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The excess volatility puzzle 
explained by financial noise 
amplification from endogenous 
feedbacks
Alexander Wehrli1,2* & Didier Sornette1,3,4*

The arguably most important paradox of financial economics—the excess volatility puzzle—first 
identified by Robert Shiller in 1981 states that asset prices fluctuate much more than information 
about their fundamental value. We show that this phenomenon is associated with an intrinsic 
propensity for financial markets to evolve towards instabilities. These properties, exemplified for 
two major financial markets, the foreign exchange and equity futures markets, can be expected to 
be generic in other complex systems where excess fluctuations result from the interplay between 
exogenous driving and endogenous feedback. Using an exact mapping of the key property (volatility/
variance) of the price diffusion process onto that of a point process (arrival intensity of price changes), 
together with a self-excited epidemic model, we introduce a novel decomposition of the volatility of 
price fluctuations into an exogenous (i.e. efficient) component and an endogenous (i.e. inefficient) 
excess component. The endogenous excess volatility is found to be substantial, largely stable at 
longer time scales and thus provides a plausible explanation for the excess volatility puzzle. Our 
theory rationalises the remarkable fact that small stochastic exogenous fluctuations at the micro-
scale of milliseconds to seconds are renormalised into long-term excess volatility with an amplification 
factor of around 5 for equity futures and 2 for exchange rates, in line with models including economic 
fundamentals explicitly.

The 20th century saw revolutionary developments in the field of finance. To name only a few, the advent of theo-
ries like the efficient market hypothesis1,2 (EMH), the capital asset pricing model and the Black-Scholes-Merton 
option pricing framework provided new scientific foundations to the field. The underpinning of this new world 
was built on the assumption that financial markets are all-powerful computational engines, able to aggregate 
and process the beliefs and demands of agents, equipping prices with the full set of properly processed informa-
tion currently available. And indeed, the general absence of exploitable changes in the serial structure of price 
fluctuations seems to support this notion3.

However, price dynamics in modern financial markets are the result of the activities of a multitude of inter-
connected agents, each trading based on their imperfect information, with heterogeneous motivations and 
confined by specific institutional and regulatory constraints. The resulting marketplace is in its very essence a 
complex system4–6 and over the years, many phenomena have been documented empirically, which are at odds 
with the predictions of (neo-)classical theories, like the EMH. For example, the magnitudes of price fluctuations 
are found to exhibit intermittency and long-range correlations, in direct support of the view that markets are 
a complex dynamical system with persistent memories7,8. Furthermore, price returns exhibit large fluctuations 
even in the absence of external impulses9. This contradicts expectations for efficient market equilibria, where 
price fluctuations are hypothesised to always reflect external news10. In fact, price change distributions are found 
to have fat tails11–13 where large deviations occur much more frequently than what one would expect if the tails 
were generated by exogenous shocks alone. All these phenomena contribute to levels of price fluctuations that 
are unjustified by the pertinent news flows – a phenomenon termed the “excess volatility puzzle”14–18.
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Why does the aggregation process that financial markets are supposed to perform give rise to these inefficien-
cies? One potential explanation is that the system underlying observed prices is considerably self-referential, 
preventing it as a whole from converging efficiently to an unbiased estimate of the fundamental value. Under 
this hypothesis, the macroscopic phenomenon of excessive price fluctuations is a consequence of the reflexive19 
characteristics of interactions of individual agents at different scales. The realization that reflexivity, or feedback 
loops, are crucial determinants of system dynamics in economics and finance, is indeed a view that also Shiller put 
at the heart of his considerations around the determinants of asset price fluctuations, as emphasized in his 2013 
Nobel Prize lecture20. Arguably, the 2008 financial crisis and the failure of orthodox economic theory to predict 
these events have spurred interest in understanding the complexity, feedback loops and reflexive amplification 
effects inherent to the economy and financial markets21.

Here, we propose to capture these feedback effects with a model of epidemic spreading in collective activity 
dynamics, where exogenous impulses diffuse and get amplified through endogenous feedback. The statistical 
separation of external processes from internal amplification mechanisms allows us to dissect the observed vola-
tility of prices into an efficient component, arising from purely exogenous fluctuations, and an inefficient com-
ponent, arising from endogenous feedback processes acting as noise amplification mechanisms. In this article, 
we apply this method to high-frequency observations of exchange rates and equity futures prices. We find that, 
at longer time scales, the inferred endogenous excess volatility component is substantial and largely stable. The 
magnitudes of excess volatility implied by our theory—an amplification factor of ≈ 2 for foreign exchange and 
≈ 5 for equity futures—are in remarkable agreement with previous measurements in the literature that involve 
fundamental values (dividends, earnings, unemployment data, GDP, etc.) explicitly. We thus add to the literature 
by identifying a microscopic generating mechanism for the observed excess volatility. This novel perspective 
also illuminates that, at intraday time scales, the endogenous excess volatility can vary strongly and markets can 
temporarily become highly inefficient in dissipating external impulses. Like financial markets, many (complex) 
systems are characterized by the composition of a large number of interacting constituents under the influence 
of time-varying external forcing. As such, we can also expect similar microscopic feedback mechanisms at the 
root of excessively volatile macroscopic behavior in other domains, e.g. causing elevated effective temperatures 
in physical systems. Examples here include the amplification of thermal noise into effective renormalized tem-
peratures through quenched heterogeneities in materials22, in organized flows in liquids23 and in granular media 
near jamming24.

