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Toxic effects of detected pyrethroid 
pesticides on honeybee (Apis 
mellifera ligustica Spin and Apis 
cerana cerana Fabricius)
Qiongqiong Liu1, Qibao He1, Shiyu Zhang1, Yuhao Chai1, Quan Gao1, Jinjing Xiao1, 
Qingkui Fang1, Linsheng Yu1 & Haiqun Cao1,2*

To obtain the presence of environmental contaminants in honeybee and compare the toxicity of the 
detected pesticides to Apis mellifera ligustica Spin and Apis cerana cerana Fabricius. In this work, 214 
honeybee samples were collected to simultaneous monitoring 66 pesticides between 2016 and 2017 
in China. A modified QuEChERS extraction method coupled with multi-residue analytical methods by 
Ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Gas 
chromatography-mass spectrum (GC–MS). Among, four pyrethroid pesticides were selected to test 
and compare the acute oral toxicities of two honeybees. And the survival risk of beta-cypermethrin 
was analyzed to them. Using this method, 21 compounds were detected, including 3 neonicotinoids, 
5 pyrethroids, 5 organophosphorus and 8 others. Importantly, detected frequencies of pyrethroid 
pesticides were accounted for 53.3%. Among, acute toxicity values  (LD50) of four pyrethroid pesticides 
to the A.m. ligustica were higher than of that the A.c. cerana. When they were exposed to the same 
concentration of beta-cypermethrin (0.2906 mg/L), the survival rate of the A.m. ligustica (40.0%) was 
higher than the A.c. cerana (18.9%). Our work is valuable to analyze multiple pesticide residues of 
honeybees and evaluate the survival risk of two honeybee species, which also provides a basis for the 
risk assessment.

The honeybee pollinating plants (economy crops, fruiters, vegetables, and so on) to serve agriculture and the 
global ecosystem, while producing bee products (pollen, honey, royal jelly etc.) with high economic  value1,2. 
Meanwhile, they have been providing these functions worth approximately $200 billion for farmers of food 
 production3. A.m. ligustica (western honeybees) and A.c. cerana (eastern honeybees) are two main crop pollina-
tion populations in  China4. A.m. ligustica, with high reproduction rate and strong honey production ability, was 
frequently often used to assess the risk of insecticides. A.c. cerana was native species which cultured for long times 
in the mountain areas of south of China, which have relatively little reports to assess the toxicity of  insecticides5.

The phenomenon of significant honeybee population declines has attracted much scientific and public atten-
tion since 2006. And the synergistic action of several factors including new and re-emerging pathogens, nutrition 
stress, heavy metal, environmental pollutions and besides these factors, the extensive use of pesticides all con-
tribute to these  declines6,7. Likewise, honeybees are exposed to a wide range of compounds, including pesticides 
(neonicotinoid insecticides and pyrethroid pesticides) while foraging in the agricultural cropping systems or 
consuming contaminated food stocked in the  hive8. Furthermore, pesticides cause chronic adverse effects to 
honeybees including impairment of physiology function, and disruption of foraging, olfactory, learning and 
memory  performance9–13.

To better investigate the effect of pesticides in the decline of the honeybee population, several reports have 
developed determination methods for the analysis of pesticides in honeybee bodies. More than 14 relevant 
pesticides were detected in honeybee samples from 0.3 to 81.5 ng/g by LC–ESI–MS/MS14. In another report 
described two methods based on LC–MS and GC–MS that detected 19 compounds from 145 honeybee  bodies15. 
The method was developed to determine 11 pesticides by GC–MS, which coumaphos and tau-fluvalinate were 
the most frequently detected  pesticides16. Colony losses were attributed to the presence of pesticides of honeybee 
bodies, as honeybees are proven bio-samplers in their foraging  area17,18.
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These results of what bodies of honeybee matrix detected multiple pesticides provide evidence to explain its 
role in the decline of honeybees. Consequently, it is important to develop sensitive and reliable methods to detect 
the pesticide residues of 214 groups of honeybee samples by GC–MS and UPLC-MS/MS in China. Meanwhile, 
pyrethroid pesticides, which are the most commonly used class of insecticide in agriculture, exposed to two hon-
eybee species have few experiments focused  on19. For these concerns, this study was to: (i) develop an analytical 
method for trace analysis of 66 pesticides and their metabolites in honeybees, (ii) display pesticide pollution in 
the honeybee environment in various regions of China, and (iii) reveal differences in the sensitivity of pyrethroid 
pesticides on two honeybee species by combining acute and chronic toxicity under the same conditions.

