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Hydrodynamic analysis 
of the magnetic field 
dependent viscous fluid flow 
and thermosolutal convection 
between rotating channels
Aamir Khan1, Muhammad Sohail Khan2*, Amjad Ali Pasha3, Riadh Marzouki4,5, 
Mustafa Mutiur Rahman6, Omar Mahmoud7, Ahmed M. Galal8,9 & S. A. Najati10

According to research, exposing a person to a magnetic field enhances blood flow and minimizes their 
risk of suffering a heart attack. Ferrohydrodynamics is the study of fluid motion mechanics that is 
affected by strong magnetic polarisation forces (FHD). Ferrofluids may transmit heat in a variety of 
ways by using magnetic fluids. This behaviour is demonstrated by liquid-cooled speakers, which utilise 
less ferrofluid to prevent heat from reaching the speaker coil. This modification boosts the coil’s ability 
to expand, which enables the loudspeaker to create high-fidelity sound. It is investigated how the 
fluid dynamics of spinning, squeezing plates are affected by thermosolutal convection and a magnetic 
field dependent (MFD) viscosity. Standard differential equations are used to represent the equations 
of the modified form of Navier Stokes, Maxwell’s, and thermosolutal convection. The magnetic field, 
modified velocity field equations, and thermosolutal convection equations all yield suitable answers. 
Additionally computed and thoroughly detailed are the MHD torque and fluid pressure that are 
imparted to the top plate. To create a technique with quick and certain convergence, the resulting 
equations for uniform plates are solved using the Homotopy Analysis Method (HAM) with appropriate 
starting estimates and auxiliary parameters. The validity and reliability of the HAM outcomes are 
shown by comparing the HAM solutions with the BVP4c numerical solver programme. It has been 
found that a magnetic Reynolds number lowers the temperature of the fluid as well as the tangential 
and axial components of the velocity field. Additionally, when the fluid’s MFD viscosity rises, the axial 
and azimuthal components of the magnetic field behave in opposition to one another. This study 
has applications in the development of new aircraft take-off gear, magnetorheological airbags for 
automobiles, heating and cooling systems, bio-prosthetics, and biosensor systems.

List of symbols
p  Pressure (Nm−2)
x, y, z  Cartesian coordinates (m)
ξhm  Hartmann number
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l  Representative length between dics (m)
Ho  Uniform magnetic field
Mo  Magnetiz. for unif. magne. field
t  Time (s)
Tu  Fluid temperature at upper plate  (K)
Tl  Fluid temperature at lower plate (K)
Cu  Fluid concentration at upper plate
Cl  Fluid concentration at lower plate
ξpr  Prandtl number(ν/k)
ξθ  Azimuthal magnetic strength
ξsq  Squeeze Reynolds number
ρo  Reference density
D(t)  Distance between two discs (m)
ξec  Eckert number
CV ,C  Specific heat at constant volume (J/kgK)
M  Magnetization
kT  Thermal diffusion ratio
Tm  Mean fluid temperature (K)
K1,K

′
1  Solute concentration

ξpm  Pyromagnetic coefficient
C  Dimensionaless concentration
�r  Radius vector of the disc (m)
ξrot  Rotational Reynolds number
D−1
u   Representative time

Greek symbols
�  Rotation vector
S  Angular velocity of plates (s−1)

κ  Thermal conductivity (W/mK)
µ  Dynamic viscosity of fluid (Pa s)
ν  Kinematic viscosity (kg/mS)
σ  Electrical conductivity ( Sm−1)
ρ  Fluid density(kg/m3)
α  Positive constant
η  Similarity variable
θ  Transformed fluid temperature
σ s  Stefan-Boltzmann constant
κa  Mean absorption co-efficient

Subscripts
u  Fluid condition on upper disc
l   Fluid condition on lower disc

Superscripts
ξsm  Salinity magnetic coefficient
′  Derivative w.r.t η

The study of the mechanics of fluid motion that is impacted by powerful magnetic polarisation effects is known 
as ferrohydrodynamics (FHD). Ferrofluids may transmit heat in a variety of ways by using magnetic fluids. This 
behaviour is demonstrated by liquid cooled speakers, which utilise less ferrofluid to prevent heat from reaching 
the speaker  coil1. This modification boosts the coil’s ability to expand, which enables the loudspeaker to create 
high fidelity sound. A drop of ferrofluid going through the body can be used to deliver medications to a precise 
area in the human body using magnetic  fluids2, which can be propelled by a magnetic field. Lenz’s law states 
that an electric current develops as it moves through a magnetic field, and the conductor also develops its own 
magnetic field. Since the currents are observed by the movement of the fluid passing through the magnetic field, 
the Lorentz force acts on the mass and increases the speed of the. In MHD, the field affects movement and vice 
versa. The concept is hence non-linear3,4. Researchers have shown that being exposed to a magnetic field enhances 
blood flow to the body and lowers the chance of a heart attack. In an experiment conducted by Rongjia Tao and 
Ke Huang of the University of Michigan and Temple University, respectively, it was discovered that a minute’s 
exposure to a magnetic field perpendicular to the direction of blood flow caused a small sample of blood in a 
tube viscera to compress blood viscosity by 33 to 4.75cp. Within 200 minutes of no more contact to the fluid, the 
viscosity may have grown noticeably to 5.4cp, which is still well within the acceptable range of 7cp.

A substance or metal cube made of two or more homogeneous or heterogeneous metals or non-metallic alloys 
is called an alloy. These alloys mixed mixes with unique characteristics or employed a heat transfer medium. Steel, 
brass, phosphor bronze, and solder are a few examples of alloys. Aerospace research, powder technology, hip 
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joint replacement, and surgical implantation are just a few of the industries that employ alloys. The three types 
of alloys are alpha alloys, beta alloys, and alpha beta alloys. An industrially developed titanium alloy combining 
aluminium and titanium derivatives is called Alpha Alloys. Due to their changed heat transfer bulk, these alloys 
compromise the quality of the fuse bulk, and as a result, the alpha alloy is used more frequently in temperature 
application operations. Beta alloy is mostly utilised in cold rolling of sheets and welding systems. Elshekh et al.5 
studied magnetic squeeze film flow from the magnetic field among rotating disk generated effects, considering as,

with velocity components

decrease the responsiveness of the radial and azimuthal magnetic fields and measure the response to the accom-
panying disc rotation for a value of the bachelor number. In the flow of the posterior portion of a vertical infinite 
plate in a rotating structure, Mutua et al.6 investigated the Stokes challenge. They came to the conclusion that any 
or all factors can affect the temperature and speed of a liquid. As a result, the rate of heat transmission along the 
axis and the skin’s resistance are both impacted. For both free cooling and heating in plate variations, the speed 
profile, magnetic parameters M, and Ec number EC enhance M convection. MHD was investigated by Seth et al.7 
and shown to be amplified with rising values of time and Hall parameters, mass transfer, heat transfer in flow, and 
mass transfer with porous flat plates, but to be amplified with decreasing values of devolution parameters and 
magnetic field parameters. In order to maintain heat radiation,  Victor8 employed the finite component approach 
to examine the volatile MHD free convection cutlet transfer inside the two vertical porous plates. Due to the 
radiation characteristics and the predental number, it was discovered that the temperature velocity was higher 
than the velocity. In other words, the fluid particle’s grashof numbers and magnetic properties were unaffected. 
The volatile MHD QUETT flow in two infinitely parallel porous plates was studied using the  coefficient9 in a 
bent magnetic field with rate of heat transfer in temperature. The bottom plate was regarded as permanent and 
porous. He found that when the magnetic field grows, the fluid’s velocity decreases. In the presence of an exter-
nally applied magnetic field,  Verma10 examined the lubrication of a magnetic fluid twisting film between two 
approaching surfaces. He assumed that the applied magnetic field M has the following components. He assumed 
that the applied magnetic field M has components of the form:

trying to squeeze flux with spinning disks is also examined in depth  by11–14 under influences of changing magnetic 
fields. For the simulation of the magnetic film problem, Rashidi et al.15 used the Pade DTM hybrid method, which 
demonstrated good convergence consistency, and versatility. The objective of this research is to examine the 
existence of exponential heating decay and transversal magnetic  field16–18 for the influence of different electrical 
conductivity on a free convection flow of a viscous electrically conducive fluid and heat transfer through an iso-
thermal non conductive vertical plat. The heat transfer and aerodynamic forces rate may be conveniently adjusted 
by applying an appropriate magnetic field. Morley examine the impact of MHD given  in19 known as blanket. The 
blanket is placed among both magnetic field and plasma’s spindles, absorbing neutrons that transform its energies 
into heat, which is subsequently taken away by an appropriate cooling, restricting neutrons from entering the 
magnets and therefore preventing radiation destruction. For drag reduction several fascinating improvements 
have been presented in the domains of MHD propulsion and remote energy deposition. The flow is represented 
by the system of nonlinear equations which includes fundamental ohmic law, Maxwell, momentum and energy 
 equations24–27. The system of nonlinear equations given  in28 was solved by finite difference technique. Flow of 
non-Newtonian electrically conducting fluid is an essential phenomena, since we are dealing with fluid flow, 
which displays various patterns in the effect of magnetic forces in most real circumstances. In such situations, the 
feature of the flow MHD must be taken into account. Siddiqui et al.29 utilizing homotopy perturbation method 
to obtain solutions for squeezed MHD two dimensional flow among parallel plates. Newtonian nonisothermal 
fluid flow among unsteady squeezed permeable disks for changeable magnetic-field will be investigate. The PDEs 
well be transform into nonlinear coupled ODEs using similarity transformations. The formed nonlinear DEs 
describing the flow characteristics within the geometry under observation will also analyze through numerical 
and analytical approaches. Analyses will also be conducted amongst the solutions. The convergence of results will 
be explored as well. Flow pattern will be explained  graphically30–32 under the impact of non-dimensional factors. 
Nazeer et al.33 stadied the thermal transport of two-phase physiological flow of non Newtonian fluid through 
an inclined channel with flexible walls. Yassen et al.34, investigated the theoretical study of transport of MHD 
peristaltic flow of fluid under the impact of viscous dissipation. Nazeer et al.35 investigated the heat transmission 
in a magnetohydrodynamic multiphase flow induced by metachronal propulsion through porous media with 
thermal radiation. Zubaidi et al.36 studied the numerical study of squeezing flow past a Riga plate with activation 
energy and chemical reactions: effects of convective and second-order slip boundary conditions. Quraishi et al.37 
the influence of radially magnetic field properties in a peristaltic flow with internal heat generation: Numerical 
treatment. Awan et al.38 examined the numerical treatments to analyze the nonlinear radiative heat transfer in 
MHD nanofluid flow with solar energy. Raja et al.39 studied the integrated intelligent computing application for 
effectiveness of Au nanoparticles coated over MWCNTs with velocity slip in curved channel peristaltic flow. 
Awan et al.40 examined the backpropagated intelligent computing networks for 3D nanofluid rheology with 
generalized heat flux. Majeed et al.41 studied the mathematical analysis of MHD CNTs of rotating nanofluid 

