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Constrained quantum optimization 
for extractive summarization 
on a trapped‑ion quantum 
computer
Pradeep Niroula1,2,3,4, Ruslan Shaydulin1,4*, Romina Yalovetzky1,4, Pierre Minssen1, 
Dylan Herman1, Shaohan Hu1 & Marco Pistoia1

Realizing the potential of near-term quantum computers to solve industry-relevant constrained-
optimization problems is a promising path to quantum advantage. In this work, we consider the 
extractive summarization constrained-optimization problem and demonstrate the largest-to-date 
execution of a quantum optimization algorithm that natively preserves constraints on quantum 
hardware. We report results with the Quantum Alternating Operator Ansatz algorithm with a 
Hamming-weight-preserving XY mixer (XY-QAOA) on trapped-ion quantum computer. We successfully 
execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using 
up to 20 qubits and a two-qubit gate depth of up to 159. We demonstrate the necessity of directly 
encoding the constraints into the quantum circuit by showing the trade-off between the in-constraint 
probability and the quality of the solution that is implicit if unconstrained quantum optimization 
methods are used. We show that this trade-off makes choosing good parameters difficult in general. 
We compare XY-QAOA to the Layer Variational Quantum Eigensolver algorithm, which has a highly 
expressive constant-depth circuit, and the Quantum Approximate Optimization Algorithm. We discuss 
the respective trade-offs of the algorithms and implications for their execution on near-term quantum 
hardware.

Recent advances in quantum hardware1–3 open the path for practical applications of quantum algorithms. A 
particularly promising target application domain is combinatorial optimization. Problems in this space are 
prominent in many industrial sectors, such as logistics4, supply-chain design5, drug discovery6, and finance7. 
However, many of the most promising quantum algorithms for optimization are heuristic and lack provable 
performance guarantees. Moreover, limited capabilities of near-term quantum computers further constrain the 
power of such algorithms to address practically-relevant problems. Therefore, it is crucial to perform thorough 
evaluations of promising quantum algorithms on state-of-the-art hardware to assess their potential to provide 
quantum advantage in optimization.

When conducting such evaluations, the choice of the target optimization problem is of particular importance. 
Many well-studied theoretical problems—such as maximum cut (MaxCut)8–14, maximum independent set15 
and maximum k-colorable subgraph16—have been used to evaluate the performance of quantum optimization 
algorithms. These problems have several advantages: they are well-characterized theoretically, have strong hard-
ness guarantees, and are easy to map to quantum hardware. At the same time, however, they do not correspond 
directly to the practically-relevant problems that are solved daily in an industrial setting.

In this work, we consider the problem of text summarization, where the goal is to generate a shortened 
representation of an input document without altering its original meaning. This process is commonly used to 
produce summaries of news articles17 and voluminous legal documents18. Specifically, we focus on a version 
of text summarization known as extractive summarization (ES), wherein the summary is produced by select-
ing sentences verbatim from the original text. In our experiments, we map the ES problem to an NP-hard 
constrained-optimization problem using the formulation introduced by McDonald19. The resulting optimiza-
tion problem is then solved on a quantum computer. We impose a constraint on the number of sentences in the 
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summary, which is enforced using a penalty term in the objective, or natively by limiting the quantum evolution 
to a constraint-restricted subspace.

ES is a particularly interesting problem to consider since it has challenges that are similar to those of many 
other industrially-relevant use cases. First, it is constrained, making it necessary to either restrict the quantum 
evolution to the corresponding subspace, or introduce large penalty terms into the formulation. Second, it lacks 
simple structures, such as symmetries20. Third, unlike commonly considered toy problems, such as MaxCut, the 
coefficients in its objective are not necessarily integers, which can make the optimization of quantum algorithm 
parameters hard21.

In this paper, we present experimental and numerical results demonstrating the challenges associated with 
solving constrained-optimization problems with near-term quantum computers. Our contribution is twofold.