Materials and methods
Chemicals. Individual pesticide standards with a purity of ≥ 97.0%, including chlorothalonil, alachlor, butra-
lin, melachlor, lambda-cyhalothrin, terbufos, oxadiazon, bifenthrin, beta-cypermethrin, terbufos-sulfoxide, qui-
zalofop-p-ethyl, fenvalerate, deltamethrin, fenthion, terbufos-sulfone, and boscalid were obtained from ANPEL 
Laboratory Technologies Inc. (Shanghai, China). Standard stock solutions of the pesticides were prepared in 
methanol and stored at − 20 °C. The physical and chemical properties of the tested pesticides are summarized 
in Table S1.

Honeybee sample collection. Total 214 honeybee samples were collected at each experimental apiary of thir-
teen provinces of China between 2016 and 2017 (Fig. 1). Every apiary randomly collected 50–70 honeybees in 
100 mL plastic tube, which were immediately cooled at 0 °C with icepacks (if available) to avoid degradation 
of active substances. The information of sampling time, location, nectar plants and so on were recorded on the 
label paper.

Figure 1.  The region of the sample collected in China between 2016 and 2017 (N = 214). Five-pointed Stars 
represent the number of honeybee samples is less five. Squares represent the number of honeybee samples is 
between five and twenty. Triangles represent the number of honeybee samples is between twenty-one and thirty. 
Circles represent the number of honeybee samples is more thirty. We used this URL link (https:// cn. bing. com/ 
images/ search? q= blank% 20map% 20chi na% 20and% 20pro vince s& qs= HS& form= QBIRM H& sp= 1& pq= blank% 
20map% 20chi na& sc=6- 15& cvid= 247BB D3C1C 2740E 6962B 42465 D5D56 34& first= 1& tsc= Image Hover Title) 
and added the fonts and shapes by Adobe Illustrator CC or 2019 Adobe Photoshop CS6.

https://cn.bing.com/images/search?q=blank%20map%20china%20and%20provinces&qs=HS&form=QBIRMH&sp=1&pq=blank%20map%20china&sc=6-15&cvid=247BBD3C1C2740E6962B42465D5D5634&first=1&tsc=ImageHoverTitle
https://cn.bing.com/images/search?q=blank%20map%20china%20and%20provinces&qs=HS&form=QBIRMH&sp=1&pq=blank%20map%20china&sc=6-15&cvid=247BBD3C1C2740E6962B42465D5D5634&first=1&tsc=ImageHoverTitle
https://cn.bing.com/images/search?q=blank%20map%20china%20and%20provinces&qs=HS&form=QBIRMH&sp=1&pq=blank%20map%20china&sc=6-15&cvid=247BBD3C1C2740E6962B42465D5D5634&first=1&tsc=ImageHoverTitle


3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16695  | https://doi.org/10.1038/s41598-022-20925-x

www.nature.com/scientificreports/

Samples preparation. Extraction was followed the QuEChERS multiresidue method with a modified version, 
and then detect 214 honeybee samples which ground in liquid  nitrogen20,21. In order to detect chemical com-
pounds more widely, it was carried out using GC–MS and UPLC-MS/MS. Pesticide extraction procedures for 
the GC–MS analysis was shown in Fig. S1. And, sample preparation for the UPLC-MS/MS analysis was depicted 
briefly: extract 2.0 g honeybee samples with 3 mL water and 10 mL acetonitrile containing 1% acetic acid, shak-
ing vigorously, and add 0.5 g NaCl and 2.0 g  MgSO4. Centrifuge at 4000×g for 5 min and clean up with 1.25 g 
of the QuEChERS salt kit (PSA:  C18:  MgSO4: GCB = (1:1:3:0.15, w/w/w/w)), evaporate 2.5 mL supernatant to 
dryness and reconstitute in 1 mL acetonitrile.