Relation between volatility and conditional intensities
We consider the simple setup where the logarithm of the current price Y(t) = log S(t) is given by

The observation error U(t) contaminates the measurement of the latent log-price X(t), which represents the 
market’s consensus on the current fundamental value of the asset. X(t) is assumed to follow the dynamics 
dX(t) = a(t)dt + σX(t)dB(t) , for a standard Brownian motion B, some locally bounded and predictable drift a, 
and an adapted càdlàg volatility process σX . The noise process U(t) captures features inherent to how interactions 
on electronic financial markets are designed, and how S(t) is constructed. It is for example customary that prices 
can only be expressed as multiples of some minimum price increment (the “tick size”), which gives rise to meas-
urement error due to price discreteness. Furthermore, since electronic markets at any given moment in time are 
comprised of a collection of trading interests of many agents (represented by the so-called “limit order book”25), 
a reduced form model like (1) will have to define how to combine a multitude of available prices into S(t). It is for 
example customary to consider the mid-price of an asset, which is defined as the average of the lowest available 
price some market participant is willing to sell the asset for (the best offer/ask price), and the highest available 
price some participant is willing to buy (the best bid price). In this case, e.g. nonsynchronicity in revisions of 
the best bid and offer price may induce serial dependence in the innovations of Y, which are captured by U.

An insightful representation of the instantaneous variance of the observed price follows from the definition

where F is the filtration of the process. Since the squared returns are realizations of a non-negative random 
variable, we can express (2) as

We note that the terms being integrated in (3) can equivalently be stated as conditional intensities of counting 
processes Nε(t) which count the times where the squared return exceeds a threshold of ε . Thus we can develop 
the variance process as

where the �ε(t) are the conditional intensity functions of the respective processes Nε(t) . The point of view taken 
here—looking at the variance as the continuous cumulation of threshold-exceedence intensities—is to the best 
of our knowledge novel to the literature. It however resonates with a rich strain of literature documenting mul-
tifractal properties of financial volatility26,27.

(1)Y(t) = X(t)+ U(t).

(2)σ 2
Y (t) = lim

�↓0
�−1

E[(Y(t +�)− Y(t))2 | Ft ],

(3)

σ 2
Y (t) = lim

�↓0
�−1

∫ ∞

0
P[(Y(t +�)− Y(t))2 ≥ ε | Ft ]dε =

∫ ∞

0
lim
�↓0

�−1
P[(Y(t +�)− Y(t))2 ≥ ε | Ft ]dε.

(4)σ 2
Y (t) =

∫ ∞

0
lim
�↓0

�−1
P[Nε(t +�)− Nε(t) > 0 | Ft ]dε =

∫ ∞

0
�
ε(t)dε,
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From (2) and the definition of the observed price, we see that

where c(t) = 2E[dX(t)dU(t) | Ft ] + E[(dU(t))2 | Ft ] . Thus the variance of the unobservable price X is recov-
ered from observed conditional intensities as

In practice, rather than σ 2
X(t) , one is then typically interested in the integrated variance v(t) =

∫ t
0 σ

2
X(s)ds , as 

this quantity is more closely related to observables28.
Note that expression (6) maps the key property (volatility or variance) of a diffusion process onto that of 

point processes29–31 (the conditional intensities �ε(t) ). This new angle of investigation is at the origin of our fun-
damental explanation of the excess volatility puzzle. As shown in Supplementary Information online, section 4, 
the presence of c(t) only affects the magnitudes of σ 2

X(t) when measured through the �ε , and bias correction 
techniques are available. Importantly, c(t) does not impact a decomposition of the �ε , which is crucial to deter-
mine endogenous factors in the intensities �ε as we do subsequently.

Noise amplification from endogenous feedbacks
Being the primary measure of risk in modern finance, volatility dynamics are essential for applications ranging 
from asset pricing, portfolio construction, hedging and pricing of derivatives, as well as determining a firm’s 
exposure to a plethora of risk factors. The most salient and well-documented feature of volatility is its intermit-
tency, or clustering, e.g. measured by its slowly decaying temporal dependence32. According to (6), clustering in 
the volatility process must manifest itself somehow from the intensity processes of the arrivals of price fluctua-
tions. The fundamental question that arises is whether this activity clustering is a consequence of externally 
caused perturbations (“exogenous”/exo), or whether it is intrinsic to financial markets and driven by its network 
dynamics (“endogenous”/endo). It is a well-established finding in the high frequency finance literature that price 
fluctuations and trading activity are considerably self-excited, i.e. exhibit endogenous clustering33–36. Not only do 
general price fluctuations appear to exhibit endogenous feedback, but also the arrival intensity of extreme price 
fluctuations37,38, as characterized by �ε for ε very large. As such, a key characteristic of interactions on financial 
markets is that they amplify any noise induced by external processes through internal mechanisms that follow 
as reactions to observed price changes.

Why would one expect that financial markets are replete with such self-referential dynamics in the first place? 
Looking at today’s highly computerized markets, its participants and practices, it quickly becomes obvious 
that we can expect positive feedback mechanisms at a wide range of scales. At short time scales, self-referential 
mechanisms are mainly due to technical aspects and automated trading practices, which create feedback loops 
by basing their decisions on the past evolution of the market. On intermediate time scales, e.g. herding in 
algorithmic trading strategies, the optimized execution of portfolio transactions and margin/leveraged trading 
create feedback loops. At the low frequency end of the spectrum finally, behavioral mechanisms like the human 
tendency to imitate come into play, creating feedback at time scales of potentially months to years. Here, we 
focus on endogenous processes acting at time scales up to one day.