First, we demonstrate experimental results showing successful execution of the Quantum Alternating Opera-
tor Ansatz algorithm with a Hamming-weight-preserving XY mixer (XY-QAOA)22,23 on the quantum processor 
Quantinuum H1-1. We use all 20 qubits of H1-1 and execute circuits with two-qubit gate depth of up to 159 and 
two-qubit gate count of up to 765, which is the largest such demonstration to date. We additionally report results 
from the execution of the Layer Variational Quantum Eigensolver (L-VQE)24, which is a recently-introduced 
hardware-efficient variational algorithm for optimization. We obtain approximation ratios of up to 92.1% and 
in-constraint probability of up 91.4% on the H1-1 device.

Second, we motivate our algorithm choice by highlighting the trade-off between the quality of the solution 
and the in-constraint probability which is implicit in applying unconstrained near-term quantum optimiza-
tion algorithms to constrained problems. This trade-off suggests the need to carefully engineer the parameter 
optimization strategy, which is difficult in general. We show how this trade-off can be avoided by either using a 
sufficiently expressive circuits such as L-VQE (at the cost of the increased difficulty of parameter optimization) 
or, more naturally, by encoding the constraints directly into the circuits as in the case of XY-QAOA.

The remainder of this paper is organized as follows. Section “Problem description” introduces the quantum 
algorithms used. Section “Extractive summarization as an optimization problem” describes how the ES problem 
is formulated as an optimization problem. Section “Methods” details the methodology we adopted to generate 
the optimization problem instances and solve them on real quantum hardware. Section “Results” illustrates the 
experimental results we obtained by executing the algorithms and discusses the advantages and downsides of 
them. Section “Related work” discusses previous hardware demonstrations. Finally, “Discussion” summarizes our 
findings and their significance. Additional technical details on the algorithms, hyperparameter and ES problem 
are presented in the Appendix at the end of the paper.

Problem description
For a given objective function f defined on the N-dimensional Boolean cube and a set of feasible solutions 
F ⊆ {0, 1}N , consider the problem of finding a binary string x ∈ F that maximizes it:

The set of feasible solutions F is typically given by constraints of the form g(x) = 0 or g(x) ≤ 0 . A binary 
string x ∈ F is said to be “in-constraint”. Let C ∈ C

2N×2N denote the Hamiltonian (Hermitian operator) encod-
ing f on qubits. This operator is diagonal in the computational basis ( C = diag(f (x)) ) and is defined by its action 
on the computational basis: C|x� = f (x)|x�,∀x ∈ {0, 1}N.

QAOA25,26 solves the problem (1) by preparing a parameterized quantum state

where xj denotes a single-qubit Pauli x acting on qubit j and the initial state |+�⊗N is a uniform superposition 
over all computational basis states. The parameters β , γ are chosen using a classical algorithm, typically an 
optimization routine27, with the goal of maximizing the expected objective value of QAOA state-measurement 
outcomes. The depth of a QAOA circuit is controlled by a free parameter p. In the limit p → ∞ , QAOA can 
solve the problem exactly via adiabatic evolution25. Additionally, there exist lower bounds on the performance 
of QAOA when solving MaxCut in finite depth12,28, and QAOA achieves performance competitive with best-
known classical algorithms on the Sherrington-Kirkpatrick model29 in infinite-size limit and finite depth30,31.

In the remainder of this paper, XY-QAOA refers to the Quantum Alternating Operator Ansatz algorithm with 
a Hamming-weight-preserving XY mixer22, whereas QAOA indicates the Quantum Approximate Optimization 
Algorithm25.

L-VQE24 solves problem (1) by preparing a parameterized state:

where U is a circuit composed of linear nearest-neighbor cnot gates and single-qubit rotations, V is a tensor 
product of single-qubit rotations and |0� is the N-qubit vacuum state. Due to the structure of the circuit, the 
two-qubit gate depth is very low ( 4× p for a circuit with p layers). We refer interested readers to Ref.24 for the 
precise definition of the circuit.

