.

Data availability
The data and materials in this paper are available on request made directly to the corresponding author.
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