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A pachyderm perfume: odour 
encodes identity and group 
membership in African elephants
Katharina E. M. von Dürckheim  1,2*, Louwrens C. Hoffman2,3, Carlos Poblete‑Echeverría4, 
Jacqueline M. Bishop5, Thomas E. Goodwin6, Bruce A. Schulte7 & Alison Leslie1

Group-living animals that live in complex social systems require effective modes of communication 
to maintain social cohesion, and several acoustic, olfactory and visual signaling systems have been 
described. Individuals need to discriminate between in- and out-group odour to both avoid inbreeding 
and to identify recipients for reciprocal behaviour. The presence of a unique group odour, identified 
in several social mammals, is a proposed mechanism whereby conspecifics can distinguish group 
from non-group members. African elephants (Loxodonta africana) live in stable, socially complex, 
multi-female, fission–fusion groups, characterized by female philopatry, male dispersal and linear 
dominance hierarchies. Elephant social behaviour suggests that individuals use odour to monitor 
the sex, reproductive status, location, health, identity and social status of conspecifics. To date, it is 
not clear what fixed or variable information is contained in African elephant secretions, and whether 
odour encodes kinship or group membership information. Here we use SPME GC–MS generated 
semiochemical profiles for temporal, buccal and genital secretions for 113 wild African elephants 
and test their relationship with measures of genetic relatedness. Our results reveal the existence 
of individual identity odour profiles in African elephants as well as a signature for age encoded in 
temporal gland and buccal secretions. Olfactory signatures for genetic relatedness were found in labial 
secretions of adult sisters. While group odour was not correlated with group genetic relatedness, 
our analysis identified “group membership” as a significant factor explaining chemical differences 
between social groups. Saturated and short-chain fatty acids (SCFAs), derived from key volatile 
compounds from bacterial fermentation, were identified in temporal, buccal and genital secretions 
suggesting that group odour in African elephants may be the result of bacterial elements of the gut 
microbiome. The frequent affiliative behavior of African elephants is posited as a likely mechanism for 
bacterial transmission. Our findings favour flexible group-specific bacterial odours, which have already 
been proposed for other social mammals and present a useful form of olfactory communication that 
promotes bond group cohesion among non-relatives in fission–fusion mammals.

Olfactory communication is arguably the most important mode of communication in mammals, functioning in 
signals related to reproduction, mate choice and attraction, territoriality, parental care, kin discrimination and 
disease transmission, all of which inform population dynamics and structure1,2. Olfactory cues encode fixed and 
variable information such as individual identity3,4, age, rank, fertility5 and sex6,7, as well as genetic differences 
between individuals, populations, and species8–10. Research also reveals that olfactory cues may encode informa-
tion about individual genetic quality and relatedness11–13, and provide geographic-specific information14. In doing 
so, olfactory cues may act to promote outbreeding, facilitate nepotism, and function in phenotype matching, 
kin discrimination and mate choice; and several studies have also explored the correlation between olfactory 
phenotype and genotype in these contexts15,16.
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A number of acoustic, olfactory and visual cue systems have been described in group-living mammals where 
socially complex systems require effective means of communication to maintain social cohesion. Within a group 
context, individuals discriminate foreign conspecifics from group members to both avoid inbreeding and to 
identify recipients for reciprocal behaviour. Such olfactory group/herd/clan/colony identity signals have been 
described in many mammals including beavers17, bats18, meerkats19, naked mole rats20, chimpanzees21 and rhe-
sus macaques22. Measures of group odour have been correlated to genetic relatedness23, as well as to chemical 
differences in microbiomes and bacterial metabolic by-products24,25. Among elephants, the use of olfactory 
cues are central to communication. African (Loxodonta africana) and Asian elephants (Elephas maximus) of 
both sexes engage in distinctive trunk-tip behaviours when inspecting conspecific genitalia, temporal glands, 
mouth, ears and feet26. Elephants emit chemical signals via their temporal glands, urine, faeces, breath, saliva, 
interdigital glands, genitalia and body surfaces, and detect both self and non-self signals via highly sophisticated 
olfactory and vomeronasal systems27. These chemical signals influence elephant behavior, social interactions and 
reproduction28. Elephant reliance on olfaction is also reflected in its genome, comprising ∼2000 functional olfac-
tory receptor genes and > 2200 pseudogenes, the highest number of olfactory receptor genes of any mammal29.