According to classical theories, like the EMH, prices should not be influenced by these endogenous processes. 
Markets are hypothesized to be sufficiently fast and effective so that equilibrium prices are reached quick enough 
after an exogenous shock, so that endogenous processes—if they exist—disappear from the observations. In 
particular also, extreme events like financial crashes are, according to these theories, the signature of exogenous 
negative news of large impact. However, there is significant evidence that extreme events on all time scales can 
be the result of endogenous feedback. From “ultrafast extreme events”39 at sub-millisecond time scales to the 
formation of bubbles and financial/economic crashes over years and decades6,40, self-referential feedback has been 
linked to extreme events. As such, the quantification of such processes in financial markets—just like in other 
complex natural and social science systems—becomes key for the prediction and assessment of extreme events41.

Epidemic model for the mid‑price activity.  While there is ample motivation, both theoretically and 
empirically, to assume that endogenous feedbacks are a relevant generating mechanism of observed activity 
clustering, the question considering (4) is whether this is true at all scales ε . In order to test whether such clus-
tering is better described by endogenous responses or exogenous shocks, we suppose that the interactions of 
agents making up �ε can be described using an epidemic branching process. This branching process encodes 
the cascade of reactions on the network of market participants as an external perturbation diffuses through the 
network. Epidemic models have been shown to be able to robustly classify collective dynamics into endogenous 
and exogenous signatures42 and in particular also gained substantial recent popularity in finance43.

Working on a probability space (�,F ,P) , a general epidemic branching process44 of price fluctuations 
above some threshold can be represented with a point process Nε : �×B (R+) → N0 ∪ {∞} , defined as 
a random measure on R+ = {x ∈ R|x ≥ 0} . Nε counts the random number of points (i.e. price fluctuations 
above ε ) in some Borel set A ⊆ R

+ , denoted Nε(A) . For ease of notation, we write Nε(t) := Nε((0, t]) for 
t ∈ [0,∞) . We will assume that the process is orderly in the sense that Nε({t}) ∈ {0, 1} for all t ∈ R

+ , in which 
case Nε can be described by an ordered random sequence (tj)j∈Z representing all the times s ∈ [0, t] where 
dNε(s) = Nε(s)− limu→s− Nε(u) = 1 . The history of the process Nε is given by σ(Nε) = (Ft)t∈(0,∞) where 
Ft ⊆ F is the σ-algebra generated by Nε up to and including t, i.e. Ft = σ(Nε(s), s ≤ t) . We will assume 
that the epidemic process is driven by external immigration in the form of an inhomogeneous Poisson process 

(5)σ 2
Y (t) = σ 2

X(t)+ c(t),

(6)σ 2
X(t) =

∫ ∞

0
�
ε(t)dε − c(t).
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Nε,µ : �×B (R+) → N0 with rate µε : [0,∞) → [0,∞) . Furthermore, let Nε,θ : �×B (R+) → N0 be a 
Poisson cluster process where the cluster generated by the some point of Nε,µ at s < t is distributed according to 
an inhomogeneous Poisson process with intensity γ (s)g(t − s) . The memory kernel g : [0,∞) → [0,∞) satis-
fies 

∫∞
0 g(t)dt = 1 . The quantities γ (s) ≥ 0 are the “fertilities” of exogenous price fluctuations, having a density 

γ (s) ∼ d with mean γ̄ =
∫∞
0 d(γ )γ dγ < ∞ . Moreover, in order to encode endogenous responses of the system, 

let h : [0,∞) → [0,∞) , 
∫∞
0 h(t)dt = 1 and η(s) ≥ 0 , η(s) ∼ f  with η̄ =

∫∞
0 f (η)ηdη < ∞ . The full epidemic 

model is then given by the Galton-Watson cluster process Nε with Poisson offspring processes having intensities 
η(s)h(t − s) , based on immigrants Nε,θ at times s < t.

For the full filtration F = σ(Nε,µ,Nε) , the described point process has F-conditional intensity function

With respect to the filtration F = (Ft)t∈(0,∞) , the conditional intensity function can be interpreted as 
a conditional hazard function, i.e. �ε(t) = lim�↓0 �

−1
E[Nε(t +�)− Nε(t) | Ft−] , as required by (4). The 

epidemic model (7) allows for three kinds of clustering: 

(A)	 Deterministic exogenous clustering through µε , capturing activity clusters that are not due to epidemic 
effects.

(B)	 Stochastic exogenous clustering through g, describing activity bursts that follow as direct responses to some 
exogenously induced fluctuation (a “shot noise” response).

(C)	 Stochastic endogenous clustering through h, encoding the distribution of waiting times between some price 
fluctuation and subsequent endogenous reactions (in the form of other price fluctuations) to this event in 
the epidemic cascade.

The branching representation of this process is that µε induces immigrants according to an inhomogeneous 
Poisson process. All immigrants trigger a single generation of offspring (“reactions”) with Poisson intensity 
γ (s)g(t − s) . In addition, all existing points trigger a first generation of endogenous offspring with intensity 
η(s)h(t − s) , which in turn trigger their own generation of offspring in the same manner, and so on. The collec-
tion of all these independent Poisson processes forms the process Nε . The branching coefficients γ̄ and η̄ define 
the expected number of future price fluctuations that are triggered by some exogenous ( γ̄ ) or arbitrary ( ̄η ) 
price fluctuation. η̄ is usually referred to as the branching ratio of the epidemic process, and assumes the role of 
a control parameter of the system. For 0 ≤ η̄ < 1 , the process is subcritical and the activity generated by some 
initial immigrant event dies out with probability one. At η̄ = 1 , the process is critical, i.e. constantly operating 
at the brink of explosively diverging dynamics45. For η̄ > 1 , the process has a finite probability to explode to an 
infinite number of events46.