Br =
δr

2D(1− δt)
m′(η),Bθ =

rNo√
1− δt

n(η),Bz =
−δMo√
1− δt

m(η)

u =
δr

2(1− δt)
f ′(η), v =

�r
√
1− δt

g(η)

Mx = M(x) cos θ , My = M(x) sin θ , Mz = 0 where θ = θ(x, y).
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flow over a permeable stretching surface. Shahzad et al.42 investigated the effects of magnetohydrodynamics 
flow on multilayer coatings of Newtonian and non Newtonian fluids through porous inclined rotating channel. 
Zeeshan et al., examined the radiative bioconvection nanofluid squeezing flow between rotating circular plates: 
Semi-numerical study with the DTM Padé approach.

This demonstrates the aforementioned heavy emphasis on fluid motion in a magnetic field with high rota-
tional velocity in an MFD viscosity. MFD thermosolutal convection also has applications in various fields such 
as aerospace-technology, powder technologies, liquid cooled speaker, pump building, auto magneto rheological 
suspension system, new aviation system landing gears, biological prosthetics, hip joints replacement processes 
and the surgical implantation procedure. Due to its essential scientific and practical importance, it is sought 
to characterize the impact of rotation and how MFD thermosolutal convection, MFD viscosity impacts mag-
netization of the fluids. The information available at the theme revealed that the squeezing-flow MFD viscosity 
between rotating plates for a viscous fluid under the MFD thermosalutal and externally applied magnetic field 
in Cartesian coordinates was never reported and is the very first study to carried out in the literature. Hence, the 
suggestework is the best approach toward such problems and is a way of motivation for researchers bringing a 
new idea of studying the flow between unsteady rotating parallel plates. In the following sections, the problem 
is studied, examined and explained using tables and graphs.

Formulation of the problem
In this article the viscous fluid is suppose to be axisymmetric and uncompressed, squeezed between parallel 
plates, distanced by a length of D(t) = l

√
1− αt  , in which l represents a plate separation at t = 020,22,23. The 

two plates being squeezed unless they meet at t = 1
α

 for α > 0 , and they are separated for α < 0 . Both plates 
rotate with a distinct angular velocities of �l

1−αt and �u
1−αt , where �l , �u representing the angular speeds of bottom 

and top plates  correspondingly20–22. The bottom plate is fixed, while the top plate moves near or apart from the 
bottom plate. As compared to magnetic forces, Electrical forces are significantly less and thus neglected in the 
current research problem. Applied magnetic field (Bx ,By ,Bz) inside the fluid generates the induced magnetic 
field (Bx ,By ,Bz) which can be written as:

Wherever the magnetic permeability of the external and the inner media among these plates is No and Mo , Hx , 
Hy , Hz and µ1 , µ2 . On the bottom  plate5 the aforementioned magnetic field parameters are zero. Incompress-
ible fluids is considered, with a variable viscosity provided by µ = µo(1+ δ.B) where µo , represents the fluid’s 
viscosity in the absence of a magnetic-field25. The alteration viscosity-coefficient δ are assumed to be isotropic, 
i.e. δx = δy = δz . Hence, µ in the component form can be written as µx = µo(1+ δBx) , µy = µo(1+ δBy) and 
µz = µo(1+ δBz) . Furthermore, M, B, and H may linked by the equation B = µp(M +H) , in which M is the 
magnetization when the magnetic field is H and the vacuum magnetic-permeability µp . The influence of shear-
ing dependency on viscosity is not examined because it has a minor influence on a wide spin and high field 
monodispersive system. A linear change of magnet viscosity was initially employed as a small field variation, thus 
B = µp(Mo +Ho) where Ho is uniform magnetic-field and Mo is the magnetization when the magnetic field is 
Ho . The equations which governing the flow and heat/mass transfers in viscous fluid are:

Continuity equation:

x − component of Navier Stokes equation:

y − component of Navier Stokes equation:

z − component of Navier Stokes equation:

x − component of Magnetic field equation :

Hx =
αxMo

µ2(1− αt)
, Hy =

xNo

µ2(1− αt)
, Hz =

−xMo

µ1(1− αt)0.5

(1)
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

(2)
ρ
[

∂u
∂t + u ∂u

∂x + v ∂u
∂y + w ∂u

∂z

]

= − ∂P
∂x + µ

[

∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

]

+
1
µ2

[

Bz
∂Bx
∂z − Bz

∂Bz
∂x − By

∂By
∂x + By

∂Bx
∂y

]

,

(3)
ρ
[

∂v
∂t + u ∂v

∂x + v ∂v
∂y + w ∂v

∂z

]

= − ∂p
∂y + µ

[

∂2v
∂x2

+ ∂2v
∂y2

+ ∂2v
∂z2

]

+
1
µ2

[

Bx
∂By
∂x − Bx

∂Bx
∂y − Bz

∂Bz
∂y + Bz

∂By
∂z

]

,

(4)
ρ

[

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

]

= −
∂p

∂z
+ µ

[

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

]

+

1

µ2

[

By
∂Bz

∂y
− By

∂By

∂z
− Bx

∂Bx

∂z
+ Bx

∂Bz

∂x

]

,
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y − component of Magnetic field equation:

z − component of Magnetic field equation:

Energy equation:25

Concentration equation:25

where ̺  is the electrical conductivity, CV ,H is specific heat at constant volume and magnetic field, T is fluid tem-
perature, C is solute concentration, M is magnetization, thermal conductivity, K1 , K

′
1 are solute conductivity, ρo 

is reference density p is pressure, µ is variable dynamic viscosity and U is the velocity of the fluid.

Boundary conditions
The boundary conditions are chosen as:

where α is the thermal diffusivity, the specific heat at constant pressure is cp , u, v and w are respectively the radial, 
azimuthal and axial components of the velocity field, D is diffusion coefficient, Tl , Cl , Tu and Cu are temperature 
and concentration at lower and upper plate respectively.

Due to the non-linearity factor and selection of the boundary conditions for the set of coupled equations 
(1–10), it is too complicated to solve it in the form of partial differential equations (PDEs). To solve this issue, 
the set of PDEs have been converted into the set of ordinary differential equations (ODEs) by introducing the 

Lie group of similarity  transformations26. These similarity transformations are chosen as,  u =
βx

(1− βt)
f ′(η)

,            v =
�lx

(1− βt)
g(η),            w =

−βl

(1− βt)1/2
f (η),            Bx =

βxM0

l(1− βt)
h′(η),            By =

xN0

(1− βt)
k(η)

,      Bz =
−βM0

(1− βt)1/2
h(η),      θ =

T − Tu

Tl − Tu
,      � =

C − Cu

Cl − Cu
,      η =

z

l(1− βt)1/2
.

Equation (1) is identically satisfied and Eqs. (2–9) takes the following form

(5)

∂Bx

∂t
=

[

u
∂By

∂y
+ By

∂u

∂y
− v

∂Bx

∂y
− Bx

∂v

∂y
− w

∂Bx

∂z
− Bx

∂w

∂z
+ u

∂Bz

∂z
+ Bz

∂u

∂z

]

+

1

δµ2

[

∂2Bx

∂x2
+

∂2Bx

∂y2
+

∂2Bx

∂z2

]

,

(6)

∂By

∂t
=

[

v
∂Bz

∂z
+ Bz

∂v

∂z
− w

∂By

∂z
− By

∂w

∂z
− u

∂By

∂x
− By

∂u

∂x
+ v

∂Bx

∂x
+ Bx

∂v

∂x

]

+

1

δµ2

[

∂2By

∂x2
+

∂2By

∂y2
+

∂2By

∂z2

]

,

(7)

∂Bz

∂t
=

[

w
∂Bx

∂x
+ Bx

∂w

∂x
− u

∂Bz

∂x
− Bz

∂u

∂x
− v

∂Bz

∂y
− Bz

∂v

∂y
+ w

∂By

∂y
+ By

∂w

∂y

]

+

1

δµ2

[

∂2Bz

∂x2
+

∂2Bz

∂y2
+

∂2Bz

∂z2

]

,

(8)

[

ρoCV ,H − µoH .