To date, chemosensory research in elephants has primarily focused on captive elephants and the role of sexual 
signaling in captive bulls in musth30–33 Elephants have a distinctive temporal gland, a modified apocrine structure 
imbedded in the subcutaneous tissue on each side of the head between the eye and the ear. Elephant bulls greet 
one another by reaching the trunk to a same sex conspecific’s mouth, temporal gland, or genital region. The 
semiochemistry of temporal gland secretions is consequently relatively well studied in male elephants34, but little 
attention has been paid to females. Female mammals also use scent signaling for sexual attraction, mediation of 
female competition, cooperation and to facilitate maternal behaviour6,17,35,36. Unlike adult Asian elephant females, 
African elephant adult females secrete frequently from the temporal gland, particularly when separated groups 
reunite, and when distressed37. When related females and their offspring meet one another, elephants perform an 
elaborate greeting ceremony, in which elephants rub their bodies against one another, trumpet, rumble, entwine 
their trunks, click tusks, emit temporal gland secretions (TGS), and release urine and dung profusely, while fan-
ning their uplifted ears and spinning their bodies37. Although no empirical studies have explained the function 
and the content of these chemical emissions in African elephant females, it is likely that these odour signatures 
underlie recognition in elephants and possibly promote bond group cohesion38,39.

Despite evidence for the importance of olfaction in African elephant communication and behaviour40–42, 
research on the semiochemistry in African elephants is limited due to the challenges and dangers of obtaining 
high quality odour samples from a wild population. Unlike Asian elephant society where dominance hierarchies 
are weak and non-linear due to divergent resource dynamics43, African elephant social groups are characterized 
by female linear dominance hierarchies defined by age and size44. Males leave their natal family at approximately 
14 years of age, often joining all-male coalitions led by older bulls45. Social stability and dominance in all-bull 
groups is regulated by reproductive and dominance states termed musth, which is chemically encoded in TGS 
of bulls34 and mediated by microbes46. Female African elephants are philopatric, living in multi-tiered, matrilo-
cal, fission–fusion groups comprised of adult females and their offspring39,47. Within populations, ‘core’ groups, 
often called ‘families’, are composed of predictable sets of individuals, containing 1–20 adult females and their 
immature offspring44. Families can divide into units as small as a single adult female and her immature offspring, 
or families can fuse with other families to form bond groups or larger aggregations. Associations between adult 
females are enduring, with fission–fusion dynamics determined by ecological and genetic factors. Genetic related-
ness among elephants is a determining factor driving core group formation among first-order maternal relatives44 
suggesting that the evolution of cooperative social behaviour enhances inclusive fitness through the effects of 
genetic structuring. Yet, among elephant populations highly depredated by poaching, genetic relatedness was 
not found to be a limiting factor regulating sociality47. In combination, results suggest that genetic relatedness 
is important to core group formation among adult females, and that factors such as prior familiarity and social 
status may further contribute towards social structuring. Inter-individual recognition among kin and socially 
preferred conspecifics has important fitness consequences for elephant survival and studies on auditory com-
munication suggests that African elephants discriminate among kin, familiar and socially affiliated individuals 
using acoustic cues48,49.

Generally African elephant males avoid breeding with kin, however the mechanism by which bulls recognize 
kin is hitherto unknown50. In female African elephants distinguishing individual olfactory cues could be relevant 
where kinship and dominance rank assessments underpin hierarchical structuring and fission–fusion dynamics 
and mediate cooperative and competitive interactions for example through cooperative offspring care and group 
defense39. Natural selection could favour group-specific odours that promote bond group cohesion and increase 
fitness benefits for example cooperative offspring care and cooperative group defense. The aim of this study there-
fore was to analyse the semiochemistry of buccal, genital and temporal gland secretions to determine whether 
body odour in wild African elephants conveys information about genetic relatedness and social relationships. 
We predicted that (1) genetic relatedness would be significantly correlated with odour in family units, (2) adult 
sisters have more similar TGS odour profiles than unrelated adult females, and (3) temporal gland, buccal and 
genital chemical profile encode elephant attributes such as age and sex. Lastly, we provide here an insight into 
the fixed and variable information contained in elephant chemical profiles.

Results
Sample population.  DNA and temporal, buccal and genital swabs were obtained from 113 elephants trans-
located in 15 family groups in Majete Wildlife Reserve, Malawi (see Table S1 in Supplementary Information). 
Subjects included 40 adult females (of which 39 were estimated to be over the age of 25), one adult male, 9 sub-
adults, 32 juveniles, 19 calves and 12 infants (Table 1). Females were classified as adult if they were reproductively 
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active (over the age of 15). Park management targeted family units for translocation, hence the absence of mature 
males.