The “endo‑exo” problem—a universal challenge in science.  In order to quantify the importance of 
feedback effects in general system dynamics such as (7), one faces the difficult task of decomposing aggregated 
dynamics into endogenous and exogenous processes—a task that has been called the “endo-exo problem”35,47. 
Since endogenous feedbacks are relevant in many scientific disciplines, it is unsurprising that their statistical 
identification lies at the heart of the respective domains. For example, consider the problem in seismology of 
determining if an earthquake is a mainshock or an aftershock, or in physics when determining if particles are 
interacting, or in a heterogeneous field. In epidemiology, the basic incidence of diseases is followed by con-
tagious outbreaks. In social systems, there is e.g. the question if a surge in the popularity of some content is 
due to it “going viral”, or external driving. In neurophysiological studies, one finds an intricate interplay of 
endogenous neuronal excitation/inhibition with circadian rhythms. Many other examples exist, and a common 
theme in their statistical analysis is that the solution of the decomposition is often plagued by spurious inference 
issues, because external perturbations exhibit significant heterogeneity that is easily misidentified as endogenous 
memory35,36. In financial markets, these exogenous heterogeneities are major features of observed dynamics. At 
intraday horizons, where we intend to apply our study, there are e.g. seasonalities arising from the overlap of 
global trading hours, or activity bursts from scheduled economic data releases and unscheduled news, which 
together with endogenous processes result in complex overall activity dynamics. Moreover, these activity profiles 
exhibit significant day-to-day variation, as illustrated in Fig. 1. As such, a robust inference scheme is essential. 
Here, our solution to extract endogenous processes from these complex dynamics is based on an Expectation 
Maximization (EM) algorithm48, which adaptively learns the branching structure of the epidemic model we use 
to represent the collective activity process resulting from the interactions of all agents in a market. The key ingre-
dient in the EM scheme is to use a flexible and adaptive estimator for the exogenous noise process µε , so that 
non-stationarities are detected and controlled for properly. See Supplementary Information online, section 1 for 
details on the inference scheme. In order to calibrate models where γ̄ > 0 , the estimation procedure needs to 
be extended to a Monte Carlo EM (MCEM) algorithm44, which is outlined in the Supplementary Information 
online, section 1.4.

Determining the dominant clustering mechanism.  The key question that remains in light of (7) is 
which of the clustering mechanisms are relevant empirically. Due to the structure of the model, this can be 
determined by testing nested models. Here we choose to use information criteria for this purpose. A description 
of the test procedure is given in Supplementary Information online, section 1.4 and detailed results from a study 
performed on randomly selected days from the sample are reported in Supplementary Information online, sec-

(7)�
ε(t) = µε(t)+

∫ t

0
γ (s)g(t − s)dNε,µ(s)+

∫ t

0
η(s)h(t − s)dNε(s).
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tion 2. According to this procedure, the predominant model selected across thresholds ε is a process with deter-
ministic exogenous clustering (A) and stochastic endogenous clustering (C). Our analysis thus suggests that the 
complexity provided by an appropriately flexible and adaptive deterministic immigration intensity is sufficient, 
compared to adding local stochastic exogenous clustering (B). The main conclusion is that the dominant activity 
in financial markets is in fact endogenous. We also find that endogenous clustering with heavy-tailed memory 
frequently prevails over endogenous clustering with short-tailed (exponential) memory, in line with the persis-
tence of volatility documented empirically49. Moreover, the arrival processes of large returns appear to be associ-
ated with higher—at times even (super)critical—estimates of η̄ . This is in line with models from financial risk 
management37,38, where η̄ > 1 is a frequent finding. Based on these results, we conclude that an epidemic model 
with γ (s) ≡ 0 and heavy-tailed endogenous memory

is most appropriate to describe the microscopic activity of the financial markets considered here. To speed up 
estimation, we will model (8) using an approximate Pareto distribution34. It is clear that the tests conducted 
here are far from a systematic study of self-excitation in extreme returns, which is out of the scope of this paper, 
but merits future analysis. Such a study could potentially also help reconcile the apparent paradox that volatil-
ity profiles around large volatility fluctuations are in line with predictions of a critical system with memory50, 
whereas modelling overall market activity using self-excited processes strongly rejects a criticality hypothesis35,36.