While QAOA and L-VQE can tackle constrained-optimization problems in which the constraint is enforced 
by a penalty term, the output of these algorithms is not guaranteed to satisfy the constraint. Moreover, a penalty 
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term introduces a trade-off between the in-constraint probability and the quality of the in-constraint solution, 
as discussed in “Quantum circuit needs to preserve constraints”. The Quantum Alternating Operator Ansatz 
algorithm22 overcomes this limitation by using a parameterized circuit which limits the quantum evolution to a 
constraint-preserving subspace. The general form of this circuit is given by

where UC is the phase operator, which encodes the objective and is diagonal in the computational basis, UM is 
a non-diagonal mixer operator, and |s� is some initial state. QAOA circuit can be recovered as a special case by 
setting UM(βj) = e−iβj

∑N
k=1 xk , UC(γj) = e−iγjC and |s� = |+�⊗N . In this paper, we focus in particular on the 

Hamming-weight constraint of the form 
∑N

j=1 xj = M , which in our case corresponds to fixing the size of the 
summary. While many variations of this algorithm exist22, we only consider the XY-QAOA version, which lends 
itself well to implementation on near-term hardware. We let the initial state be the uniform superposition over 
all binary strings with Hamming weight M, UC(γj) = e−iγjC and Uxy

M (βj) =
∏N

k=1 e
−i

βj
2 (xkxk+1+ykyk+1)23. Given 

that 
∑N

k=1 xkxk+1 + ykyk+1 commutes with 
∑N

k=1 zi , the evolution produced by the resulting circuit is restricted 
to the span of computational basis states with Hamming weight M, as desired.

Extractive summarization as an optimization problem.  Extractive summarization (ES) is an inter-
esting problem to evaluate the performance of quantum optimization algorithms due to its practical importance 
and complex structure. The goal of ES is to pick a subset of the sentences present in a large document to form a 
smaller document such that this subset preserves the information content in the original document, i.e., sum-
marizes it. While many approaches to solving ES exist (see e.g.32–35), in this work we focus on a particular for-
mulation of ES as an optimization problem. Specifically, we consider the problem of maximizing the centrality 
and minimizing the redundancy of the sentences in the summary under the constraint that the total number of 
sentences in the summary is fixed. This formulation of ES has been proposed by R. McDonald and shown to be 
NP-hard to solve exactly19.

We now introduce the necessary notation and formally define the problem. An ES algorithm maps a 
document of N sentences to a summary of M < N  sentences. Let the sentences be denoted by integers 
i ∈ [N] := {0, 1, . . .N − 1} according to the order in which they appear in the document. An extractive sum-
mary is a vector x ∈ {0, 1}N , where xi = 1 if and only if sentence i is included in the summary text associated with 
x . The summary should identify sentences that are central, meaning important, to the document. The salience 
of a sentence is measured with some centrality which is a map µ : [N] −→ R satisfying the following property: 
µ(i) > µ(j) if and only if sentence i contains more information about the document than j. At the same time, 
to keep the summary short, it is desirable to ensure that the sentences in the summary are not redundant. The 
overlap in information content between two sentences is measured with pairwise similarity which is a sym-
metric map β : [N] × [N] −→ R that satisfies the following property: β(i, j) > β(i, k) if and only if sentence j is 
more similar to i than k is to sentence i. We discuss the particular choices of measures of sentence centrality and 
pairwise similarity in Appendix 1.

The extractive summarization is formulated as the following optimization problem19:

where the parameter � controls how the inclusion of similar sentences in the summary is penalized. The objec-
tive of this maximization problem is to increase the information content of the sentences in the summary while 
ensuring that the total pairwise similarity between sentences is low, relative to � . Refer to Appendix 5 that shows 
how this parameter affects the quality of the summaries obtained.

This problem can be solved directly by a quantum algorithm that can preserve constraints. On the other 
hand, to solve this problem using an unconstrained-optimization algorithm, we must convert this problem to 
an unconstrained one by adding a penalty term to enforce the constraint. The penalty term is minimized when 
exactly M sentences are selected. This term is weighted with the parameter Ŵ . Including the constraint on the 
lengths of summaries, the optimization problem becomes the following:

which can be simplified further by ignoring constant terms to get a quadratic objective:
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Methods
To generate the optimization problems to be solved, we use articles from the CNN/DailyMail dataset36. This 
dataset contains just over 300 k unique news articles written by journalists at CNN and the Daily Mail in English. 
The optimization-problem instances consist of two sets of 10 instances: one set with N = 20 and a required sum-
mary length of M = 8 and another set with N = 14 and a required summary length of M = 8 . We use sentence 
embeddings produced by BERT37 to compute similarities, and tf-idf38 to compute centralities, both of which are 
discussed in detail in Appendix 1.