Chemical data.  The removal of substances from blanks or those present in only one sample reduced the 
number of peaks present in each sample significantly. For most samples, only minor if any shifts, were required. 
Lastly, the retention times of homologous peaks in the aligned dataset were left-skewed, suggesting that the vari-
ation among most substances was less than 0.05 min. Temporal samples were collected for analysis from 106 
elephants, and 169 temporal substances retained after all filtering steps. Genital samples were collected from 
109 elephants, 308 genital substances retained after all filtering steps. Buccal samples were collected from 106 
elephants, and 370 buccal substances retained after all filtering steps. Only compounds soluble in GC–MS were 
extracted and some substances may have further metabolized post sampling.

Comparisons of putative chemical compounds derived from buccal, labial and temporal gland 
secretions of adult females.  We detected mostly aldehydes, ketones, aromatic compounds and carboxylic 
acids in TGS, followed by alcohols and phenols (Fig. 1). TGS contained significantly more aromatic compounds 
and carboxylic acids than breath or labial secretions. Labial secretions comprised mostly alcohols, esters, and 
ketones, followed by alkanes and phenols. Buccal secretions contained significantly more esters than TGS or 
labial secretions, but had fewer ketones and phenols than TGS or labial secretions51.

Genetic data.  DNA samples were genotyped at 18 highly polymorphic microsatellite loci (~ no alleles/locus = 5.8, 
proportion of loci typed = 0.99 and expected heterozygosity = 0.65). No loci deviated significantly from the Hardy–
Weinberg Equilibrium (HWE) and were therefore all retained for subsequent analyses. Pairwise estimators for relat-
edness followed a normal distribution. In the translocated population, groups showed mean relatedness coefficients 
within the range of their expected distribution (related maternal lineage and their offspring together with unrelated 
individuals), ranging from a minimum QGr of −0.46 to a maximum of 0.7 (Fig. 2). Mother–offspring pairs that had 
maternity match probabilities of 100% were retained for further analysis.

Table 1.   Age/sex classes of sampled elephants from the translocated population.

Age category Age class Males Females Total per age class

Infants I 0–1 7 5 12

Calves II 2–4 14 5 19

Juveniles III 5–9 15 17 32

Sub-adults IV 10–14 0 9 9

Adults V 15 + 1 40 41

Total 37 76 113

Figure 1.   Major chemical compound categories (%) in temporal, buccal and labial secretions in African 
elephants.
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Chemical similarity (ANOSIM).  Using whole profile comparisons an analysis of similarity (ANOSIM) 
based on Bray–Curtis indices was used to test for an effect of sex, age cohort and group membership cohorts).

Age and sex differences.  Significant differences in odour profiles were found between age categories in tem-
poral gland (ANOSIM, global R = 0.26, p < 0.031) and buccal secretions (ANOSIM, global R = 0.39, p < 0.0001). 
An effect tending towards significance could be found for sex in temporal gland secretions (ANOSIM, global 
R = 1.27, p < 0.07) and genital secretions (ANOSIM, global R = 0.14, p < 0.07).

Group differences.  Multivariate statistical analyses of the relative proportion of each substance sampled from 
the 15 family groups revealed highly significant differences in chemical profiles of temporal (ANOSIM, global 
R = 0.45, p < 0.0019), genital (ANOSIM, global R = 0.45, p < 0.0001) and buccal (ANOSIM, global R = 0.39, 
p < 0.0001) secretions between groups (Table 2).

Genotype and overall chemical profile (Partial Mantel test).  To determine whether genetic related-
ness is reflected in chemical similarity, the association between Bray–Curtis similarity and pairwise genetic relat-
edness was tested. No correlation was found for temporal, buccal nor genital secretions and genetic relatedness 
at the population, group or mother–offspring level (Table 3). However, a weak positive relationship was obtained 
between relatedness and labial secretions when considering only adult sisters (Mantel’s r = 0.19, n = 14, p = 0.04).

Chromatograms and multidimensional scaling (MDS).  Contrary to our predictions, genetic related-
ness was not reflected in temporal gland secretions of adult sisters, nor in buccal, genital and temporal gland 
secretions of core family units. Highly related sisters and female family members shared similar compounds, 
which were differentially expressed, as well as individually unique compound (Figures S1 and S2 in Supplemen-
tary Information, and Fig. 3).

Putative identification of important substances.  To assess the contribution of specific chemicals to 
the chemical dissimilarity between groups (Table  4), a “similarity percentages process” (SIMPER) was used. 
In temporal secretions, 30% of compounds were putatively identified contributing to group dissimilarity (8 
compounds) and to chemical dissimilarity between age categories (4 compounds). In genital secretions, eight 

Figure 2.   Pairwise relatedness estimates (r) per family group (herd).

Table 2.   Differences in odour profiles were found between groups and age categories.