Microscopic activity and the “excess volatility puzzle”
To gain further traction on the integral 

∫∞
0 �

ε(t)dε in (6) for empirical purposes, we will assume that �ε can be 
decomposed as a sum of intensities for different amplitudes m of the squared returns as

In the following, it becomes clear that the realisations of m at each point in time play the role of “marks” 
of the point process. We assert accordingly that a marked point process30 N with time-space conditional 
intensity �(t,m) = �(t)w(m) can faithfully describe the overall activity of observed price changes. �(t) 
denotes the conditional intensity of the ground process, i.e. of the arrival time process, and w(m) is the den-
sity of the squared returns m, also known as the marks of the process. We can interpret this heuristically as 
�(t,m)dtdm = E[N(dt × dm) | Ft ] = �(t)w(m)dtdm . Then the total conditional intensity of the process above 
a threshold ε is found as

where W(ε) = P[m ≤ ε] is the cumulative distribution corresponding to the density w(m). We note that the 
only effect of varying the threshold ε is to rescale the conditional intensity by the probability that a mark above 
this threshold is observed. Substituting (10) back into (4), we finally find

where m̄ = E[m] . Based on the results from the previous section, which suggested that the predominant cluster-
ing mechanism is of endogenous nature across thresholds ε , we take our model for �(t) to be the epidemic model 
with deterministic exogenous and stochastic endogenous clustering as

(8)h(t) ∝ (τ0 + t)−(1+α)

(9)�
ε(t) =

∫ ∞

ε

�(t,m)dm.

(10)�
ε(t) =

∫ ∞

ε

w(m)�(t)dm = (1−W(ε))�(t),

(11)σ 2
Y (t) = �(t)

∫ ∞

0
(1−W(ε))dε = �(t)m̄,

Figure 1.   Shows intraday unconditional intensity estimates �̂t of price fluctuations (in sec−1 ) from36, for the 
E-mini S&P 500 futures contract (left) and the EUR/USD exchange rate (right), obtained from a histogram 
estimator computed over one minute bins and averaged across days in the sample. The grey shaded areas 
indicate [10%, 90%] percentiles across the days, highlighting the significant day-to-day variations in the activity 
profile. In the insets, a smoothed power spectral density estimate for the unconditional intensity is provided, 
indicating the presence of periodicities in the price fluctuations at various frequencies.
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Note that this is equivalent to usual applications in finance, which assume that the endogenous memory 
kernel of the marked process can be multiplicatively separated. In this case, the offspring of some point at time tj 
with mark mj = (Y(tj)− Y(tj−1))

2 arrive at Poisson intensity φ(t − tj ,mj) = ρ(mj)h(t − tj) for some produc-
tivity function ρ(·) and we have the correspondence η(tj) = ρ(mj) . The definition of the marks is justified as a 
consequence of our assumption that �ε can be decomposed as a sum of intensities for different amplitudes of 
squared returns. Intuitively, a larger return contains more information, or is interpreted by agents as carrying 
a larger signal, than small returns, so that the future intensity of price changes induced by such a large return 
depends on its magnitude itself. Moreover, since our estimation scheme extracts the realized triggering owed 
to the η(tj) directly from the data using the EM algorithm described in the Supplementary Information online, 
section 1.1, we can indeed be agnostic about the law mj  → η(tj) . Together with (11), the latent variance process 
is recovered as

or in terms of integrated quantities

where �(t) =
∫ t
0 �(s)ds is the compensator of N and C(t) =

∫ t
0 c(s)ds.

Endogenous excess volatility.  Using (12) as our model for �(t) , and imposing mild conditions on U(t) 
as detailed in Supplementary Information online, section 4, the expected integrated variance decomposes as

where σ 2
e  is the variance of the increments of U, I(t) =

∫ t
0 µ(s)ds and we adopt the notation 

a ∗ b(t) =
∫
R
a(t − s)b(s)ds for the convolution of a with b. The function ψ is often known as the activity level 

in systems with memory51 and satisfies the equation ψ(t) = η̄h(t)+ (η̄h) ∗ ψ(t) . The related function ψ(t)/η̄ 
is often called resolvent, renormalized kernel or response function and describes the response of the system to 
an impulsive (exogenous) perturbation. See Supplementary Information online, section 3 for technical details 
and methodological relations to general autoregressive processes. In this epidemic conceptualization of (15), a 
continuous presence of endogenous excitation 0 < η̄ < 1 inflates volatility above its exogenously justified level. 
The variance of the price process is furthermore additively decomposed into an “efficient” variance, solely driven 
by exogenous price fluctuations I(t), and an “excess” volatility. This excess volatility is generated by endogenous 
feedback effects that follow as responses to exogenous shocks, as made clear by the convolution between ψ and I 
that determines the endogenous excess volatility. We finally note that in fact the full distribution of v(t) and not 
only its first moment depends on the distribution of �(t) . This distribution was investigated in detail in52–54 and 
exhibits a non-trivial scaling behavior, depending on µ , η̄ and the average time scale of the memory kernel h.

As shown in Supplementary Information online, section 4, we can compute a bias-corrected estimator of the 
integrated variance from (14) as

where we use empirical averages of the observed squared returns to estimate m̄ . An estimate of the exogenous 
variance follows directly from (15) as

Finally, we can construct an estimate for the endogenous excess variance by taking the difference between 
the overall integrated variance (16) and the estimate of the exogenous variance as

Excess volatility in exchange rates and equity futures
We apply the presented methodology to high-frequency data from two major financial markets, the foreign 
exchange market and the equity futures market. For the former, we consider the exchange rate of the Euro (EUR) 
against the US-Dollar (USD), which is the most actively traded currency pair globally, and we use one year (2016) 
of data obtained from its primary interbank trading platform, Electronic Broking Services (EBS). For the equity 
futures market, we use three months of data from 2019 on the E-mini S&P 500 futures contract, which is one of 
the most actively traded securities in the world, exclusively on the Chicago Mercantile Exchange (CME). More 
information on the data sets and their pre-processing can be found in the Supplementary Information online, 
section 5. The model is calibrated to the data on a daily basis, so that t ∈ [0,T] , for T corresponding to one day.