To quantify the quality of the solution for the optimization problem, we report the approximation ratio given 
by

where fobserved is the objective value for the solution produced by a given algorithm, fmax is the maximum value 
of the objective function and fmin the minimum. The maximum and minimum are computed over all possible in-
constraint solutions. For quantum algorithms, fobserved is computed as the average value of the objective function 
over all in-constraint samples. We additionally report the probability of the solution being in-constraint, which 
for the experimental results is estimated as the ratio of in-constraint samples to the total number of samples. In 
practice, the running time of the algorithm scales inversely proportionally to the in-constraint probability due 
to the need to obtain at least one in-constraint sample.

For unconstrained quantum optimization solvers, the cost function to maximize contains a penalty term 
with weight Ŵ to constrain the number of sentences in the summary to be M (last term in (6)). The value of this 
hyperparameter Ŵ was chosen to ensure the value of the cost in (6) corresponding to in-constraint binary strings 
is greater than the cost corresponding to out-of-constraint binary strings. For each article, after having calculated 
the similarity and centrality measures, we set Ŵ =

∑N−1
i=0 µ(i)+ �

∑

i �=j β(i, j) , where � = 0.075 . See Appendix 
5 for additional numerical experiments showing the impact of the value of � on the performance.

We execute the QAOA, XY-QAOA and L-VQE using 14 and 20 qubits respectively. We use one layer for QAOA 
and XY-QAOA ( p = 1 ) and for L-VQE we use p = 1 for 14-qubit problems and p = 2 for 20-qubit problems. 
We optimize the parameters in noiseless simulation and then execute the circuits with optimized parameters 
on hardware with 2000 shots. We use Qiskit39 for circuit manipulation and noiseless simulation. For the hard-
ware experiments, we transpile and optimize the circuits to H1-1’s native gate set using Quantinuum’s t |ket� 
transpiler40. For comparison, we also run the quantum algorithms on an emulator provided by Quantinuum, 
which approximates the noise of H1-1.

For the XY-QAOA circuit, a significant part of the two-qubit gate depth comes from the circuit preparing the 
initial state, which is a uniform superposition of all in-constraint states (Dicke state). To obtain circuits that are 
shallow enough to be executable on hardware, we leverage recently developed techniques for the short-depth 
Dicke-state preparation41–43. Specifically, we use the divide-and-conquer approach43 to generate circuits targeting 
a device with an all-to-all connectivity.

Results
We now present experimental results obtained in simulation and on the Quantinuum H1-1 quantum proces-
sor. We show the largest to date demonstration of constrained quantum optimization on gate-based quantum 
computers, using up to 20 qubits and 765 native two-qubit gates (see “Related work” for a review of previous 
demonstrations). Note that in the results presented below, we do not perform any error mitigation for the results 
obtained from hardware or noisy simulations. The specifications of the H1-1 processor are given in Appendix 3.

As previously discussed, we use three quantum optimization algorithms to solve a constrained-optimization 
problem with the eventual goal of generating document summaries. The optimization algorithms we use are 
QAOA, L-VQE and XY-QAOA. See “Problem description” for the definitions and discussion of the algorithms, 
and Appendix 2 for the implementation details. All the statistics we report are computed over 10 problem 
instances for each number of qubits, with the exception of XY-QAOA on H1-1 where only three 14-qubit and 
three 20-qubit instances are solved due to the high circuit depth and correspondingly high running time on 
trapped-ion hardware. “Random” and “Random in-constraint” always refers to statistics computed over all binary 
strings and all in-constraint binary strings respectively. This is equivalent to computing them with respect to 
uniform random distribution over corresponding sets.