Genital (n = 109) Buccal (n = 106) Temporal (n = 106)

ANOSIM

Group ANOSIM, global R = 0.45, p < 0.0001*** ANOSIM, global R = 0.39, p < 0.0001*** ANOSIM, global R = 0.45, p < 0.0019**

Age ANOSIM, global R = 0.05 p < 0.16 ANOSIM, global R = 0.39, p < 0.0001** ANOSIM, global R = 0.26, p < 0.031*

Sex ANOSIM, global R = 0.14, p < 0.07 ANOSIM, global R = 1.21, p < 0.21 ANOSIM, global R = 1.27, p < 0.07
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compounds were identified that contribute to chemical differences among groups, while 15 compounds were 
identified to contribute towards group differences in buccal secretions.

The Similarity Percentage Analysis (SIMPER) revealed that chemical compound categories comprised fatty 
acids, ketones, aromatic compounds and aldehydes, compounds typically identified in olfactory cues across taxa 
due to their detectability and volatility1,2. Compounds of confirmed mammalian origin were identified in all three 
body odours (produced by the elephants themselves), and included the saturated fatty acids while others are 
noted signalling compounds in mammals (Table 4). Chemical compounds in temporal gland secretions identified 
included short-chain fatty acids (SCFAs), including acetic acid and hexanoic acid, as well as benzaldehyde, geranyl 
acetone and pentanoic acid. In buccal secretions, the SIMPER analysis identified saturated and short chain fatty 
acids, comprising acetic acid, tetradecanoic acid, dodecanoic acid, butanoic acid as well as undecanoic acid and 
pentanoic acid that contributed to the chemical differences among elephant family groups. In genital secretions, 
SIMPER extracted two phenols (m-and p-cresol) that are known pheromones in elephants.

Discussion
This study presents the first comprehensive semiochemical analysis of wild African elephants, and investigates 
whether odour profiles are correlated with genetic relatedness and social relationships. We were specifically 
interested in the fixed and variable information encoded in temporal gland, buccal and genital odour. Our results 
demonstrate that cues of identity and maturity may be important components of odour in African elephants. Our 
analyses also demonstrate the possible mechanism for a group –specific odour in elephants, and which doesn’t 
appear to be a function of genetic relatedness.

The first prediction, that genetic relatedness is correlated with chemical profile at the core (family) unit level, 
was not supported by the data. Our prediction was based on the apparent importance of genetic relatedness 
among elephant family units to inclusive fitness benefits, which drives hierarchical structure and underlying 
elephant sociality44. Furthermore, in fission–fusion societies, where females split into multiple subgroups, group-
specific odour may facilitate long-term group stability, and such group odour has been confirmed in another 
fission–fusion mammal—the spotted hyaena58 (Crocuta crocuta). Genetic relatedness has been correlated with 
chemical similarity (known as Odour-Gene Covariance) in a multitude of mammals from primates to rodents13,23. 
The assumption that average genetic relatedness would be high among family groups as females breed within the 
group into which they are born, was not reflected in the data. Research has subsequently suggested that average 
kinship amongst related females is low in groups with multiple breeding females from successive generations, and 
polygynous mating systems, both features that describe elephant society59. Further, when the results are viewed 
and compared with social organization of depredated elephant populations47 with low average genetic related-
ness, where hierarchical structuring is not genetically based, and non-relatives comprise groups across social 

Table 3.   Correlation between genotype and chemical profile tested at the individual, family group, adult sister 
and mother–offspring level in African elephants.

Genital (n = 109) Buccal (n = 106) Temporal (n = 106)

Spearman rank correlation

Population Mantel’s r = 0.006, n = 109, p = 0.4 Mantel’s r = 0.53, n = 106, p = −0.02 Mantel’s r = 0.02, n = 106, p = 0.18

Group Mantel’s r = −0.01, n = 30, p = 0.6 Mantel’s r = −0.024, n = 30, p = 0.6 Mantel’s r = −0.024, n = 30, p = 0.63

Adult sister dyads Mantel’s r = 0.19, n = 14, p = 0.04* Mantel’s r = 0.10, n = 14, p = 0.16 Mantel’s r = −0.048, n = 14, p = 0.67

Mother–offspring dyads Mantel’s r = −0.14, n = 18, p = 0.97 Mantel’s r = 0.012, n = 18, p = 0.38 n/a