Results.  As can be seen from the distribution of the parameter estimates of the epidemic model in Fig. 2, 
the key control parameter of the model η̄ is remarkably stable over time, varying in a range of ≈ 0.1 around the 
respective daily means. These means are ≈ 0.6 for the EUR/USD exchange rate and ≈ 0.8 for the E-mini futures 

(12)�(t) = µ(t)+

∫ t

0
η(s)h(t − s)dN(s) = µ(t)+

∑
j:tj<t

η(tj)h(t − tj).

(13)σ 2
X(t) = m̄�(t)− c(t),

(14)v(t) = m̄�(t)− C(t),

(15)E[v(t)] = (m̄− σ 2
e )[I(t)+ ψ ∗ I(t)],

(16)v̂(t) = m̄�̂(t)− N(t)σ 2
e ,

(17)v̂µ(t) = (m̄− σ 2
e )Î(t).

(18)v̂φ(t) = v̂(t)− v̂µ(t).
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contract. Based on our calibrations, the system underlying prices is thus highly endogenous, but subcritical, in 
full agreement with previous studies33,35,36,55. According to the branching ratio estimates, endogenous feedback 
processes play a more important role for equity futures volatility than for foreign exchange at the daily scale. This 
seems intuitive given that currencies are by their nature more exposed to a constant flow of international news. 
In support of our methodology to disentangle exogenous from endogenous activity, we also find that spikes in 
the average exogenous intensity �µ� = I(t)/T coincide with days with clear exogenous shocks, such as the US 
presidential election 2016, or the day of the Brexit referendum. Moreover, as can be seen from Fig. 3, our results 
suggest that spikes in the volatility in the sample are attributed to spikes in the exogenous volatility component, 
which then get amplified by a steady presence of feedback mechanisms. For example, on the day following the 
Brexit referendum (June 24, 2016), the exogenous volatility spikes dramatically from levels around 5% (annual-
ized) to around 25%, while the endogenous excess volatility share remains mostly unchanged. This observation 
is in excellent agreement with the exogenous nature of the event and a similar observation also applies e.g. to 
the day of the US elections in November 2016.In order to assess the effectiveness of our bias correction method, 
Fig. 3 also compares (16) with a bipower variation estimator of the integrated variance57. We find that, for the 
EUR/USD exchange rate, where the estimated observation error is small(er) and exhibits less serial dependence 
(see Supplementary Information online, section 6. for estimates of the observation error), the bipower variation 
estimator and v̂(t) agree remarkably well on the daily volatility. For the E-mini data, where observation errors are 
larger and more complex, our estimator appears to yield higher estimates than the bipower variation reference.

Our results thus suggest that endogenous feedback at even the smallest time scales (the characteristic time 
scales of the endogenous responses are estimated to be of the order of milliseconds) can be responsible for 
significantly inflated volatility at the macroscopic (daily) scale. In other words, behaviors of agents at very short 
time scales that are completely unrelated to any change in information about the fundamental value of the asset 
inflate long-term volatility to the point where it can be far from the fundamental volatility. This effect might even 
be amplified further by feedback mechanisms that operate at longer time scales. As support for our theory, we 
remark that the magnitude of excess volatility predicted based on our calibrations is in line with the magnitude 
that e.g. Shiller deduced in his seminal contribution14. Our estimates of the branching ratio for the S&P 500 
E-mini futures contract of η̄ ≈ 0.8 suggest a total volatility that is inflated by a factor of 1/(1− η̄) ≈ 5 compared 
to the exogenously justified volatility. In14, the volatility of the S&P 500 is found to be five to thirteen times 
too high to be attributed to new information on the fundamental value. Since our approach neglects potential 
endogenous effects at time scales above one day, it is unsurprising that our estimates of the excess volatility are 
at the lower end of this range. Moreover, recent reappraisals59 of Shiller’s original analysis indicate that S&P 500 
excess volatility might be one-third lower when estimated on samples as recent as ours, bringing the estimate 
even closer to our own results. For exchange rates, our theory predicts magnitudes of the amplification effects 
that are in excellent agreement with models that explicitly incorporate the dynamics of fundamental values. E.g. 
in60 it is shown that economic fundamentals predict monthly average absolute changes in the EUR/USD exchange 
rate that are lower by a factor of 2.3 compared to what is observed. Our own estimates with η̄ ≈ 0.6 suggest that 
volatility in the EUR/USD exchange rate is inflated by a factor of 2.5. We finally also note that previous estimates 
for the reflexivity of other financial markets, such as fixed income futures61 or cryptocurrencies61,62, suggest that 
our theory and conclusions with respect to the generating mechanism for excess volatility apply very broadly.

Figure 2.   Shows histograms of (daily) parameter estimates of the epidemic model (12). The top row is for the 
EUR/USD exchange rate and the bottom row for the E-mini futures contract. Shown are, from left to right, the 
average exogenous intensity �µ� = T−1

∫ T
0
µ(s)ds , the branching ratio η̄ , the characteristic time scale of the 

memory kernel τ0 (in seconds) and its tail index α , cf. (8). We note that the bimodal shape of the histogram 
of τ0 for the EUR/USD is the signature of a regime-change in the way EBS was disseminating market data to 
participants56, and provides evidence for the ability of the epidemic model to capture low-level characteristics of 
market activity.
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Signatures of market inefficiency.  Because our estimation scheme learns a probabilistic version of the 
branching structure of the epidemic model underlying price fluctuations, we are also able to compute estimates 
for the quantities R1

j  , describing the number of first-generation events triggered independently by some mother 
event at tj in the epidemic cascade. The latent fertilities η(tj) from (12) are hereby the means of the distributions 
of the realized quantities R1

j  . Estimating the R1
j  thus allows one to distinguish events that had no direct offspring – 

either intrinsically due to zero fertility or as a result of randomness – and which events triggered some response. 
Here we propose that the share of points in some time interval without any apparent offspring can provide a 
quantitative diagnostic of the degree of efficiency of the market within this interval. This metric decreases with 
stronger endogenous feedback effects, as measured by the (instantaneous) branching ratio, i.e. the local mean 
of the fertilities.