Experiments on hardware.  In Fig. 1, we present the approximation ratios and the in-constraint probabili-
ties for the three algorithms obtained from the execution in a noiseless simulator, with approximated noise in 
the emulator of H1-1 and on the real H1-1 device. For comparison, we also present the expected approximation 
ratio of a random feasible solution. We observe that all the approximation ratios obtained, including those from 
largest circuit executions on hardware, significantly improve upon random guess. Additionally, we observe that 
the results on hardware are on average at least as good as those obtained from the emulator, making us confident 
that the emulator gives a good lower bound on the solution quality that can be expected on hardware.

(7)max
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Examining Fig.  1 makes apparent the relative advantages and limitations of the three algorithms we consider. 
We begin by noting that QAOA gives a relatively high approximation ratio, but a very low in-constraint prob-
ability. This is due to the QAOA parameters being chosen to trade-off the two metrics of success; we discuss 
this issue in detail in “Quantum circuit needs to preserve constraints” below. Here we simply note that the low 
in-constraint probability of QAOA makes the high approximation ratio less significant. Combined with the 
complexity of parameter setting arising from the trade-off, this means that QAOA is not a good algorithm for 
the problem we consider here despite having a relatively high approximation ratio. This trade-off is avoided by 
L-VQE and XY-QAOA in two different ways.

L-VQE uses a very expressive parameterized circuit that can in principle solve the problem exactly with no 
two-qubit gates, just by optimizing the parameters of the initial single-qubit-gate layer V(θ0) . At the same time, 
the expressiveness of L-VQE circuit makes the parameters hard to optimize, both due to their high number and 
due to the gradients vanishing as the number of qubits grows in some cases44,45. As we consider modestly sized 
problems in this work, we are able to optimize the parameters and obtain solutions with very high approxima-
tion ratio and in-constraint probability. However, as the number of qubits grows, this will become increasingly 
infeasible.

XY-QAOA natively encodes the constraints by restricting the quantum evolution to the subspace equal to 
the span of the computational basis states of Hamming weight M. This leads to an in-constraint probability of 
one and a high approximation ratio, if no noise is present. At the same time, XY-QAOA requires deeper circuits 
as compared to QAOA and L-VQE. This is due to the higher gate count cost of the XY-QAOA mixer operator 
and the initial state preparation. The two-qubit gate counts and two-qubit gate depths of the executed circuits 
are given in Table 1.

The unconstrained QAOA uses a mixer unitary which is a product of single-qubit rotations, i.e., 
UM(βj) =

∏N
k=1 e

−iβjxk , where N is the number of qubits. For most near-term circuit architectures, including 
H1-1, the single qubit gates are relatively less noisy than the two-qubit entangling gates46,47. As a result, the mixer 
unitary does not add much noise to the evolution. Each time-step of QAOA, therefore, has at most N(N − 1)/2 
entangling gates, all of which come from the pairwise interaction in the problem Hamiltonian. On the other 
hand, XY-QAOA uses a more complex mixer operator, which preserves the Hamming weight of the states it acts 

on. This operator is defined as: UXY
M (βj) =

∏N
k=1 e

−i
βj
2 (xkxk+1+ykyk+1) . It adds additional O(N) gates in each layer 

of QAOA circuit as it requires entangling gates on all adjacent pairs.