Figure 3.   MDS of genital (left), buccal (middle) and temporal (right) secretions in a family core group (Family 
group L), comprised of four females with high genetic r (QG > 0.45). ♀M103 (40 years), ♀M102 (10 years), ♀ 
M76 (6 years) ♀M70 (1 year).
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tiers, an olfactory group odour based on genetic relatedness seems extraneous. Rather, for sociality to function 
through the sustained maintenance of cohesive groups, an olfactory signal for social affiliation is more likely 
to exist in family groups comprised of both related and unrelated females. This is the case in African elephant 
bulls, where musth odour (dominance rank), secreted by the temporal gland and in urine, stabilizes bull group 
dominance hierarchies and competitive interactions28. The function of the temporal gland secretions of African 
elephant females remains poorly understood, which is surprising because they secrete it frequently during ritual-
ized greeting ceremonies, while Asian females do not. It is however highly likely that temporal gland secretions 
regulate social complexity among African elephant females, which display rank derived spatial partitioning and 
vocalisations39,48. We did find that olfactory cues in the labial secretions of adult sisters encoded information 
about female relatedness. Results are supported by studies on lemurs, where within and between sex genital odour 
encoded for genetic relatedness in the competitive breeding season13. This raises the possibility that African 
elephant labial odours contain olfactory cues that elicit reciprocal or maternal behaviour among conspecifics 
of the same family group, which may be particularly relevant in the context of female kin and allomothering. 
Labial secretions have been shown to generate significant interest in female African elephants60. African elephant 
female elephants establish transitive linear dominance relationships that can determine access to usurpable 
resources and influence reproductive opportunities44. African elephant family groups show defensive responses 
to unknown, unrelated (less familiar) and less dominant elephants36 so genital odour may consequently play an 
important role in maintaining social dominance.

Our results further indicate olfactory cues for individual identity in buccal, temporal gland and genital odour. 
Identity cues for individuality in mammalian odour can be expressed by presence/absence of compounds as well 

Table 4.   Putative compounds and their retention times (RT) identified by Similarity Percentage Analysis 
(SIMPER) that contributed towards the chemical dissimilarity between elephant groups. Bold semiochemical 
in elephants30,32,33,52–57 P Pheromone in elephants. *Confirmed semiochemical in mammals55. **of mammalian 
origin56. ^Characterised signaling compound in mammals57.

Retention time (RT) Putative ID

Temporal

15.71 1-Hexene

18.73 Acetic Acid * **

27.59 Pentanoic Acid^*

25.42 Benzaldehyde, 4-methoxy-,oxime*^

27.09 Geranyl acetone*^

36.02 Phenol, 2,4-bis(1,1-dimethylethyl)

26.45 Hexanedioic acid, dimethyl ester

27.4 Hexanoic acid* **

Genital

27.54 Pentanoic acid^*

31.87 Phenol, 4-methyl-* **^ P

18.73 Acetic acid* **

32.02 Phenol, 3-methyl-* ** P

18.64 1-Hexanol, 2-ethyl- * **

25.45 Hexanoic acid * **

23.78 Pentanedioic acid, dimethyl ester

36.02 Phenol, 2,4-bis(1,1-dimethylethyl)-

Buccal

27.47 Pentanoic acid^*

25.81 Undecanoic acid, 10-methyl-, methyl ester**

18.61 Acetic acid* **

18.75 Decyl Aldehyde*

18.7 1-Hexanol, 2-ethyl-* **

30.16 Tetradecanoic acid, methyl ester* **

25.75 Dodecanoic acid, methyl ester* **

15.6 Nonanoic acid, 9-oxo-, methyl ester

34.07 Hexadecanoic acid, methyl ester* **

27.54 Butanoic acid, 3-methyl-^*

34.54 7-Hexadecenoic acid

36.04 Phenol, 2,4-bis(1,1-dimethylethyl)-

18.55 Nonanoic acid, methyl ester**

21.02 Decanoic acid, methyl ester* **

23.73 2(3H)-Furanone, 5-ethyldihydro-
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as relative proportions of compounds expressed17. Visual inspection of the chromatograms confirmed these 
results. Highly related individuals had their own unique compounds as well as sharing subsets of chemicals that 
were differentially expressed, within and across age categories and sexes. In support of olfactory individuality 
cues in African elephants, studies found that females’ and males’ acoustic signals express individuality61. The 
results are supported by research on other group-living mammals, where olfactory cues for individual identity 
have been documented3,62.

Phenotypic variability and distinctiveness in odour profiles might be under natural selection as the ability to 
identify individuals within a social group may confer fitness benefits by recognizing kin, a heterozygous mate, a 
social affiliate, a dominant conspecific, or rival, thereby determining agonistic or reciprocal behaviour. The abil-
ity to discriminate individual odours has been recorded in a diversity of species63–68. African elephants are able 
to discriminate between humans from body odour and among conspecifics, and prefer the scent of unfamiliar 
over familiar urine67. Females can monitor and track the location of up to 30 conspecifics from odour profiles 
in urine, while acoustically, they can recall the vocalisations of up to 100 individuals49,68.