Sample analysis. GC–MS analysis. GC–MS was provided by Agilent Technology (USA). A 7890N series gas 
chromatograph is device which comprise of an Agilent 5977B mass spectrometer selective detector (MSD) and a 
HP-5 ms capillary column was used to provide the analytical separation. The oven temperature: column temper-
ature began at 60 °C, at 30 °C/min to 180 °C (for 5 min), at 10 °C/min to 250 °C (for 10 min) and then at 10 °C/
min to 290 °C (for 10 min). The total run time was 40 min. The carrier gas of gas chromatograph was helium 
(99.999% purity) with constant float rate of 1.2 mL/min. The injection volume was 1 μL with splitless mode. The 
injector and transfer line were all run at 290 °C.

Mass detector, source temperature and quadrupole were set at 230 °C and 150 °C, was comprised of electronic 
impact (EI) mode for performing the MS fragmentation at 70 eV ionization energy. Single ion monitoring (SIM) 
was used for confirmation and quantitation of the pesticides. Table S2 summarizes three ions (one quantifier and 
two qualifiers) and retention time monitored for each pesticide.

UPLC-MS/MS analysis. UPLC-MS/MS analysis was refereed to Tong’s settings conditions. Detection condi-
tions for each compound were displayed in Table S3.

Pesticide exposure to honeybee. Honeybees preparation before experiment. Honeybees (A.m. ligustica 
and A.c. cerana) were gained from local apiaries in Anhui agricultural University, in China. Before experiments, 
the hive was not exposed to any chemical  treatments22. Honeybee starved in an incubator for approximately 2 h 
for the food content was equal before  experiment23,24.

Acute oral toxicity assay of four pyrethroid pesticides to honeybees. For the acute oral assay, some doses of each 
insecticide were prepared after our preliminary experiments. Test solutions of pesticides were prepared by dilut-
ing stock solutions with 50% (w/v) sugar solution. And the control was fed with 50% sugar solution with acetone. 
The amount of treated diet consumed by each group by the difference in weight of the sucrose syrup before and 
after the experiment. After the acute assay, each group was equipped with a feeder filled with 50% sugar solution 
without toxicity (27 ± 2 °C and 65 ± 5% RH). The deaths after 48 h treatment were recorded.

Survival of the honeybees to beta‑cypermethrin. The median concentration (0.0944 mg/L), mean concentration 
(0.1272 mg/L), and maximum concentration (0.2906 mg/L) of beta-cypermethrin were continuously fed to A.m. 
ligustica and A.c. cerana for 10 days. Thirty honeybees were counted into each box (three replicates). The boxes 
were maintained at 27 ± 2 °C and 65 ± 5% RH, and in darkness. Dead honeybees were recorded daily.

Data analysis. The linear regression for each compound, the toxicities values  (LD50) of four pyrethroid 
pesticides to honeybee, and survival rates of two species of honeybees were analyzed by the software IBM SPSS 
Statistics 22.0 software (SPSS Inc., Chicago, IL).

The following formula was used to calculate Matrix Effects (ME) (Eq. 1).

|ME| < 20% represents mild signal suppression or enhancement effects, 20%  ≤  |M| ≤  50% represents medium 
effects, and |ME|> 50% represents strong  effects25.

Results and discussion
Method validation. The modified QuEChERS method based on sample extraction and purification 
is validated. The standard curves for different compounds, obtained with the regression coefficients of more 
than 0.99 is good linearity results, were established within the concentration range of 2.5–500 ng/g. The lim-
its of detection (LOD) of target compounds were 0.008–2.586 and limits of quantitation (LOQ) were 0.0084–
7.758 ng/g (Table S4), and were considered within the concentration achieving a signal-to-noise ratio (S/N) of 
between 3 and 10. The quantitative method showed excellent performance, which provided mean recoveries 
within the considered acceptable range 70–120% and relative standard deviations (RSD) below 20% for all tar-
gets using matrix-matched calibration curves (Fig. 2a). There were 21 compounds had medium MEs and 9 com-
pounds had high MEs, and 36 pesticides had soft MEs (Fig. 2b and Table S5). Thus, matrix-matched calibration 
standard solutions were prepared for quantification.