Figure 1.   The approximation ratios (top) and in-constraint probabilities (bottom) obtained in the optimization 
of the instances on 14 (left) and 20 (right) qubits using different quantum optimization algorithms executed in a 
noiseless simulator, the Quantinuum H1-1 machine and its emulator. In each box plot, the box shows quartiles, 
the line is the median and the whiskers show minimum and maximum. Each plot is showing the statistics over 
10 problem instances, with the exception of XY-QAOA where only three 14-qubit and three 20-qubit runs have 
been executed due to high circuit depth. We observe that all results significantly improve on random guess. The 
in-constraint probability of QAOA is below random guess for 14 qubits due to the choice of parameters; see 
discussion in “Quantum circuit needs to preserve constraints”.
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The implementation of XY-QAOA requires preparing an initial state, which is a uniform superposition of 
all in-constraint states (Dicke state). This state is non-trivial to implement, as it requires a circuit with O(N) 
two-qubit gate depth41. This is in sharp contrast with the initial state used by QAOA or L-VQE, which requires 
no two-qubit gates to prepare. Therefore in XY-QAOA a significant cost is incurred before any optimization 
is performed. Figure 2 shows this by plotting the probabilities of sampling bitstrings with different Hamming 
weights from the output of the initial state preparation circuit and the full XY-QAOA circuit on the H1-1 device. 
Unlike the noiseless case, the initial state is not fully contained in the in-constraint subspace. At the same time, 
the noise is sufficiently low so that the XY-QAOA output distribution is still concentrated on the in-constraint 
subspace. Improved hardware fidelity would lead to more accurate initial state preparation and higher overall 
in-constraint probability.

Finally, we examine the impact of noise on the in-constraint probability of the output of all three algorithms. 
As discussed above, for our problem of text summarization, it is crucial that the Hamming weight of the output 
solution is constrained. Both the algorithm design and the hardware noise affect the in-constraint probability. In 
Fig.  3, we visualize this behavior for 20-qubit instances, with the analogous figure for 14 qubits given in Appen-
dix 2. Concretely, we plot the probability of obtaining a bitstring x with Hamming distance k to in-constraint 
bitstrings for each k ∈ {0, . . . ,N −M} . Hamming distance k means that at least k bitflips are required to trans-
form one bitstring into the other. We can see that as the noise is added, the in-constraint probability decreases 
and the output begins to include out-of-constraint bitstrings. Note that for the short L-VQE circuits, the amount 
of noise accumulated during the circuit execution is small, and only the bitstrings that are one or two bitflips 
away are included in the output. On the other hand, for deeper XY-QAOA circuits, bitstrings as far as 10 bitflips 
away are included. For QAOA, even the noiseless output includes primarily out-of-constraint bitstrings due to 
the choice of parameters.

Figure 2.   Hamming weight of the bitstrings sampled from the initial uniform superposition of in-constraint 
states (Dicke state) and a full XY-QAOA circuit. The in-constraint Hamming weight is highlighted in bold. 
Unlike the QAOA or L-VQE, in XY-QAOA a significant amount of noise is incurred in the initial state 
preparation step. Observe that the initial Dicke state, due to hardware noise, includes out-of-constraint states.

Figure 3.   The probability of sampling bitstrings with a given Hamming weight distance to the in-constraint 
subspace for 20 qubits. The Hamming weight distance is given by |wt(x)−M| , where wt(x) is the Hamming 
weight of x and M is the constraint value. The shaded background represents the distribution of Hamming 
weight distance for random bitstrings sampled from a uniform distribution. Note that the overlap with the 
in-constraint subspace is lower on hardware due to the presence of noise.
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Quantum circuit needs to preserve constraints.  As discussed above, the output distribution of QAOA 
circuits has a relatively small overlap with the in-constraint space even in the absence of noise. This is due to the 
trade-off between the in-constraint probability and the approximation ratio, which is implicit in the choice of the 
parameter optimization strategy. This trade-off is an important weakness of unconstrained quantum algorithms 
applied to constrained problems, necessitating the development and implementation of quantum algorithms 
that natively preserve constraints. In the QAOA experiments presented in Fig.  1, we choose the parameters with 
the goal of increasing the approximation ratio of in-constraint solutions at the expense of reduced in-constraint 
probability. We now examine this trade-off numerically.

We perform a grid search over the parameter space β , γ of a single-layer QAOA. In Fig.  4 we plot the Pareto 
frontier with respect to approximation ratio and in-constraint probability. Specifically, we plot the approxima-
tion ratios and in-constraint probabilities for QAOA with parameter values β , γ such that there do not exist 
parameters β̂ , γ̂ , which improve either of the metrics without decreasing the other. We plot such frontiers for 
all 20 instances considered.