The last prediction, that age and sex would be encoded in genital, temporal gland and buccal secretions, 
was supported by the data. Elephant odour was significantly different between age categories in temporal and 
buccal secretions, while a result approaching significance was obtained for sex in genital and temporal odour. 
Age class differences are likely due to hormonal variations and varied physical development. Diet, hormonal 
differences and gut bacteria are known to contribute to odour profiles69. Studies suggest that the frequency of 
African elephant TGS secretion varies with gender and age70, while age has been correlated with chemical profile 
in several mammals6,7,71,72. While sex is typically encoded in chemical profiles, here a result approaching sig-
nificance was detected in genital and temporal secretions, possibly due to the absence of sexually mature males 
from the sample population as sexual signals pertaining to musth and oestrus are more likely to be encoded in 
sexually mature adults’ penile, labial and TGS. This would also explain the lack of significance for sex in buccal 
secretions as mature Asian bulls’ breath and temporal gland secretions are known to contain olfactory signals 
for musth and reproductive status33.

Most intriguingly, while no genetic basis for group odour was found, our results indicated highly significant 
differences between groups in buccal, genital and temporal gland odour. This raises the possibility that elephants 
may share a group odour that is not correlated to genetic relatedness. An analysis of similarity elucidated this 
further, extracting important compounds that contributed towards these differences. Compounds constituted 
short-chain fatty acids (SCFAs) and saturated fatty acids such as acetic acid, pentanoic acid, hexanoic acid, 
decanoic acid, dodecanoic acid and tetradecanoic acid (Table S2 in Supplementary Information), compounds 
that were found by previous studies24,73 to be the results of bacterial fermentation and the source of group odour 
in spotted hyaenas and meerkats (Suricatta suricata). Compounds identified in this study were also previously 
detected in elephant male urine by Goodwin et al. (2016) in a seminal study on microbial communities and 
production of carboxylic acids. Specifically buccal secretions contained similar compounds, including alkan-2-
ones and alkan-2-ols such as octanoic acid, hexanoic acid, decanoic acid, dodecanoic acid and tetradecanoic acid. 
Notably, the odourants in musth in African elephant bulls derive from bacterial metabolisation of fatty acids. 
Bacterial activity has been linked to odour profiles in rabbits Oryctolagus cuniculus74, red foxes (Vulpes vulpes) 
and beavers75. Bacteria are proposed to play a significant role in the composition of mammalian odour signals, 
as found in host urine, faeces or in products from specialized sebaceous or apocrine scent glands; bacteria are 
suggested to encode information about the sex, age, breeding condition, health, diet, dominance rank and social 
relationships of their hosts25. The fermentation hypothesis for chemical communication76,77 suggests that scent 
glands harbor symbiotic bacteria that decompose organic material and produce volatile compounds, which may 
contribute to intra-individual recognition in mammals. Evidence supporting the fermentation hypothesis comes 
from studies on SCFAs in the red fox and mongooses (Herpestes auropunctatus). Both species stopped produc-
ing SFCAs with the administration of antibiotics, while cultivated bacteria from the scent glands produced the 
same SCFAs found in scent marks.

Group specific odour is not mutually exclusive to individual specific odour and is suggested to be the result 
of conspecifics of the same social group harboring more similar bacterial communities than different social 
groups78,79. This was supported by studies on meerkats (Suricata suricatta) where scent profiles of anal gland 
secretions were more similar within than between groups24. Studies suggest that cross-infection of bacteria arises 
through frequent physical contact and allo-or-overmarking within groups 58,79. The frequent affiliative behaviours 
among African elephants is posited as a likely mechanism for bacterial transmission; but also see Chiyo et al. 
(2014)80 for discussion of the role of environment in age-structured transmission of E.coli in African elephants.