The method should be robust, efficient, and competent to determine pesticide residues in honeybees.A modi-
fied QuEChERS extraction method coupled with multi-residue analytical methods by GC–MS and UPLC-MS/
MS in this experiment. LC–MS/MS was used for the identification and quantification of the substances in the 
whole-body residues of the neonicotinoid insecticide imidacloprid in live or dead  honeybees26. When honeybee 

(1)ME(%) =

((

Slope of calibration curve in matrix

Slope of calibration curve in solvent

)

− 1

)

× 100
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matrices are analyzed, the complex nature and the possibility of external interference affecting results should 
be accounted  for27.

Determination of real honeybees samples. This study was to monitor for 66 common agricultural 
chemicals and metabolites, as a result of 21 compounds were detected above LOQ in honeybee samples during 
the 2-year, including 3 neonicotinoids, 5 pyrethroids, 5 organophosphorus and 8 others (Fig. 3a), which detected 
frequencies of pyrethroid pesticides were accounted for 53.3%. And, there were 10 pesticides with detection 
rates above 3.7%. It may illustrate that pesticide concentrations of negative samples were mostly less than the 
LOD and LOQ or none. The most frequently found fungicide was carbendazim (34.6%) (Table 5) and a similar 
phenomenon was  discovered18. However, the frequency of detected residues in our study generally disagrees 
with exposure assessments of collected honeybees reported in the literature, such as chlorpyrifos, phoxim, thia-
methoxam, imidacloprid and coumaphos, which may be due to crop planting characteristics and government 
supervision are  different17,18. Owning to this, pesticide residues found in honeybees reflect the type of pesticides 
applied in the agricultural fields and acaricides in the hives. Thiamethoxam and clothianidin were the most 
frequently found in honeybee  samples28. Fungicides carbendazim, boscalid, tebuconazole, and so on were in 
bumble bee  bodies29. Knowing the effects of simultaneous exposure of honeybees to various pesticides remains 
a challenge.

Some of 214 honeybees were detected one to six different pesticides or even more than six (Fig. 3b). The 
highest frequency of detection (59.81%) corresponded to the presence of one to three pesticides. Samples pol-
luted with four to six active ingredients had the frequencies of 9.81%. In addition, more than six pesticides were 
detected in 0.47% of the samples. Sixty-four samples (29.91%) were detected without pesticides.

Results of analysis of honeybees can be used to evaluate the exposure of pesticides for honeybees in every 
season. The number of samples per season (spring, summer and autumn) is shown in Fig. 3c. The detection 
of pesticide residues in individual honeybee samples at different seasons was shown in Fig. 3d. 77.78% of the 
honeybee samples tested in the spring contained pesticides, the highest proportion among the three seasons 
sampled. Notably, 1.85% of samples had more than 6 pesticides in the spring, while other seasons had no pes-
ticides. With the peak period for controlling pests and diseases in spring, pesticide residue contamination in 
honeybee is the most serious.

Honeybees are exposed to a variety of pesticides throughout a variety of ways in an agricultural environment. 
The analysis revealed that 72.3% of the honeybee samples were contaminated by at least one compound in 2008 
and 2009 in  France30. Another work published that 73% of honeybee samples are positive to at least one plant 
protection product (PPP) from 2011 to 2013 in  Greece14. Multiple residues prevailed in the honeybee samples, 
with 2 or more pesticides detected in 92.3% of the samples in North  American31. Our experiment also has some 
limitations. It was neglected to detect acaricides residues of wintering bees (Fig. 3c)32. Other study detected the 
residue of Nis and its metabolites for honeybees, among the metabolites of imidacloprid were measured in both 