Why a larger share of triggering events can be interpreted as an inefficiency of the system deserves some 
further explanation. A particular property of the epidemic model (12) is that its convergence time after an 
exogenous shock, i.e. the time it takes for the cascade of responses to die out, is proportional to (1− η̄)−1 . As 
such, the agents in the market take longer and longer to digest some unanticipated news (an exogenous event) 
as more and more price adjustments produce some reaction in the form of other price fluctuations. The initial 
exogenous price fluctuation thus gets less and less efficiently processed by the system as the share of trigger-
ing events increases. The convergence time of the system finally becomes asymptotically long when the system 
approaches a state where all events trigger another event (a “critical slowing down”)63. At this stage—in other 
words, when η̄ → 1—the variance of the event rate also diverges (the “variance of the variance” in our setup). Also 
the susceptibility of the system, i.e. the response strength to an external perturbation, diverges hyperbolically64 

Figure 3.   Shows daily estimates of the endogenous excess variance share ( 1− v̂µ/v̂ ) on the left axis. Time 
series of annualized, integrated volatility estimates are plotted on the right axis. The red line indicates the overall 
volatility estimate according to (16), the green line is an exogenous volatility estimate (17) and the blue line a 
jump-robust bipower variation estimator57 BV. The shaded areas are asymptotic 95% confidence intervals for 
BV, indicating good agreement between the estimator (16) and the bipower variation reference. The confidence 
intervals are computed as BV ± z0.975 ×

√
Q̂/M , where Q̂ is a realized tri-power quarticity estimator58 for the 

integrated quarticity, based on M 5-minute returns, and z0.975 is the normal inverse cumulative distribution 
function evaluated at 0.975. All volatility measures have been annualized assuming 252 trading days. The 
samples are from year 2016 (EUR/USD) and 2019 (E-mini).
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and can thus lead to extreme fragility. In this critical regime, the diverging susceptibility of the system is accom-
panied by the emergence of special properties, such as diverging correlation length, scale-invariant avalanches, 
power law characterization of the relevant quantities of the system and the absence of a characteristic scale of 
the response to perturbations. All these properties indicate a growing propensity of the system to break down, 
which are intimately associated with or revealed by the excess volatility puzzle.

We can illustrate more specifically this interpretation of the share of non-triggering events as a measure of 
efficiency by looking at instances where markets clearly evolved in a highly irregular and arguably inefficient 
manner. Specifically, we look at two so-called “flash crashes”—i.e. extreme events where prices exhibit highly 
irregular and cascading dynamics. The two major events we choose are the flash crash of May 6, 2010 in the S&P 
500 E-mini equity futures market and an event in the GBP/USD currency pair on October 7, 2016. As can be 
seen from Fig. 4, at the trough of the two crashes, 80–90% of all events produced some offspring according to 
our estimates. The price dynamics are thus to be classified as highly inefficient by this metric. Also the branching 
ratios at the time of the crashes are found to rise to (near-)criticality. We furthermore remark that the uncertainty 
in the rolling window estimate of the GBP/USD branching ratio increases drastically, well before the actual crash. 
Shifts in the variance of state variables due to phase instability are well-known to serve as an early-warning 
signal of phase transitions in complex systems65,66, indicating that indeed the market approached such a transi-
tion during the crash. The uncovered inefficiency is mirrored in the time-varying estimates of the endogenous 
excess volatility. During both events, this excess volatility makes up almost 100% of the overall volatility. The 
decomposition we perform here thus suggests that there was a clear breakdown in market efficiency at the time 
of the flash crashes, which led to an excessive divergence in the volatility of price fluctuations as a consequence 
of destabilizing endogenous feedback effects.

Discussion
Based on an epidemic model describing the cascade of reactions to price fluctuations, we have constructed a 
decomposition of financial volatility into an efficient exogenous component and an inefficient excess component. 
The latter is hereby characterized through self-referential behavior of the agents producing observed price fluc-
tuations. We have shown that, in foreign exchange and equity futures markets, this endogenously induced excess 
volatility is substantial and appears to be largely stable at longer time scales. Noise amplification by endogenous 
feedback thus provides an asset- and market-independent explanation for the famous excess volatility puzzle14.

It is worth stressing the parsimony of our theory and approach. With only minimal ingredients and without 
relying on particular and unique economic generating mechanisms usually considered to explain excess vola-
tility—such as competitive interactions between market participants in the presence of noisy information67, 
the possibility of rare disasters68, or the irrationality of financial analysts’ expectations69—our theory predicts 
magnitudes of excess volatility which are remarkably close to what the literature has documented in the past. 
According to our theory, the explanation for the excess volatility puzzle is much simpler than assumed so far: it 
is a direct consequence of the endogeneity, or reflexivity, of markets and their participants.