In summary, this study used SPME-GCMS in conjunction with genetic and statistical tools to test the cor-
relation between genetic relatedness and odour profiles in African elephants. Despite the stress undoubtedly 
experienced by individuals during translocation, this event provided a unique opportunity to sample at scale the 
semiochemistry of wild African elephants and to significantly further our understanding of the role of olfaction 
and chemical cues in social communication. It demonstrated that chemical profiles from temporal gland, buccal 
and genital secretions coded for individual identity and age. Furthermore, the study showed that group-specific 
odour in African elephants is not correlated to genetic relatedness, but is likely to be a result of bacteria. Natu-
ral selection could favour flexible group-specific bacterial odours that promote bond group cohesion among 
non-relatives and increase fitness benefits (cooperative offspring care and cooperative group defense) among 
elephant groups that fluctuate in size and composition over an elephant’s lifetime. African elephant females live 
in fission–fusion societies, and while family units are stable and long-lasting, across a population, females may 
change social affiliation at the bond group level several times over their lifetime, requiring olfactory flexibility 
in advertising group membership. Compounds extracted by an analysis of similarity would be a good starting 
point for future research into surveying the microbiomes in African elephants using next-generation sequencing 
methods, and to explore a possible functional role of SFCAs in individual and group odour. Finally, that genetic 
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relatedness was only reflected in chemical similarity of sister dyads in this study does not imply that elephants 
are unable to recognize kin on the basis of their genetic relationship. Elephants may use other mechanisms to 
mediate kin recognition including phenotype matching, as well as a possible role for Major Histocompatibility 
Complex (MHC) derived components or Major Urinary Proteins (MUPs) in elephant urine; all of which remain 
to be explored in African elephants. Elephants may further use a combination of modalities, such as acoustic and 
odour-based cues, to recognize conspecifics and kin, and may acquire knowledge of the scent of conspecifics 
through social learning.

Methods
Sample collection.  To relieve elephant population pressure in Majete Wildlife Reserve (MWR) in Malawi 
(S15° 54′26.6″; E034° 44′24.3″), management authorities relocated 120 African elephants in 15 family units to 
Nkhotakota Wildlife Reserve within Malawi. Translocation of elephants (sighting, selection, immobilization, 
and transport) and veterinary services were conducted by translocation specialists Conservation Solutions 
(CS). Elephants travelling as family groups were identified from the air, and darted as a social unit. Permis-
sion was granted to Stellenbosch University by The Department of National Parks and Wildlife (DNPW) in 
Malawi, African Parks (AP) and CS to collect chemical swabs and blood samples under veterinary supervision. 
Elephants were assigned an individual number, a group membership identification (ID), and were sexed, aged 
and weighed. Temporal, buccal and genital swabs were taken in triplicate using 3 × sterile COPAN cotton wool 
swabs, and one swab per individual was used for subsequent analysis. Samples were stored at −20 °C in 20 ml 
clear precision screw-thread glass vials. Blood was taken from the auricular vein of the elephants by a wildlife 
veterinarian into 5 × 4 ml sterile EDTA vacutainer tubes. Samples were stored on ice between darting events, and 
frozen at −20 °C within an hour.

DNA extraction, microsatellite genotyping and estimating relatedness.  Genomic DNA was 
extracted one month after the translocation using the Prepfiler Automated Forensic DNA extraction kit (Thermo 
Scientific) and purified on the Kingfisher Flex Purification System (Thermo Scientific). Individuals were geno-
typed at 18 microsatellite loci using two multiplex panels that comprise previously reported loci81–83. For quality 
control 11 individuals were randomly re-extracted and re-genotyped across the full panel. For each multiplex 
panel, PCR and electrophoresis were performed on 10 µl reactions using the KAPA2G™ Fast Multiplex PCR Kit 
(Kapa Biosystems). Amplification PCRs were performed on a GeneAmp PCR System 9800 as follows: 95 °C for 
3 min; 30 cycles of 95 °C for 15 s, 60 °C for 15 s and 72 °C for 30 s; and a final amplification at 72 °C for 10 min. 
Electrophoresis was performed on a 3500 × Genetic Analyzer (Thermo Scientific) and the resulting data were 
analysed in STRand84 using the GeneScan™ 500 LIZ® size standard (Thermo Scientific). To estimate pairwise 
genetic relatedness between all individuals, the software Identix85 was used to calculate Queller and Goodnight’s 
r86 for each dyad across the data set. To verify mother–offspring dyads sampled in the field a maternity analysis 
of cows and calves was performed in Cervus 2.087. Cervus uses a likelihood-based approach to assign parentage 
combined with simulation of parentage analysis to determine the confidence of parentage assignments.