(

∂M
∂T

)

V ,H

][

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

]

= K1

[

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

]

−

µoT

(

∂M
∂T

)

.

[

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

]

,

c

(9)

[

ρoCV ,H − µoH .

(

∂M
∂C

)

V ,H

][

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂V

∂z

]

= K
′
1

[

∂2C

∂x2
+

∂2C

∂y2
+

∂2C

∂z2

]

−

µoC

(

∂M
∂C

)

.

[

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z

]

.

c

(10)

v =
�l

1− αt
, u = w = Br = Bθ = Bz = 0,T = Tl ,C = Cl at z = 0,

v =
�ur

1− αt
,w =

dD(t)

dt
, u = Br = 0,Bθ =

rNo

1− αt
,Bz =

−rMo√
1− αt

,

T = Tu,C = Cu at z = D(t).

(11)
ξvisξ

2
sqf

′′′′ − ξ 3sq

[

3f ′′ + ηf ′′′ − 2f f ′′′ + 2ξ 2z ξmag

(

ηhh′′ + hh′ + 2h2f ′′ − 2fhh′′
)]

+2ξ2rot

(

gg ′ − ξ 2θ kk
′
)

= 0,
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and the boundary conditions are reduced to

where ξec = ν2α

2K1(Tl−Tu)
√
1−αt

 is Eckert number, ξz = Mo
l
√
µ2ρ

 is strength of magnetic field in z direction, 

ξθ = No
�l

√
µ2ρ

 is strength of magnetic field in θ direction, ξsq = αl2

2ν
 is squeeze Reynolds number, ξpm = − ∂M

∂T  is 
Pyromagnetic coefficient and ξsm = − ∂M

∂C  is the salinity magnetic coefficient, ξrot = �l l
2

ν
 is rotational Reynolds 

number, ξbt = ̺µ2ν is Bachelor number, ξmag = ξsqξbt is magnetic Reynolds number, S = �u
�l

 is the relative 
angular velocity of discs, ξvis = 1+ δvµp(Mo +Ho) is magnetic field dependent viscosity parameter, ξpr = νρC1

K1
 

is Prandtl number, ξhm = αMol
ν

 is Hartmann number, .

Approximate analytical solution
The analytic method HAM is used to solve system of Eqs. (9–15). Due to HAM, the functions f (η) , g(η) , h(η) , 
k(η) , θ(η) and �(η) can be expressed, by a set of base functions ηc , c ≥ 0 as:43

where aζ , bζ , cζ , dζ , eζ and fζ are the constant coefficients to be determined. Initial approximations are chosen 
follows:

(12)ξvisg
′′ − ξsq

(

2g + ηg ′ + 2gf ′ − 2fg ′
)

+ 2ξzξθ

(

hk′ − kh′
)

= 0,

(13)h′′ − ξmag

(

h+ ηh′ − 2fh′ + 2hf ′
)

= 0,

(14)ξθk
′′ − ξθ ξmag

(

2k + ηk′ − 2fk′
)

− 2ξzhg
′ = 0,

(15)θ
′′
+ ξsqξpr

(

2f θ
′
− ηθ

′
)

− ξecξhmξpm

(

ηh
′
+ h− 2fh

′
)

= 0,

(16)�
′′
+ ξsqξpr

(

2f�
′
− η�

′
)

− ξecξhmξsm

(

ηh
′
+ h− 2fh

′
)

= 0,

(17)
f (0) = f ′(0) = h(0) = k(0) = 0,�(0) = g(0) = θ(0) = 1,

f (1) = 1/2, , g(1) =
�u

�l
= S, θ(1) = �(1) = f ′(1) = 0, h(1) = k(1) = 1.

(18)fm(η) =
∞
∑

ζ=0

aζ η
ζ
,

(19)gm(η) =
∞
∑

ζ=0

bζ η
ζ
,

(20)ξhm(η) =
∞
∑

ζ=0

cζ η
ζ
,

(21)km(η) =
∞
∑

ζ=0

dζ η
ζ
,

(22)θm(η) =
∞
∑

ζ=0

eζ η
ζ
,

(23)�m(η) =
∞
∑

ζ=0

fζ η
ζ
,

(24)f0(η) = (2A− 1)η3 −
3

2
(2A− 1)η2 + A,

(25)g0(η) = �η,
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The auxiliary operators are chosen as

with the following properties

where ζ1 , ζ2 , ζ3 , ζ4 , ζ5 , ζ6 , ζ7 , ζ8 , ζ9 , ζ10 , ζ11 , ζ12 , ζ13 and ζ14 are arbitrary constants.
The Zeroth order deformation problems can be obtained as:

The nonlinear operators of Eqs. (9–14) are defined as

(26)h0(η) = η,

(27)k0(η) = η,

(28)θ0(η) = 1− η,

(29)�0(η) = 1− η.

(30)ℓf =
∂4

∂η4
, ℓg =

∂2

∂η2
, ℓh =

∂2

∂η2
, ℓk =

∂2

∂η2
, ℓθ =

∂2

∂η2
, ℓ� =

∂2

∂η2
,

(31)ℓf
(

ζ1η
3 + ζ2η

2 + ζ3η + ζ4
)

= 0,

(32)ℓg (ζ5η + ζ6) = 0,

(33)ℓh(ζ7η + ζ8) = 0,

(34)ℓk(ζ9η + ζ10) = 0,

(35)ℓθ (ζ11η + ζ12) = 0,

(36)ℓ�(ζ13η + ζ14) = 0,

(37)(1;β)ℓf
[

f̄ (η;β)− f0(η)
]

= q�f Nf

[

f̄ (η;β), ḡ(η;β), h̄(η;β), k̄(η;β)
]

,

(38)(1;β)ℓg
[

ḡ(η;β)− g0(η)
]

= q�gNg

[

f̄ (η;β), ḡ(η;β), h̄(η;β), k̄(η;β)
]

,

(39)(1;β)ℓh
[

h̄(η;β)− h0(η)
]

= q�hNh

[

f̄ (η;β), h̄(η;β), k̄(η;β)
]

,

(40)(1;β)ℓk
[

k̄(η;β)− k0(η)
]

= q�kNk

[

f̄ (η;β), h̄(η;β), h̄(η;β)
]

,

(41)(1;β)ℓθ
[

θ̄ (η;β)− θ0(η)
]

= q�θNθ

[

f̄ (η;β), θ̄ (η;β), h̄(η;β)
]

,

(42)(1;β)ℓ�
[

�̄(η;β)−�0(η)
]

= q��N�

[

f̄ (η;β), θ̄ (η; q), h̄(η;β)
]

.

(43)

Nf

[

f̄ (η;β), ḡ(η;β), h̄(η;β), k̄(η;β)
]

= ξ2sq
∂4 f̄ (η;β)

∂η4
− ξ 3sq

[

η
∂3 f̄ (η;β)

∂η3
+ 3

∂2 f̄ (η;β)
∂η2

− 2f
∂3 f̄ (η;β)

∂η3

+ 2ℵ2
c ξmag

(

ηh̄(η;β)
∂2h̄(η;β)

∂η2
+ h̄(η;β)

∂ h̄(η;β)
∂η

+ 2h̄2(η;β)
∂2 f̄ (η;β)

∂η2
− 2h̄(η;β)f̄ (η;β)

∂2h̄(η;β)
∂η2

)]

+ 2ℵ2
a

(

ḡ(η;β)
∂ ḡ(η;β)

∂η
− ℵ2

dk̄(η;β)
∂ k̄(η;β)

∂η

)

,

(44)

Ng [f̄ (η;β), ḡ(η;β), h̄(η;β), k̄(η;β)] =
∂2ḡ(η;β)

∂η2
− ℵb

[

2ḡ(η;β)+ η
∂ ḡ(η;β)

∂η
+ 2ḡ(η;β)

∂ f̄ (η;β)
∂η

− 2f̄ (η;β)
∂ ḡ(η;β)

∂η
+ 2ξzξθ

(

h
∂ k̄(η;β)

∂η
− k̄(η;β)

∂ h̄(η;β)
∂η

)]

,
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where β is an embedding parameter, �f  ,  �g ,  �h ,  �k ,  �θ and �� are the nonzero auxiliary parameter and Nf  ,  Ng ,  
Nh ,  Nk ,  Nθ and N� are the nonlinear parameters. For β = 0 and 1, we have

so we can say that as β varies from 0 to 1, f̄ (η, 0) , ḡ(η, 0) , h̄(η, 0) , k̄(η, 0) , θ̄ (η, 0) , �̄(η, 0) varies from initial guesses 
f0(η) , g0(η) , h0(η) , k0(η) , θ0(η) and �0(η) to exact solution f (η) , g(η) , h(η) , k(η) , θ(η) and �(η) respectively.