Figure 2.  Validation of the method used to investigate 66 pesticides in honeybees. (a) Recoveries of 66 
pesticides at three different concentration levels for honeybees (n = 5) at low, medium and high levels. (b) Matrix 
effects (%) of the 66 pesticides investigated in the honeybees are shown.
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spring and summer samples, with a greater concentration in the spring samples than the summer, consistent 
with our finding (Fig. 3d)33. Besides all, the potential for cumulative toxicity of the exposure to several pesticides 
at the same time should also be considered(i.e. toxicity is more than additive)34. For instance, positive relation-
ship between colony population disorders and detected fungicides was  found35. The pyrethroids and ergosterol 
biosynthesis inhibitor (EBI) fungicides, propiconazole and thiamethoxam, the neonicotinoids and fungicides 
will generate synergism to increase toxicity to  honeybees36–38.

Toxicity of the four pyrethroid pesticides. After four pyrethroid pesticides exposure, the acute oral 
 LD50 values of fenpropathrin and beta-cypermethrin for A.m. ligustica at 48  h were 0.2774, 0.1509 μμg/bee, 
which were 3.95 and 9.20 times higher than A.c. cerana were 0.0702, 0.0164 μg/bee, whereas lambda-cyhalothrin 
and bifenthrin had similar toxicity for A.m. ligustica and A.c. cerana, the toxicity of the first was 1.8 times higher 
than the second. These pesticides toxicity was beta-cypermethrin > fenpropathrin > lambda-cyhalothrin > bifen-
thrin. The results of this study suggested that the four pyrethroid pesticides were different toxic to these two 
honeybee species. The maximum determination concentrations of honeybee bodies for fenpropathrin, beta-
cypermethrin, lambda-cyhalothrin, bifenthrin and the acute oral  LD50 of two species of honeybees (Tables 1 and 
2) were significantly different.

Two species of bees showed different sensitivity to the chemical pesticide. Our result showed that A.c. cerana 
is more sensitive than A.m. ligustica for beta-cypermethrin. Consistent with our findings, A.m. ligustica is more 
tolerant to malathion, cypermethrin, fenvalerate, deltamethrin and thiamethoxam than A.c. cerana39. However, 
A.m. ligustica and A.c. cerana showed opposite sensitivity to  imidacloprid40. The main factor resulting in diverse 
 LD50 values in two honeybee species remained uncertain. It may be due to the following factors, between biotic 
factors such as genetic distinction between different honeybee subspecies, colony differences in honeybees as well 
as physiology discrepancy of honeybees over different seasons, and abiotic factors, liking treatment temperature, 
the climatic condition and pesticide formulation  ingredients41–44. In the majority of cases, the  LD50 values of 
acute oral toxicity of two species of bees were much higher than the concentrations of pesticides detected in 
honeybee bodies. This may be related to rapid degradation and metabolism of pesticides in actual field condi-
tions (temperature, light and humidity). Some real samples of beebread and honey did detect pesticide residues, 
while below known  LD50 values for  honeybees45. The detected concentrations values of tau-fluvalinate were lower 

Figure 3.  (a) Frequencies of detection pesticides in honeybees. (b) The species of pesticide residues detected in 
single honeybee sample. (c) The number of samples per season (spring, summer and autumn). (d) Distribution 
of pesticide species detected from honeybee samples in different seasons.
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than the median lethal dose  (LD50)  values46. But, some small quantities of active compounds can lead to chronic 
effects to various extents of honeybee physiology and behavior. However, it cannot be omitted that the cause of 
honeybee death incidents could have been related to these lower dose pesticides.

Survival of the honeybees to beta-cypermethrin. The survival rates for A. m. ligustica and A. c. cer‑
ana after adults’ consistent exposure (10 d) to pesticides were calculated to compare the chronic toxic effects. 
The survival rates for the forager bees of A.m. ligustica and A.c. cerana exposed to 0.1272, 0.2906 mg/L beta-
cypermethrin were 60.0% and 44.4% (χ2 = 5.693, p = 0.017), 40.0% and 18.9% (χ2 = 17.573, p < 0.01), respectively 
(Fig. 4). There were no significant differences between survival rates of two species of bees fed a diet with any 
concentration of 0.0944 mg/L beta-cypermethrin and those fed solvent control diet (all P > 0.05). Two species of 
bees are different tolerance for chemicals. Our result showed that A.c. cerana is more sensitive than A.m. ligustica 
for beta-cypermethrin.