Chemical analysis of temporal, buccal and genital samples.  Chemical compounds from temporal, 
buccal and genital secretions were analysed using solid-phase microextraction (SPME) and gas chromatography 
mass spectrometry (GC–MS). Swabs were transferred into 20 mL SPME headspace vials and sealed with a pol-
ytetrafluoroethylene (PTFE, Teflon®)/silicone septa and steel cap. As an internal standard, 50 µL of Anisole d8 
was added. Vials were equilibrated at 30 °C for 5 min using a CombiPAL solid-phase microextraction (SPME) 
autosampler (CTC, Switzerland). A conditioned fibre was inserted into the headspace above the sample and 
held for 30 min (with agitation). The fibre was consequently withdrawn into the needle by the autosampler and 
inserted into the injection port of a 6890 N gas chromatograph (GC) (Agilent Technologies, Palo Alto, CA, USA) 
coupled to a mass spectrometer detector 5975B (Agilent Technologies). The SPME fibre was desorbed and held 
in the injection port (250 °C) for 10 min. The fiber was then inserted into a fibre conditioning station for 10 min 
between samples for cleaning to prevent cross-contamination. Volatile compounds were separated using a polar 
ZB-Wax capillary column (30 m, 0.25 mm i.d. 0.25 µm film thickness). The oven temperature was initially held 
at 40 °C for 5 min and increased to 240 °C at 5 °C/min (held for 3 min). The total run time was 48 min. Semio-
chemicals that had consistent retention times and accounted for > 0.05% of the area of the total chromatogram 
were retained.

Statistical analysis framework.  For statistical analyses of the chemical data, peaks that were present in 
blanks and only one sample were excluded. To estimate the maximum number of substances within the samples 
and to test for completeness of sampling, the maximum number of substances using the Michaelis–Menten 
function with a permutation procedure of 9999 iterations was applied. Analyses were conducted on the relative 
proportion of each peak in the chromatogram to the overall area of an individual profile. The data were visual-
ized and statistically analysed for patterns of chemical similarity in relation to sample population, social group, 
adult sister pairs and relatedness. Computer code for R (GCAlign) was used87, a package specifically developed 
for ecological and evolutionary research, evaluating similarity patterns across multiple and variable biological 
samples.

Chemical similarity.  Chemical profiles were visualized using multidimensional (MDS) scaling ordination 
and nonmetric multidimensional scaling (nMDS) based on Bray–Curtis Similarity Values calculated from the 
log(x + 1) transformed data11,88. Each point in the 2-dimensional MDS plot represents an individual elephant 
swab, with clumped points representing individuals with greater chemical similarities. MDS has been success-
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fully used in other studies to visualize chemographic data in mammals89. Differences between a priori defined 
groups (family groups and -sister dyads) were analysed with ANOSIM, using whole profile comparison based 
on Bray–Curtis indices and applying 999 iterations of the dataset. The vegan package90 for ANOSIM was used.

Partial Mantel tests.  Using the full complement of swabs, a correlation of dyadic values of relatedness 
against chemical similarity was conducted using the genetic relatedness matrix based on 18 loci as the response 
variable and fitted pairwise Bray–Curtis Similarity Matrices as predictor variables using a Partial Mantel test. 
Separate models were constructed for a priori defined groups (groups, sister dyads) using 10,000 permutations 
of the dataset. For the association between relatedness and chemical similarity, Spearman Rank Correlation 
(Mantel’s r) and two-tailed P-value tests were applied.

Putative identification of chemicals.  To assess the contribution of specific chemicals to the dissimilar-
ity between groups, a similarity percentages process (SIMPER) was used. All Bray–Curtis similarities within 
a group were decomposed into percentage contributions per compound, listing the compounds in decreasing 
order of importance.

Putative identification of compound type.  The type of compound represented by each peak was iden-
tified by filtering compounds by quality. Compounds were retained that had a probability match of > 70%. Iden-
tification of putative substances was based on retention times, and by comparing mass spectra with the best 
match of the library of the National Institute of Standards and Technology (Gaithersburg, MD, USA). Com-
pounds were categorized into compound categories. Exact identification of each compound, through the injec-
tion of commercial standards, was considered unimportant for the present study62.

Ethics statement.  All research protocols were approved by Stellenbosch University Institutional Animal Care 
and Use Committee (SU-ACUM15-00002) and the US Army Medical Research and Materiel Command (USAM-
RMC) Animal Care and Use Review Office (ACURO) proposal 65978-ST-ITC, and Award W911NF-14-1-0596. 
All sampling of individuals while sedated was carried out under veterinary supervision. Samples were collected in 
accordance with the Convention of International Trade in Endangered Species of Fauna and Flora (CITES Permit 
# Malawi 171383, CITES Permit # South Africa 000054), and retained under permits issued by the Department of 
Environmental Affairs (DEA Permit # 07901). The translocated elephants analysed in this study are part of an ongo-
ing conservation initiative undertaken through a collaboration between Malawi’s Department of National Parks and 
Wildlife (DNPW) and the conservation NGO African Parks. The long-term goals of translocation are to maintain 
healthy habitats in Malawi’s national parks, establish stable and resilient elephant populations, and ensure the prosper-
ity of local communities that live alongside them. [See www.​afric​anpar​ks.​org]. This study is reported in accordance 
with ARRIVE guidelines (https://​arriv​eguid​elines.​org).

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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