Taylor’s series expansion of these functions yields:

(45)
Nh[f̄ (η;β), h̄(η;β), k̄(η;β)] =

∂2h̄(η;β)
∂η2

− ξmag

(

h̄(η;β)+ η
∂ h̄(η;β)

∂η
− 2f̄ (η;β)

∂ h̄(η;β)
∂η

+ 2h̄(η;β)
∂ f̄ (η;β)

∂η

)

,

(46)
Nk

[

f̄ (η;β), h̄(η;β), k̄(η;β)
]

= ξθ
∂2k̄(η;β)

∂η2
− ξθ ξmag

[

(2k̄(η;β)+ η
∂ k̄(η;β)

∂η
− 2f

∂ k̄(η;β)
∂η

)

− 2ξz h̄(η;β)
∂ ḡ(η;β)

∂η
,

(47)
Nθ

[

f̄ (η;β), θ̄ (η;β), h̄(η;β)
]

=
∂2θ̄ (η;β)

∂η2
+ ξsqξpr

(

2f̄ (η;β)
∂θ̄(η;β)

∂η
− η

∂θ̄(η;β)
∂η

)

− ξecξhmξpm

(

η
∂ h̄(η;β)

∂η
+ h̄(η;β)− 2f̄ (η;β)

∂ h̄(η;β)
∂η

)

,

(48)
N�

[

f̄ (η;β), �̄(η;β), h̄(η;β)
]

=
∂2�̄(η;β)

∂η2
+ ξsqξpr

(

2f̄ (η;β)
∂�̄(η;β)

∂η
− η

∂�̄(η;β)
∂η

)

− ξecξhmξsm

(

η
∂ h̄(η;β)

∂η
+ h̄(η;β)− 2f̄ (η;β)

∂ h̄(η;β)
∂η

)

,

(49)

f̄ (η, 0) = fo(η), f̄ (η, 1) = f (η),

ḡ(η, 0) = go(η), ḡ(η, 1) = g(η),

h̄(η, 0) = ho(η), h̄(η, 1) = h(η),

k̄(η, 0) = ko(η), k̄(η, 1) = k(η),

θ̄ (η, 0) = θo(η), θ̄ (η, 1) = θ(η),

�̄(η, 0) = �o(η), �̄(η, 1) = �(η),

(50)f (η;β) = f0(η)+
∞
∑

m=1

βmfm(η),

(51)g(η;β) = g0(η)+
∞
∑

m=1

βmgm(η),

(52)h(η;β) = h0(η)+
∞
∑

m=1

βmhm(η),

(53)k(η;β) = k0(η)+
∞
∑

m=1

βmkm(η),

(54)θ(η;β) = θ0(η)+
∞
∑

m=1

βmθm(η),

(55)�(η;β) = �0(η)+
∞
∑

m=1

βm�m(η),
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it should be noted that the convergence of above series strongly depends upon �f  , �g , �h , �k , �θ and ��.
Assuming that these nonzero auxiliary parameters are chosen so that Eqs. (35–40) converges at β = 1 . There-

fore one can obtain

Differentiating the deformation Eqs. (35–40) m− times with respect to β and putting β = 0 , we have

subject to the boundary conditions

where

(56)

fm(η) =
1

m!
∂mf (η;β)

∂ηm

∣

∣

∣

∣

β=0

, gm(η) =
1

m!
∂mg(η;β)

∂ηm

∣

∣

∣

∣

β=0

, hm(η) =
1

m!
∂mm(η;β)

∂ηm

∣

∣

∣

∣

β=0

,

km(η) =
1

m!
∂mn(η;β)

∂ηm

∣

∣

∣

∣

β=0

, θm(η) =
1

m!
∂mθ(η;β)

∂ηm

∣

∣

∣

∣

β=0

,�m(η) =
1

m!
∂m�(η;β)

∂ηm

∣

∣

∣

∣

β=0

,

(57)f (η) = f0(η)+
∞
∑

m=1

fm(η),

(58)g(η) = g0(η)+
∞
∑

m=1

gm(η),

(59)h(η) = h0(η)+
∞
∑

m=1

hm(η),

(60)k(η) = k0(η)+
∞
∑

m=1

km(η),

(61)θ(η) = θ0(η)+
∞
∑

m=1

θm(η),

(62)�(η) = �0(η)+
∞
∑

m=1

�m(η),

(63)ℓf [fm(η)− χmfm−1(η)] = �f Rf ,m(η),

(64)ℓg [gm(η)− χmgm−1(η)] = �gRg ,m(η),

(65)ℓh[hm(η)− χmhm−1(η)] = �hRh,m(η),

(66)ℓk[km(η)− χmkm−1(η)] = �kRk,m(η),

(67)ℓθ [θm(η)− χmθm−1(η)] = �θRθ ,m(η),

(68)ℓ� [�m(η)− χm�m−1(η)] = ��R� ,m(η),

(69)
fm(0) = 0, f ′m(0) = 0, gm(0) = 0, hm(0) = 0, km(0) = 0, θm(0) = 0, �m(0) = 1,

fm(1) = 0.5, f ′m(1) = 0, gm(1) = S, hm(1) = 1, km(1) = 1, θm(1) = 0, �m(1) = 0,

(70)

Rf ,m(η) = ℵ2
bf

′′′′
m−1(η)− ℵ3

b

[

3f ′′m−1(η)+ ηf ′′′m−1(η)− 2

m−1
∑

j=0

fj(η)f
′′′
m−j−1

+ 2ξ2z ξmag

m−1
∑

j=0

mj(η)

(

ηh′′m−j−1 + h′m−j−1 + 2hm−j−1f
′′
m−j−1 − 2fm−j−1h

′′
m−j−1

)]

+ 2ℵ2
a

(m−1
∑

j=0

gj(η)g
′
m−j−1(η)− ξ 2θ

m−1
∑

j=0

nj(η)k
′
m−j−1(η)

)

,
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and χm =
{

1, if m > 1, and 0, m = 1.

Finally, the general solution of Eqs. (59–64) can be written as

and so the exact solution f (η) , g(η) , h(η) , k(η) , θ(η) and �(η) becomes

(71)

Rg ,m(η) = g ′′m−1(η)− ξsq

[

ηg ′m−1(η)+ 2gm−1 + 2

m−1
∑

j=0

gj(η)f
′
m−j−1(η)− 2

m−1
∑

j=0

fj(η)g
′
m−j−1(η)

+ 2ξzξθ

(m−1
∑

j=0

hj(η)k
′
m−j−1(η)−

m−1
∑

j=0

kj(η)h
′
m−j−1(η)

)]

,

(72)

Rh,m(η) = h′′m−1(η)− ξmag

[

ηh′m−1(η)+ hm−1 − 2

m−1
∑

j=0

fj(η)h
′
m−j−1(η)+ 2

m−1
∑

j=0

hj(η)f
′
m−j−1(η)

−
m−1
∑

j=0

kj(η)h
′
m−j−1(η)

)]

,

(73)

Rk,m(η) = ξθk
′′
m−1(η)− ξmagξθ

[

ηh′m−1(η)+ 2hm−1 − 2

m−1
∑

j=0

fj(η)h
′
m−j−1(η)

]

− 2ξz

m−1
∑

j=0

hj(η)g
′
m−j−1(η),

(74)

Rθ ,m(η) = θ ′′m−1(η)+ ξsqξpr

(

2

m−1
∑

j=0

fj(η)θ
′
m−j−1(η)− ηθ ′j (η)

)

− ξecξhmξpm

(

ηh′m−1(η)

+ hm−1(η)− 2

m−1
∑

j=0

fj(η)h
′
m−j−1(η)

)

,

(75)

R� ,m(η) = � ′′
m−1(η)+ ξsqξpr

(

2

m−1
∑

j=0

fj(η)�
′
m−j−1(η)− η� ′

j (η)

)

− ξecξhmξsm

(

ηh′m−1(η)

+ hm−1(η)− 2

m−1
∑

j=0

fj(η)h
′
m−j−1(η)

)

,

(76)fm(η) =
∫ η

0

∫ η

0

∫ η

0

∫ η

0

�f Rf ,m(z)dzdzdzdzdz + χmfm−1 + ζ1η
3 + ζ2η

2 + ζ3η + ζ4,

(77)gm(η) =
∫ η

0

∫ η

0

�gRg ,m(z)dzdz + χmgm−1 + ζ5η + ζ6,

(78)hm(η) =
∫ η

0

∫ η

0

�hRh,m(z)dzdz + χmhm−1 + ζ7η + ζ8,

(79)km(η) =
∫ η

0

∫ η

0

�kRk,m(z)dzdz + χmkm−1 + ζ9η + ζ10,

(80)θm(η) =
∫ η

0

∫ η

0

�θRθ ,m(z)dzdz + χmθm−1 + ζ11η + ζ12,

(81)�m(η) =
∫ η

0

∫ η

0

��R� ,m(z)dzdz + χm�m−1 + ζ13η + ζ14,
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Optimal convergence control parameters. It must be remarked that the series solutions (59–64) con-
tain the nonzero auxiliary parameters �f  , �g ,, �h , �k , �θ and �� which determine the convergence region and also 
rate of the homotopy series solutions. To obtain the optimal values of �f  , �g , �h , �k , �θ and �� here the so called 
average residual error defined by  Liao16 were used as:

Due to  Liao16

where εtm is the total squared residual error. Total average squared residual error is minimized by employing 
Mathematica package BVPh 2.016.

Physical quantities of interest
Torque exerted by fluid on the plates. The frictional moment or torque which the fluid exerts on the 
upper plate is  given26

but v = �ur
1−αt g(η) so the above equation becomes

,

For the lower plate the corresponding result is

The pressure or normal force of the fluid on plates. According to HAM za et al.26, the pressure or the 
normal force which the fluid exerts on the upper plate is given as:

(82)

f (η) ≈
m
∑

n=0

fn(η), g(η) ≈
m
∑

n=0

gn(η), h(η) ≈
m
∑

n=0

hn(η),

k(η) ≈
m
∑

n=0

kn(η), θ(η) ≈
m
∑

n=0

θn(η), �(η) ≈
m
∑

n=0

�n(η).