This trade-off behavior is not specific to QAOA and indeed applies to all unconstrained quantum algorithms 
that are not expressive enough to solve the problem exactly. Examining the Pareto frontiers makes clear the chal-
lenge of choosing parameters for such algorithms. Whereas in this work we perform the full grid search and we 
may actually choose any point on the frontier for execution on hardware, in practice an objective function must 
be carefully designed to optimally trade-off the two objectives. This is hard in general. As an example, optimiz-
ing parameters with respect to (6) would lead to prioritizing the in-constraint probability. Figure 4c shows an 
example of an instance where this leads to approximation ratio equal to that of random guess.

One potential solution to this challenge is using a circuit that is sufficiently expressive to solve the problem 
exactly, such as the circuit used in L-VQE. However, such circuits by necessity would have many parameters that 
are hard to optimize. Additionally, in many cases they would suffer from gradients of the objective vanishing 
exponentially with the number of qubits (“barren plateaus”)45, making optimization impossible. Therefore the 
most practical solution is encoding constraints directly into the quantum circuit, as is the case for XY-QAOA.
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Figure 4.   Pareto frontier of QAOA parameters with respect to approximation ratio and the in-constraint 
probability for 14 (a) and 20 (b) qubits. Each color plots a different problem instance for a given number of 
qubits. When solving a constrained-optimization problem using QAOA, the parameter optimization strategy 
has to be tuned to arrive at the desired point on the Pareto frontier. Directly optimizing the objective (6) would 
lead to choosing the righmost point of the frontier, which in the case of the 20 qubit instance presented in (c) 
corresponds to approximation ratio equal to that of random guess. In (c), each dot corresponds to one value of 
β , γ from a grid search in parameter space. Thick dashed line shows the Pareto frontier and the thin dotted line 
marks the approximation ratio of a random solution. The red × marker indicates the parameters chosen for the 
experiments shown above.

Table 1.   Two-qubit gate depths (2Q depth) and two-qubit gate counts (2Q count) of the circuits executed on 
emulator and on the H1-1 device. The circuits were optimized using pytket40, and the optimized numbers are 
reported. Initial state preparation for QAOA and L-VQE requires no two-qubit gates.

Algorithm # qubits

Initial State Full Circuit

2Q depth 2Q count 2Q depth 2Q count

L-VQE
14 0 0 4 26

20 0 0 8 76

QAOA
14 0 0 50 182

20 0 0 74 380

XY-QAOA
14 68 185 114 393

20 95 347 159 765



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17171  | https://doi.org/10.1038/s41598-022-20853-w

www.nature.com/scientificreports/

Related work
In this work, we show the largest demonstration to date of constrained optimization on a gate-based quantum 
computer. We now briefly review the state-of-the-art, which we summarize in Table 2. We include the uncon-
strained-optimization demonstrations for completeness, and emphasize that the circuits used in this work are 
deeper than any quantum optimization circuits executed previously for any problem.

There have been various quantum hardware demonstrations of QAOA applied to unconstrained-optimization 
problems. Using Google’s “Sycamore” superconducting processor, Harrigan et al. 13 ran QAOA to find the ground 
states of Ising models that mapped to the 23-qubit Sycamore topology and Sherrington–Kirkpatrick models with 
17 vertices. Additionally, they solved MaxCut on 3-regular graphs with up to 22 vertices. Otterbach et al. solved 
MaxCut on a 19-vertex graph that obeys the hardware topology of Rigetti’s 19-qubit “Acorn” superconducting 
processor48. Lacroix et al. 49 executed QAOA, up to p = 6 , on a superconducting gate-based quantum computer 
to solve the exact-cover problem on at most seven vertices. The device supported two-qubit controlled arbitrary-
phase gates. This enhanced gate set resulted in a two-qubit-gate depth of 42. There have been other hardware 
demonstrations of solving unconstrained-optimization problems, with either lower qubit counts or shallower 
circuits14,51–59.

An important step in implementing XY-QAOA is the preparation of Dicke states. Aktar et al. 43, who devel-
oped the divide-and-conquer Dicke-state preparation approach used in our experiments, implemented their 
algorithm using up to six qubits on two IBM Q devices.