Preliminary pesticide risk assessment on honeybee is largely based on laboratory toxicity bioassays after 
both acute and chronic exposure. The effects and safety evaluation of pesticides on honeybees include acute and 
chronic toxicity studies at the laboratory level. Recent research reported that low-dose fenpropathrin significantly 
reduced the survival rate and homing ability of the workers, indicating that the pesticide has serious adverse 
effects on honeybee  health47. Consistent with other studies, researcher found that some common pesticides and 
antibiotic exposure may have resulted in a decreased survival in the hive in previous  studies48–51. Our work gives 
a glimpse of honeybees’ exposures to multiple pesticide residues. Hence, the pesticides used in the crops visited 
by honeybees during plant blooming should be severely restricted.

Table 1.  The frequencies of detection and concentration of pesticide active ingredients in honeybee samples.

Pesticides MQL (ng/g) Positive sample Detection rate (%)

Detected concentration (ng/g)

Mean Median Maximum

Carbendazim 2.5 74 34.6 160.2 15.8 2404.0

Fluvalinate 10.0 61 28.5 139.9 28.3 2802.3

Chlorpyrifos 5.0 41 19.2 33.9 9.2 838.4

Fenpropathrin 5.0 31 14.5 54.6 14.5 835.4

Pendimethalin 5 19 8.9 9.8 6.8 34.8

Diflubenzuron 5.0 18 8.4 16.9 13.4 59.8

Bifenthrin 2.5 10 4.7 71.0 63.9 172.8

Thiamethoxam 10.0 10 4.7 24.8 16.9 50.3

Pyridaben 5.0 10 4.7 37.9 15.5 220.4

Lambda-cyhalothrin 10.0 8 3.7 148.9 144.5 329.3

Trichlorfon 2.5 7 3.3 50.4 27.6 140.5

Pyrimethanil 2.5 7 3.3 13.2 5.6 50.8

Imidacloprid 10.0 5 2.3 30.5 31.0 68.8

Phoxim 5 5 2.3 7.9 9.0 9.2

Beta-cypermethrin 10.0 4 1.9 127.2 94.4 290.6

Coumaphos 5 3 1.4 278.4 109.0 671.8

Chlorothalonil 10.0 3 1.4 25.7 27.2 27.4

Azoxystrobin 2.5 3 1.4 4.6 5.0 5.5

Triadimefon 2.5 1 0.4 8.8 8.8 8.8

Omethoate 5.0 1 0.4 86.2 86.2 86.2

Acetamiprid 5.0 1 0.4 31.6 31.6 31.6

Table 2.  Acute oral toxicity of four pyrethroids to A.m. ligustica and A.c. cerana at 48 h.

Pesticides The species of bees LD50 (µg/bee) Fiducial limits (95%) Linear regression equation Linearity

Fenpropathrin
A.m. ligustica 0.2774 0.2214–0.3798 Y = 6.1999 + 2.1547x 0.9738

A.c. cerana 0.0702 0.0494–0.0921 Y = 6.9722 + 1.7091x 0.9587

Beta-cypermethrin
A.m. ligustica 0.1509 0.1251–0.1841 Y = 6.8735 + 2.2813x 0.9623

A.c. cerana 0.0164 0.0014–0.0318 Y = 8.8018 + 1.0089x 0.9453

Lambda-cyhalothrin
A.m. ligustica 0.2815 0.2395–0.3582 Y = 6.5741 + 2.8596x 0.9423

A.c. cerana 0.1687 0.0852–0.2342 Y = 6.7377 + 2.2486x 0.9838

Bifenthrin
A.m. ligustica 0.3289 0.2914–0.3777 Y = 6.8122 + 3.7527x 0.9297

A.c. cerana 0.1848 0.0795–0.2835 Y = 6.2215 + 1.6390x 0.9379
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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