(83)ε
f
m =

1

ζ + 1

ζ
∑

j=0

[

Nf

( m
∑

i=0

f̄ (η),

m
∑

i=0

ḡ(η),

m
∑

i=0

h̄(η),

m
∑

i=0

k̄(η)

)

n=jδn

]2

dη,

(84)ε
g
m =

1

ζ + 1

ζ
∑

j=0

[

Ng

( m
∑

i=0

f̄ (η),

m
∑

i=0

ḡ(η),

m
∑

i=0

h̄(η),

m
∑

i=0

k̄(η)

)

n=jδn

]2

dη,

(85)εhm =
1

ζ + 1

ζ
∑

j=0

[

Nm

( m
∑

i=0

f̄ (η),

m
∑

i=0

h̄(η),

m
∑

i=0

k̄(η)

)

n=jδn

]2

dη,

(86)εkm =
1

ζ + 1

ζ
∑

j=0

[

Nn

( m
∑

i=0

f̄ (η),

m
∑

i=0

h̄(η),

m
∑

i=0

k̄(η)

)

n=jδn

]2

dη,

(87)εθm =
1

ζ + 1

ζ
∑

j=0

[

Nθ

( m
∑

i=0

f̄ (η),

m
∑

i=0

θ̄ (η),

m
∑

i=0

�̄(η)

)

n=jδn

]2

dη,

(88)ε�m =
1

ζ + 1

ζ
∑

j=0

[

N�

( m
∑

i=0

f̄ (η),

m
∑

i=0

θ̄ (η),

m
∑

i=0

�̄(η)

)

n=jδn

]2

dη,

(89)εtm = ε
f
m + ε

g
m + εhm + εkm + εθm + ε�m ,

Tupper = 2πµ

∫ c

0

r2
(

∂v

∂z

)

z=D(t)

dr,

Tupper =
πµ�uc

4

2l(1− αt)
3
2

g ′(1)

(90)or T∗
upper = g ′(1) where T∗

upper =
2l(1− αt)

3
2

πµ�uc4
.

(91)T∗
lower = g ′(0),
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where P+(r, 1, t) in for conditions on the side of the plate and p(r, 1, t) denotes the pressure at the edge of the 
disc at time t26. Let us assume that ∂P

+(r,1,t)
∂r = 0 and using Eq. (8), we get

where ϒ(t, η) = 1
ρr

∂p
∂r  . using Eqs. (25), (26) , we have

where Fpres = 16(1−αt)2

πρα2a4
 , Which is the dimensionless pressure on the upper plate. The positive or negative numeri-

cal values of Fpres will be according the force acting by the fluid on the upper plate is in the positive or negative 
direction of the z-axis respectively.

Error analysis
Error assessments are performed to ensure that the derived system of ODEs is analytically accurate with the 
lowest residual errors. The validity of HAM techniques utilising the highest residual error 10−38 is also investi-
gated in this study. Approximations of the 30th order of approximation are used in the study. Error analyses in 
Fig. 1 and tabulated data in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 are offered to validate the legitimacy of 
the findings for the various included physical parameters. Figure 2 is drawn to show the 3D-view of the velocity 
field components, magnetic field components and heat/mass distribution. 

The greatest average residual-error of f(eta), g(eta), h(eta), k(eta), ta(eta), and psi(eta) using various approxi-
mating orders is shown in Fig. 3. In sub-figures it is evident that the error is virtually constantly decreased to 
15th . Table 1 shows the overall residual error for various approximation orders, with fixed values, Table 2 shows 
comparison of HAM Results to numerical values for velocity field, heat and mass distributions variables. The 

(92)F = 2π

[
∫ a

0

rP(r, 1, t)dr −
∫ a

0

rP+(r, 1, t)dr

]

,

∂p

∂r
=

ρr

(1− αt)2

[

αν

2l2
ξvisf

′′′ +�2
ug

2 −
α2

4

(

2f ′ + ηf ′′ + f ′′ − 2ff ′′
)

−
2

ρµ2

(

α2M2
o

4l2
hh′′ + N2

o k
2

)]

,

(93)
ϒ(t, η) =

1

(1− αt)2

[

αν

2l2
ξvisf

′′′ +�2
ug

2 −
α2

4

(

2f ′ + ηf ′′ + f ′′ − 2ff ′′
)

−
2

ρµ2

(

α2M2
o

4l2
hh′′ + N2

o k
2

)]

,

F =
πρα2a4

16(1− αt)2

[

2ξ2z h
′′(1)− ℵ−1

b ξvisf
′′′(1)−

(

ξrad

ξsq

)2(

S2 − 2ξ 2θ

)]

,

(94)Fpres =
[

2ξ2z h
′′(1)− ℵ−1

b ξvisf
′′′(1)−

(

ξrad

ξsq

)2(

S2 − 2ξ 2θ

)]

,

Figure 1.  Error profile of f (η) , g(η) , m(η) , n(η) , θ(η) and φ(η) for fixed values of ξa = 0.1 , ξs = 0.1 , ξz = 0.2 , 
ξθ = 0.5 , ξem = 0.1 , ξpr = 3 , ξhm = 0.1 , ξpm = 1.5 , ξsm = 1 , ξec = 0.2 , ξv = 0.5 and S = 1.
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BVP4c Results for f ′′(0) , −g ′(0) , −h′(0) , −k′(0) , −theta′(0) , and −Psi′(0) given in Table 3 provides further 
conformation of the authenticity for our results. Results converge almost on a 15th approximation order. As the 
order of approximation is increased, the result converges to an exact solution. The results of HAM and BVP4c 
are compared in Tables 6, 7, 8, 9, 10, 11 and 12  for varied values of ξvis, ξrad , ξz , ξmag , ξec , ξpm, ξsm and fixed values 
of other associated parameters.

Results and discussions
To examine and analyse how the magnetic field and squeezing phenomena affect flow rate in the presence of MFD 
temperature, optimise the system’s heating/cooling process, lessen fluid turbulence, and scale up flow tracers. 
using the laminar, unstable, and incompressible MFD viscous fluid flow produced by compressing plates under 
the influence of no-slip velocity and convective surface boundary conditions. to look into the flow for mass and 

Table 1.  Optimal values of convergence control parameters versus different orders of approximation with 
fixed values of ξrad = 0.1 , ξsq = 0.1 , ξz = 0.2 , ξθ = 0.5 , ξmag = 0.1 , ξpr = 3 , ξhm = 0.1 , ξpm = 1.5 , ξsm = 1 , 
ξec = 0.2 , ξvis = 0.5 and S = 1.

Order hf hg hh hk hθ h� εtm

2 − 182.02 − 2.8096 − 1.8780 − 1.8760 − 1.8468 − 1.8428 2.0114× 10−7

3 − 190.87 − 1.9148 − 0.9691 − 0.9812 − 0.9728 − 0.9712 1.1235× 10−10

4 − 191.92 −1.8999 − 0.9952 − 1.0173 − 0.9665 − 0.9665 4.3529× 10−13

5 − 190.97 −1.9025 − 0.9882 − 0.9810 − 0.9530 − 0.9498 − 2.5293× 10−15

6 −191.79 −1.9184 − 0.9828 − 0.9456 − 0.9498 − 0.9412 − 6.6548× 10−17

Table 2.  Total residual error for different order of approximations taking fixed values of ξrad = 0.1 , ξsq = 0.1 , 
ξz = 0.2 , ξθ = 0.5 , ξmag = 0.3 , ξpr = 0.2 , ξhm = 1 , ξpm = 0.2 , ξsm = 1 , ξec = 0.1 , ξvis = 0.3 and S = 0.5.

m ǫf m ǫg m ǫhm ǫkm ǫθm ǫ�m

2 1.231× 10−7 2.864× 10−6 2.245× 10−6 2.752× 10−5 8.534× 10−9 5.234× 10−6

5 3.342× 10−14 4.127× 10−13 3.421× 10−14 2.531× 10−13 3.274× 10−17 3.819× 10−15

8 4.173× 10−21 3.223× 10−20 3.425× 10−21 4.426× 10−20 4.342× 10−24 3.124× 10−21

11 7.421× 10−28 8.658× 10−27 1.238× 10−27 3.153× 10−27 3.446× 10−31 2.456× 10−29c

14 2.642× 10−34 2.451× 10−32 1.395× 10−32 3.327× 10−32 2.148× 10−35 3.469× 10−33

17 2.351× 10−34 1.478× 10−32 1.868× 10−32 2.231× 10−32 2.424× 10−35 4.324× 10−33

20 2.351× 10−34 1.478× 10−32 8.223× 10−33 2.925× 10−32 1.941× 10−35 5.970× 10−33

23 2.351× 10−34 1.478× 10−32 1.068× 10−32 2.741× 10−32 1.760× 10−35 5.691× 10−33

26 2.351× 10−34 1.478× 10−32 1.377× 10−32 3.049× 10−32 1.700× 10−35 5.845× 10−33

30 2.351× 10−34 1.478× 10−32 1.038× 10−32 2.432× 10−32 1.941× 10−35 6.654× 10−33

Table 3.  Computations for f (η) , g(η) , h(η) , k(η) , θ(η) , �(η) with ξrad = 0.1 , ξsq = 0.1 , ξz = 0.2 , ξθ = 0.5 , 
ξmag = 0.3 , ξpr = 0.2 , ξhm = 1 , ξpm = 0.2 , ξsm = 1 , ξec = 0.1 , ξvis = 0.3 , S = 0.5 and various values of η.