Figure 4.   Shows an intraday decomposition of the integrated volatility for two extreme events, computed on 
overlapping rolling windows of 30 min length and 15 min step size. The left panel shows this decomposition for 
the E-mini flash crash and the right panel for the crash in the GBP/USD exchange rate. Both events were also 
analyzed in detail in61. Each panel shows in the top row the price evolution in the sample. The middle row shows 
the endogenous ( ̂vφ from (18)), exogenous ( ̂vµ from (17)) and overall ( ̂v from (16)) volatility estimates. Also 
plotted is a bipower variation estimator. The bottom rows plot the exogenous share of volatility according to the 
model ( 

√
v̂µ/

√
v̂ ). Also plotted is a time-varying estimate of the branching ratio η̄ , obtained by averaging the R1

j  
within the rolling window, and an estimate for the share of points without offspring π0 = P[R1 < 10−4] , called 
“degree of efficiency”. The vertical lines indicate 95% confidence intervals for the respective quantities, obtained 
by bootstrap resampling the R1

j  1000 times within each interval.
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We add to the literature in a fundamental manner by providing a microscopic generating mechanism underly-
ing previous studies of excess volatility. For example, typical econometric studies of the phenomenon rely on the 
ARCH70/GARCH71 families72 of processes. While primarily being thought of as statistical tools, these processes 
intrinsically describe endogenous, or reflexive, processes. However, they are coarse-grained models of volatility. 
As a consequence, they do not take into account the discrete and irregularly spaced nature of price fluctuations. 
We argue that this is a crucial shortcoming as it neglects information on the very mechanism that is responsi-
ble for excess volatility: reflexive interactions of (human and machine) agents. These interaction processes are 
encoded in the times between market events and captured through our point process approach. Using very 
general forms of GARCH processes, one finds that S&P 500 volatility is a factor of 5 higher than the baseline 
(exogenous) volatility73—in excellent agreement with our estimates. Our results thus give a novel, microscopic 
interpretation of ARCH-type feedback effects in terms of the noise-amplifying behaviors of financial agents, 
which lead to excess volatility.

Using our more fine-grained approach, we have also documented that the endogenous excess volatility can 
vary strongly at shorter, intraday scales, leading to major temporary inefficiencies. Because typical econometric 
volatility studies using coarse-grained processes by construction impose a minimum time scale that is too large 
to capture such dynamics, they are also “blind” to these short-term effects. We have argued that these effects are 
crucial as they are fingerprints of the endogenous nature of excess volatility and should thus be considered with 
great detail. In particular, we find for example that the bursts in volatility experienced during the flash crashes in 
the E-mini futures contract on May 6, 2010, and the GBP/USD exchange rate on October 7, 2016, were almost 
entirely due to endogenous feedback loops inflating this excess volatility component, indicating a significant 
short-term breakdown of market efficiency.

The finding that noise amplification from endogenous feedback appears to be a generating mechanism for 
market inefficiencies also bears consequences for system and policy design. In particular, preventive measures and 
interventions should attempt to identify the relevant feedback mechanisms and then actively break the feedback 
loops that are causing the undesired inefficiencies. Typical measures aiming to increase resiliency to extreme 
events by increasing the capacity of institutions/agents to absorb the resulting shocks, e.g. through capital buffers 
or margins, are ineffective tools in endogenously arising crises.

Several avenues exist to improve upon the presented formalism in future work. First, it is well documented 
that volatility obeys non-trivial multifractal scaling27. The affine approximation in (12) neglects such non-linear 
phenomena. One way to account more comprehensively for empirical characteristics of volatility is to intro-
duce an exponential non-linearity54,74,75 into the conditional intensity (12). Such a fast-accelerating, non-linear 
intensity can in particular also be expected to provide a better explanation for observed extreme events than the 
affine forms considered here. Future work in this direction can both draw on and inform other scientific fields, 
for example the study of stochastic spiking of neurons in computational biology76, where such exponential-affine 
intensities are relevant on both theoretical and empirical grounds77,78. A second, even more general avenue of 
improvement is to discretize the integral of threshold exceedence intensities in (6) and devise separate point 
process models for each threshold. These intensities can even interact, e.g. cross-excite from large to small return 
magnitudes, reminiscent of cascade models of financial volatility79,80, but expressed in the domain of squared 
returns.

Finally, while our analysis has focused on financial systems, with the achievement of providing a powerful 
explanation for the excess volatility puzzle, the endo-exo approach followed here can also be very useful in other 
fields. A key insight of complex systems theory is precisely that apparently different and unrelated systems share 
underlying universal dynamics. Given that endogenous and exogenous signatures have been observed in many 
different complex systems, we hypothesize that the principle of feedback at the micro (agent) level propagating 
to excessively volatile macroscopic (collective) behavior is generically present in systems other than financial 
markets.

Data availibility
The data from EBS that support the findings of this study can be purchased from the CME Group (https://​www.​
cmegr​oup.​com/​tradi​ng/​market-​tech-​and-​data-​servi​ces/​ebs/​data-​analy​tics.​html). Tick data for the E-mini futures 
contract as used in this study can be purchased from Refinitiv Tick History (https://​www.​refin​itiv.​com/​en/​market-​
data/​data-​feeds/​tick-​histo​ry) or TickData.com (https://​www.​tickd​ata.​com/). Restrictions apply to the availability 
of these data, which were used under license for the current study, and so cannot be shared directly by the authors.
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