η HAM result  BVP4c result

f (η) g(η) h(η) θ(η) �(η) f (η) g(η) h(η) θ(η) �(η)

0 0 1 0 1 1 0 1 0 1 1

0.1001 0.0261 0.9267 0.0899 0.8987 0.8974 0.0261 0.9264 0.0899 0.8989 0.8977

0.2002 0.0668 0.8497 0.1911 0.7987 0.7978 0.0669 0.8499 0.1912 0.7989 0.7978

0.3003 0.1258 0.7703 0.2716 0.6989 0.6954 0.1259 0.7704 0.2717 0.6989 0.6955

0.4004 0.1839 0.7100 0.3654 0.5986 0.5944 0.1839 0.7101 0.3655 0.5987 0.5945

0.5005 0.2582 0.6579 0.4619 0.4983 0.4938 0.2582 0.6579 0.4619 0.4983 0.4938

0.6006 0.3324 0.6245 0.5723 0.3994 0.3946 0.3325 0.6246 0.5724 0.3995 0.3947

0.7007 0.3985 0.5875 0.6765 0.2993 0.2951 0.3986 0.5876 0.6766 0.2994 0.2952

0.8008 0.4622 0.5568 0.7845 0.1994 0.1959 0.4623 0.5569 0.7846 0.1995 0.1959

0.9009 0.4981 0.5315 0.8965 0.0997 0.0976 0.4982 0.5316 0.8966 0.0998 0.0977

1 0.5 0.5 1 0 0 0.5 0.5 1 0 0
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Table 4.  Convergence of HAM solution for different orders of approximation for f ′′(0) , −g ′(0) , −h′(0) , 
−n′(0) , −θ ′(0) and −� ′(0) when ξrad = 0.1 , ξsq = 0.1 , ξz = 0.2 , ξθ = 0.5 , ξmag = 0.3 , ξpr = 0.2 , ξhm = 1 , 
ξpm = 0.2 , ξsm = 1 , ξec = 0.1 , ξvis = 0.3 and S = 0.5.

m f ′′(0) − g ′(0) − h′(0) − k′(0) − θ ′(0) −� ′(0)

1 3.30248492 0.76935826 −0.76249352 −0.86198432 1.01629436 1.00261843

6 3.30248445 0.76935839 −0.76249348 −0.861984256 1.01629429 1.00261862

12 3.30248472 0.76935856 −0.76249352 −0.861984261 1.01629435 1.00261869

18 3.30248472 0.76935856 −0.76249352 −0.861984261 1.01629435 1.00261869

24 3.30248472 0.76935856 −0.76249352 −0.861984261 1.01629435 1.00261869

30 3.30248472 0.76935856 −0.76249352 −0.861984261 1.01629435 1.00261869

Table 5.  Fluid pressure and torques on upper plate with ξrad = 0.1 , ξz = 0.2 , ξθ = 0.5 , ξmag = 0.1 , ξpr = 3 , 
ξhm = 1 , ξpm = 0.2 , ξsm = 1 , ξec = 2 , ξvis = 0.3 , S = 1 and various values of ξsq.

ξsq HAM result BVP4c result %Error = | N .R−H .R
N .R |

Fpres g ′(1) Fpres g ′(1) Fpres g ′(1)

0.1 19.2226 − 0.4558 19.2225 − 0.4562 5.20224× 10−6 2.19346× 10−3

0.5 5.2753 − 1.7021 5.2752 − 0.4724 1.89566× 10−4 5.87475× 10−4

1 3.4494 − 2.6614 3.4493 − 0.5128 2.89914× 10−4 3.75728× 10−4

1.5 2.8340 − 3.3410 2.8339 − 0.3400 3.52871× 10−4 2.99303× 10−4

Table 6.  Fluid pressure and torques on upper plate with ξrad = 0.1 , ξsq = 1.5 , ξz = 0.2 , ξθ = 0.5 , ξmag = 0.1 , 
ξpr = 3 , ξhm = 1 , ξpm = 0.2 , ξsm = 1 , ξec = 2 , S = 1 and various values of ξvis.

ξvis HAM result BVP4c result %Error = | N .R−H .R
N .R |

Fpres g ′(1) Fpres g ′(1) Fpres g ′(1)

0.1 1.9722 − 5.5855 1.9721 − 5.5856 5.07074× 10−4 1.79032× 10−4

0.5 3.6515 − 2.4989 3.6514 − 2.4990 2.73868× 10−4 4.00160× 10−4

1 5.6661 − 1.5789 5.6660 − 1.5790 1.76491× 10−4 6.33312× 10−4

1.5 7.6712 − 1.1632 7.6711 − 1.1633 1.30359× 10−4 8.59623× 10−4

Table 7.  Fluid pressure and torques on upper plate with ξsq = 0.1 , ξz = 0.2 , ξθ = 0.5 , ξmag = 0.3 , ξpr = 3 , 
ξhm = 1 , ξpm = 0.2 , ξsm = 1 , ξec = 2 , ξvis = 0.3 , S = 1 and various values of ξa.

ξa HAM result BVP4c result %Error = | N .R−H .R
N .R |

Fpres g ′(1) Fpres g ′(1) Fpres g ′(1)

0.1 19.2024 − 0.4561 19.2023 − 0.4562 5.20771× 10−6 2.19202× 10−3

0.5 6.9653 − 0.4723 6.9652 − 0.4724 1.43571× 10−4 2.11775× 10−3

1 − 34.0176 − 0.5127 −34.0175 − 0.5128 2.93966× 10−6 1.95008× 10−3

1.5 − 268.29 − 0.3399 −268.28 − 0.3400 3.72745× 10−4 2.94204× 10−3

Table 8.  Computations for f ′′(0) , −g ′(0) , −h′(0) , −k′(0) and −θ ′(0) with ξrad = 0.2 , ξsq = 0.2 , ξz = 0.1 , 
ξθ = 1 , ξmag = 0.5 , ξpr = 2 , ξhm = 1 , ξpm = 1 , ξsm = 0.5 , ξec = 2 , S = 1 and various values of ξvis.

ξvis HAM result  BVP4c result

f ′′(0) − g ′(0) − h′(0) − k′(0) − θ ′(0) f ′′(0) − g ′(0) − h′(0) − k′(0) − θ ′(0)

0.1 3.9532 1.8329 0.9267 0.7936 1.3785 3.9532 1.8329 0.9267 0.7936 1.3785

1 3.7789 0.3857 0.7837 1.037 1.3087 3.7789 0.3857 0.7837 1.037 1.3087

2 3.5985 0.0963 0.5893 1.4687 1.3097 3.5985 0.0963 0.5893 1.4687 1.3097

3 3.3789 0.0065 0.3784 1.7499 1.3001 3.3789 0.0065 0.3784 1.7499 1.3001
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heat transfer and to offer an analytical and numerical study of it. For the cases of rotating and compressing plates, 
the influence of the different flow parameters is addressed graphically. The influence of the flow parameters is 
given for the vertical velocity component f ′(η) , horizontal velocity compnent f (η) , magnetic field components 
and temperature θ(η) and mass transfer �(η) variations, respectively. In this section the impact of rotational 
parameter ξrot , squeeze Reynold number ξsq , Prandtl number ξpr , Hartman number ξhm and all other parameters 
are respectively analyzed and discussed in detail. Figures 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 
22 and 23 and Tables 5, 6, 7, 8, 9, 10, 11 and 12 depict effect of the natural parameters that appear during math-
ematical modelling of this problem. Dimensionless parameters are analysed for ξvis , ξa , ξz , ξθ , ξmag , ξpm , ξsm and 
ξec on the velocity field components f ′(η) , g(η) , f (η) , components of the magnetic field h(η) , k(η) and heat/mass 
distributions θ(η) , �(η) respectively. To model physically realistic flows by HAM , representative values are used.

Figures 4 and 5 depicts the effect of ξmag = ξsqξbt on f (η) and f ′(η) . The ratio of the fluid flux to magnetic 
diffusivity is described by ξmag . As a result, along streamlines this parameter is critical in evaluating magnetic 
field  diffusion15. As seen in Fig. 4, a decrease in the magnetic diffusion enhances the axial and radial velocity 
distributions neat the lower plate. The minimum value of f (η) and f ′(η) appears near the lower plate. As fluid 

Table 9.  Computations for f ′′(0) , − g ′(0) , − h′(0) , − k′(0) and −θ ′(0) with ξrad = 0.2 , ξsq = 0.2 , ξz = 0.1 , 
ξθ = 1 , ξpr = 2 , ξhm = 1 , ξpm = 1 , ξsm = 0.5 , ξec = 2 , ξvis = 3 , S = 1 and various values of ξmag.

ξmag HAM result  BVP4c result

f ′′(0) − g ′(0) −h′(0) − k′(0) − θ ′(0) f ′′(0) −g ′(0) − h′(0) −k′(0) − θ ′(0)

0.5 3.1389 0.2598 0.7994 1.4829 3.2687 3.1389 0.2598 0.7994 1.4829 3.2687

1 3.1372 0.2598 0.5839 1.3799 1.3087 3.1372 0.2598 0.5839 1.3799 1.3087

2 3.1351 0.2599 0.4981 1.2911 1.3097 3.1351 0.2599 0.4981 1.2911 1.3097

3 3.1314 0.2599 0.2389 1.1999 1.3001 3.1314 0.2599 0.2389 1.1999 1.3001

Table 10.  Computations for f ′′(0) , g ′(0) , h′(0) and θ ′(0) with ξrad = 0.5 , ξsq = 1 , ξz = 2 , ξθ = 1 , ξmag = 3 , 
ξpr = 0.2 , ξhm = 1 , ξpm = 0.2 , ξsm = 1 , ξvis = 3 , S = 1 and various values of ξec.

ξec HAM Result  BVP4c result

f ′′(0) − g ′(0) − h′(0) − θ ′(0) −� ′(0) f ′′(0) − g ′(0) − h′(0) − θ ′(0) −� ′(0)

1 3.0719 0.2981 0.1819 1.1371 1.0988 3.0719 0.2981 0.1819 1.1371 1.0988

2 3.0719 0.2981 0.1819 1.2811 1.1381 3.0719 0.2981 0.1819 1.2811 1.1381

3 3.0719 0.2981 0.1819 1.3101 1.2847 3.0719 0.2981 0.1819 1.3101 1.2847

4 3.0719 0.2981 0.1819 1.3919 1.3899 3.0719 0.2981 0.1819 1.3919 1.3899

Table 11.  Computations for f ′′(0) , −g ′(0) , −h′(0) , −k′(0) and −θ ′(0) with ξrad = 0.2 , ξsq = 0.2 , ξz = 0.1 , 
ξθ = 1 , ξmag = 1 , ξpr = 2 , ξhm = 1 , ξsm = 0.5 , ξec = 2 , ξvis = 3 , S = 1 and various values of ξpm.

ξpm HAM Result  BVP4c result

f ′′(0) − g ′(0) −h′(0) −k′(0) − θ ′(0) f ′′(0) − g ′(0) − h′(0) − k′(0) − θ ′(0)

0.1 3.1301 0.1299 0.8102 0.6989 1.1127 3.1301 0.1299 0.8102 0.6989 1.1127

0.5 3.1301 0.1299 0.8102 0.6989 1.2994 3.1301 0.1299 0.8102 0.6989 1.2994

1 3.1301 0.1299 0.8102 0.6989 1.3999 3.1301 0.1299 0.8102 0.6989 1.3999

2 3.1301 0.1299 0.8102 0.6989 1.5391 3.1301 0.1299 0.8102 0.6989 1.5391

Table 12.  Computations for f ′′(0) , g ′(0) , h′(0) , −k′(0) and θ ′(0) with ξrad = 2 , ξsq = 1 , ξz = 0.1 , ξθ = 1 , 
ξmag = 3 , ξpr = 2 , ξhm = 1 , ξpm = 2 , ξec = 1 , ξvis = 0.3 , S = −0.5 and various values of ξsm.

ξsm HAM result BVP4c result

f ′′(0) −g ′(0) −h′(0) −k′(0) −θ ′(0) f ′′(0) −g ′(0) −h′(0) −k′(0) −θ ′(0)

0.1 3.9749 0.3769 0.3996 1.0929 0.9998 3.9749 0.3769 0.3996 1.0929 0.9998

0.5 3.9749 0.3769 0.3996 1.0929 1.0069 3.9749 0.3769 0.3996 1.0929 1.0069

1 3.9749 0.3769 0.3996 1.0929 1.0135 3.9749 0.3769 0.3996 1.0929 1.0135

1.5 3.9749 0.3769 0.3996 1.0929 1.0299 3.9749 0.3769 0.3996 1.0929 1.0299
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travels from the central region toward upper plate, the influence of ξ(mag) on f ′(η) and f (η) decreases due to the 
decrease in the magnetic flux. Figure 5 is made to depict the 3D-view of the velocity components. The influence 
of ξmag on g(η) and h(η) is shown in Figs. 6 and 7 . As seen in Fig. 6a, the minimum value of g(η) appears near 
the upper plate due to the resistance of magnetic diffusion to the horizontal and vertical velocities, similarly in 
Fig. 6b, an increase in fluid flux or a reduction in magnetic diffusivity has a clear effect on h(η) . Figure 7 show 
the 3D-view of g(η) and h(η) for fixed values of other parameters. The effect of ξmag is also investigated for θ(η) 
and concentration distribution. For this purpose, Figs. 8  and 9 are drawn. A decrease in the magnetic diffusion 
enhances the fluid viscosity will decrease θ(η) near the upper plate, similarly �(η) both decrease strongly. Figure 9 
is made to to observed this phenomenon in a 3D-view.

Figure 2.  Error profile of f (η) , g(η) , m(η) , n(η) , θ(η) and φ(η) for fixed values of ξa = 0.1 , ξs = 0.1 , ξz = 0.2 , 
ξθ = 0.5 , ξem = 0.1 , ξpr = 3 , ξhm = 0.1 , ξpm = 1.5 , ξsm = 1 , ξec = 0.2 , ξv = 0.5 and S = 1.

Figure 3.  Geometry of the problem.
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Figure 4.  Impact of ξem on f (η) and f ′(η) for fixed values of ξa = 0.3 , ξs = 0.01 , ξz = 5 , ξθ = 0.2 , ξpr = 0.2 , 
ξhm = 1 , ξpm = 1 , ξsm = 0.5 , ξec = 5 , ξv = 0.1 and S = 0.5.

Figure 5.  3D-view of the impact of ξem on f (η) and f ′(η) for fixed values of ξa = 0.3 , ξs = 0.01 , ξz = 5 , 
ξθ = 0.2 , ξpr = 0.2 , ξhm = 1 , ξpm = 1 , ξsm = 0.5 , ξec = 5 , ξv = 0.1 and S = 0.5.

Figure 6.  Impact of ξem on g(η) and h(η) for fixed values of ξa = 0.3 , ξs = 0.01 , ξz = 5 , ξθ = 0.2 , ξpr = 0.2 , 
ξhm = 1 , ξpm = 1 , ξsm = 0.5 , ξec = 5 , ξv = 0.1 and S = 0.5.
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Figure 7.  3D-view of the impact of ξem on g(η) and h(η) for fixed values of ξa = 0.3 , ξs = 0.01 , ξz = 5 , 
ξθ = 0.2 , ξpr = 0.2 , ξhm = 1 , ξpm = 1 , ξsm = 0.5 , ξec = 5 , ξv = 0.1 and S = 0.5.

Figure 8.  Impact of ξem on θ(η) and φ(η) for fixed values of ξa = 0.3 , ξs = 0.01 , ξz = 5 , ξθ = 0.2 , ξpr = 0.2 , 
ξhm = 1 , ξpm = 1 , ξsm = 0.5 , ξec = 5 , ξv = 0.1 and S = 0.5.

Figure 9.  3D-view of the impact of ξem on θ(η) and φ(η) for fixed values of ξa = 0.3 , ξs = 0.01 , ξz = 5 , 
ξθ = 0.2 , ξpr = 0.2 , ξhm = 1 , ξpm = 1 , ξsm = 0.5 , ξec = 5 , ξv = 0.1 and S = 0.5.
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Figure 10.  Impact of ξV on f ′(η) and g(η) for fixed values of ξa = 1 , ξs = 0.01 , ξz = 3 , ξθ = 2 , ξem = 0.5 , 
ξpr = 0.2 , ξhm = 1 , ξpm = 1 , ξsm = 1 , ξec = 0.3 and S = 1.

Figure 11.  3D-view of the impact of ξV on f ′(η) and g(η) for fixed values of ξa = 1 , ξs = 0.01 , ξz = 3 , ξθ = 2 , 
ξem = 0.5 , ξpr = 0.2 , ξhm = 1 , ξpm = 1 , ξsm = 1 , ξec = 0.3 and S = 1.

Figure 12.  Impact of ξV on h(η) and k(η) for fixed values of ξa = 1 , ξs = 0.01 , ξz = 3 , ξθ = 2 , ξem = 0.1 , 
ξpr = 2 , ξhm = 1 , ξpm = 1 , ξsm = 1 , ξec = 0.3 and S = 1.
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Figure 13.  3D-view of the impact of ξV on h(η) and k(η) for fixed values of ξa = 1 , ξs = 0.01 , ξz = 3 , ξθ = 2 , 
ξem = 0.1 , ξpr = 2 , ξhm = 1 , ξpm = 1 , ξsm = 1 , ξec = 0.3 and S = 1.

Figure 14.  Impact of ξa on f (η) and g(η) for fixed values of ξs = 1 , ξz = 5 , ξθ = 0.2 , ξem = 5 , ξpr = 1 , ξhm = 2 , 
ξpm = 1 , ξsm = 0.5 , ξec = 3 , ξv = 0.5 and S = 0.5.

Figure 15.  3D-view of the impact ξa on f (η) and g(η) for fixed values of ξs = 1 , ξz = 5 , ξθ = 0.2 , ξem = 5 , 
ξpr = 1 , ξhm = 2 , ξpm = 1 , ξsm = 0.5 , ξec = 3 , ξv = 0.5 and S = 0.5.
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Figure 16.  Impact of ξa on h(η) and k(η) for fixed values of ξs = 1 , ξz = 5 , ξθ = 0.2 , ξem = 5 , ξpr = 1 , ξhm = 2 , 
ξpm = 1 , ξsm = 0.5 , ξec = 3 , ξv = 0.5 and S = 0.5.

Figure 17.  Impactof ξz on f ′(η) and g(η) for fixed values of ξa = 1 , ξs = 0.1 , ξθ = 0.1 , ξem = 1 , ξpr = 0.1 , 
ξhm = 10 , ξpm = 1 , ξsm = 1 , ξec = 0.1 , ξv = 0.1 and S = 1.

Figure 18.  3D-view of the Impact ξz on f (η) , f ′(η) for fixed values of ξa = 1 , ξs = 0.1 , ξθ = 0.1 , ξem = 1 , 
ξpr = 0.1 , ξhm = 10 , ξpm = 1 , ξsm = 1 , ξec = 0.1 , ξv = 0.1 and S = 1.
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Figure 19.  Impact of ξem of f (η) and f ′(η) for fixed values of ξa = 2 , ξs = 0.1 , ξz = 0.5 , ξem = 1 , ξpr = 1 , 
ξhm = 10 , ξpm = 1 , ξsm = 1 , ξec = 0.1 , ξv = 0.1 and S = 1.

Figure 20.  3D-view of the impact ξa f (η) and f ′(η) for fixed values of ξa = 2 , ξs = 0.1 , ξz = 0.5 , ξem = 1 , 
ξpr = 1 , ξhm = 10 , ξpm = 1 , ξsm = 1 , ξec = 0.1 , ξv = 0.1 and S = 1.

Figure 21.  Impact of ξθ on k(η) for fixed values of ξa = 2 , ξs = 0.1 , ξz = 0.5 , ξem = 1 , ξpr = 1 , ξhm = 10 , 
ξpm = 1 , ξsm = 1 , ξec = 0.1 , ξv = 0.1 and S = 1.
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The effects of MFD viscosity ξvis on f ′(η) and g(η) are shown in Figs. 10  and 11. A higher viscosity coefficient 
means that a fluid has more flow resistance. Figure 10 shows that the flow of fluid near the plates reduces in the 
horizontal direction as the fluid’s viscosity increases because of an increase in the fluid’s flow resistance. It’s also 
important to note that fluid density begins to rise in the fluid domain’s centre area as it moves in the direction 
of the top plate. An increase in ξvis has an impact on azimuthal velocity, as seen in Fig. 11b. The highest value of 
ξvis = 4 has the greatest drop in g(η) at the upper disc. Figure 11 shows this phenomena in a 3D-dimensional 
view. Investigations on the magnetic field’s impact of MFD viscosity are also conducted. The h(η) and k(η) can 
be impacted by changes in MFD viscosity, as would be predicted. Figure 12 illustrates how h(η) and k(η) both 
display the opposing action of ξvis . This phenomena is depicted in Fig. 13 in a 3D-dimensional form.

One of the most significant physical parameter is the rotational Reynolds parameter. The effect of the rota-
tional Reynolds number ξa = �l l

2

ξvis
 could be observed in Figs. 13 and 14. A rise in ξa indicates either an increase 

in the lower plate angular velocity or a reduction in fluid viscosity. Expanding the value of ξa , in vicinity of plates, 
the axial velocity reduces. This is because of the rise of angular velocity of the lower plate (both plates rotate in the 
same direction as S = 0.5 > 0) pushes fluid in a radial direction, reducing fluid movement in the axial direction 
near the plates. As the fluid flows into the central region, the rotational strength of the plates decreases, and the 
velocity begins to increase in the axial direction after the central region, as seen in Fig. 14b. Figure 15 is made 
to observed this phenomenon in a 3D-view. Figure 16 depicts the effect of ξa on the axial as well as azimuthal 
portion of the induced magnetic field, h(η) . Clearly increase in ξa strengthens h(η).

The impact of the dimensionless strength of the axial magnetic field ξz is depicted in Figs 17  and 18. The 
influence of ξz on f ′(η) and g(η) near plates has been seen to be rather small, but it becomes noticeable when fluid 
moves into the higher plate. f ′(η) starts to rise at the fluid domain’s centre, then falls as it gets closer to the top 
disc. Similar to this, g(η) drops as ξz grows. The greatest decrease is visible towards the centre of the fluid domain. 

Figure 22.  Impact of ξec on θ(η) and φ(η) for fixed values of ξa = 0.2 , ξs = 0.2 , ξz = 0.1 , ξθ = 1 , ξem = 0.5 , 
ξpr = 10 , ξhm = 10 , ξpm = 1 , ξsm = 0.5 , ξv = 1 and S = −1.

Figure 23.  3D-view of θ(η) and φ(η) for fixed values of ξa = 0.2 , ξs = 0.2 , ξz = 0.1 , ξθ = 1 , ξem = 0.5 , 
ξpr = 10 , ξhm = 10 , ξpm = 1 , ξsm = 0.5 , ξv = 1 and S = −1.
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Figure 18 is designed to show the effect of ξz from a three-dimensional perspective. Figures 19 and 21 show how 
ξθ has an effect on f (η) , f ′(η) , and k(η) . The applied magnetic field’s dimensionless azimuthal amplitude is ξθ . It 
is important to keep in mind that rising ξθ raises both f (η) and f ′(η) . This is due to the fact that at the top disc, 
where the angular velocities of the lower plate’s Omegal and Omegau are larger than one another, ξθ has a bigger 
impact. Figure 20 is made to display the impact of ξz in a three dimensional view. The impact of Eckert number 
ξec is examined in Figs. 22 and 23 on θ(η) and �(η) . The Eckert number is the kinetic energy ratio to the fluc-
tuation of the boundary layer in temperature used to characterize the heat dispersion. The figure shows that ξec 
decreases each θ(η) and �(η) and virtually provide the identical impact due to the increase in the kinetic energy 
of the fluid. Tables 5, 6, 7, 8, 9, 10, 11, 12 and 13 are made to numerically analyze the impact of various physical 
parameters on skin friction, magnetic flux, heat and mass fluxes. From these tables it may be observed that all 
findings correspond quite well with the findings of the BVP4c and HAM. The formula %Error = |N .F−H .F

N .F | is 
used to calculate the error between HAM findings (H.F) and the findings that obtained numerically (N.F) by 
BVP4c. Tables 5, 6 and 7 illustrate the torque g ′(1) and pressure Fpres that the fluid exerts upon on top plate. It 
is noticed that increasing the distance between plates i.e (ξsq > 0) reduces pressure and torque on the top plate. 
Elshekh et al. and Hughes et al.5,24 respectively found a rise in fluid pressure on the top plate, which corresponds 
with their experimental and theoretical findings. Similarly Tables 6 and 7 investigate the effect of ξvis and ξa . 
Also Table 8 depict that an increase in MFD viscosity decrease skin friction f ′′(0) and slightly increase heat flux 
−θ ′(0) . Similarly effect of ξmag and ξec is shown in Tables 9 and 10. Tables 11 and 12 are made to show effects of 
ξpm and ξsm on f ′′(0) , f ′′(0) , g ′(0) , h′(0) , −k′(0) and −θ ′(0).

Concluding remarks
The computational model for the constitutive expressions of an unsteady Newtonian fluid is used to simulate the 
flow between the circular space of porous and squeezing discs in the form of equations. Using the mathematical 
model for the constitutive expressions of unstable Newtonian fluid, the flow between the circular space of porous 
and squeezing discs is described in the form of Eqs. (9–14) is subject to the boundary requirements given in Eq. 
(15). The series solution of the following equations is found using HAM: f (η) , f ′(η) , g(η) , h(η) , k(η) , θ(η) , and 
�(η) for magnetic field components. The extraordinary stability and convergence properties of the HAM have 
been demonstrated. Through the use of HAM and BVP4c, these equations are compared for numerical investi-
gations. Parametric analysis are carried out for the dimensionless parameters such as MFD viscosity parameter 
ξvis , magnetic Reynolds number ξmag , rotational Reynolds number ξa , squeezing Reynolds number ξsq , axial 
magnetic force parameter ξz , tangential magnetic force parameter ξθ and Eckert number ξec . In the future, this 
problem could be investigated in the form of PDEs. The solution of the problem in the PDEs form will explore 
the physics of the problem in details.

Main upshots of this paper are presented as below:

• As the fluid’s MFD viscosity rises, the axial and azimuthal components of the magnetic field behave in opposi-
tion to one another.

• It has been discovered that a magnetic Reynolds number lowers the temperature of the fluid as well as the 
tangential and axial components of the velocity field.

• With an increase in the bottom plate’s rotating speed, the fluid’s torque and pressure on the plates decrease. 
The findings of Hughes et al.27 and Elshekh et al.23 as well as theoretical and experimental findings are in 
agreement with this outcome.

• For the magnetic field components, the effect of the MFD viscosity has been seen to follow a different pattern.
• The Eckert number’s effects on θ(η) and �(η) have been seen to be identical.
• Heat and mass transfer coefficients, as well as the distribution of the generated magnetic field, are rising 

functions of the rotational Reynolds number ξa.
• It is also observed from Table 7 that increase in fluid viscosity decrease f ′′(0) and increase −θ ′(0).

Table 13.  Torques on lower and upper plate with ξa = 0.01 , ξz = 1 , ξθ = 0.5 , ξmag = 0.1 , 
ξpr = ξhm = ξpm = ξsm = ξec = 0.005 , ξvis = S = 0.1 and various values of ξsq.

ξsq Rashidi et al.15 HAM result

g ′(0) g ′(1) g ′(0) g ′(1)

0.1 − 1.08963506 − 0.95987349 − 1.08963672 − 0.95989843

0.2 − 1.17203765 − 0.93844830 − 1.17208879 −0.93846874

0.3 − 1.25013649 − 0.92615609 − 1.25010991 − 0.92612331

0.5 − 1.39797797 − 0.91295593 − 1.39792988 − 0.91296243

1 − 1.73306821 − 0.89280536 − 1.73309746 − 0.89282365

2 − 2.28925762 − 0.83902117 − 2.28929872 − 0.83903546
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