To the authors’ knowledge, there has only be one other demonstration of QAOA with constrained mixers 
and Dicke-state initialization on quantum hardware. This was done by Baker and Radha50 who solved problems 
using at most five qubits and p = 5 . They executed circuits using both the XY complete-graph mixer with Dicke-
state initialization and the XY ring mixer with initialization to a random in-constraint state. They utilized the 
Rigetti “Aspen-10” superconducting processor, five IBM Q superconducting processors, and the 11-qubit IonQ 
trapped-ion device. They reported that QAOA beat, with both the XY complete-graph mixer and XY ring mixer, 
random guess for up to three qubits and p = 5 on the Rigetti device. Lastly, their results on IonQ, for the XY ring 
mixer, beat random guess for up to three qubits and p = 4.

While there have been other hardware demonstrations of QAOA using alternative mixers to the transverse 
field, they were either not applied to hard-constrained problems or did not use an in-constraint initial state. For 
example, Golden et al. 60 solved six Ising problems on 10 IBM Q backends using QAOA with Grover mixers61. 
While Grover mixers can be used to incorporate hard constraints, the problems Golden et al. solved were uncon-
strained. Pelofske et al. 62 solved five Ising problems, still unconstrained, with QAOA using Grover mixers on 
seven IBM Q backends, Rigetti’s “Aspen-9” device, and the 11-qubit IonQ device. The instances required fewer 
than seven qubits. For a protein folding problem, Fingerhuth et al. 63 executed QAOA with an XY mixer using 
four qubits and p = 1 on Rigetti’s Acorn device. However, the initial state was a uniform superposition over all 
bitstrings, and thus the Hamming weight constraint was not obeyed.

Lastly, there have been very large-scale demonstrations of QAOA on analog quantum simulators. First, Pagano 
et al. 64 demonstrated QAOA on a trapped-ion analog quantum simulator using up to 40 qubits at p = 1 and 20 
qubits at p = 2 on unconstrained problems. Second Ebadi et al. 15 show an application of an analog quantum 
simulator, using QAOA, to maximum independent set (MIS) problems on graphs with up to 179 vertices. This 
variant of QAOA was performed by controlling the timing of global laser pulses applied to a 2D array of 289 
cold atoms. The global pulses induce Rydberg excitations, which result in a blockade effect that ensures that only 
independent sets are sampled. However, since these analog devices do not implement universal gate sets, the 
results are not directly comparable to ours.

Table 2.   Comparison of the hardware demonstrations shown in this work with previous hardware 
demonstrations of QAOA on gate-based devices. We only report experiments that outperformed random guess 
and either are similar in scale to ours in terms of circuit size or utilized hard constraints. All hard constraints 
are on the Hamming weight (H.W.C. in the table). The two-qubit-gate depth is missing from references where 
the depth was not reported and could not be estimated. We also report the topology of two-qubit interactions 
available o the hardware (“Connectivity” in the table) and whether error-mitigation techniques were applied 
(“Error Mit.”). Depth estimated from the circuit description in the paper.

References Year Hardware Connectivity N p 2q-gate depth Error Mit. H.W.C.

Unconstrained

48 2017 Superconducting Nearest neighbor 19 1 6 No –
49 2020 Superconducting Nearest neighbor 7 6 42 No –
13 2021 Superconducting Nearest neighbor 23 5 40

1 Yes –
13 2021 Superconducting Nearest neighbor 17 3 153 Yes –

Hard constraint

50 2022 Superconducting Nearest neighbor 3 5 – No 2
50 2022 Trapped ion All-to-all 3 4 – No 2

This work 2022 Trapped ion All-to-all 14 1 114 No 8

This work 2022 Trapped ion All-to-all 20 1 159 No 14
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Discussion
In this work, we present the largest to date demonstration of constrained optimization on quantum hardware. 
Our results demonstrate how algorithmic and hardware progress are bringing the prospect of quantum advantage 
in constrained optimization closer, which can be leveraged in many industries including finance65,66.

In our experiments on the 20-qubit Quantinuum H1-1 system, we observe that XY-QAOA with up to 20 
qubits provides results that are significantly better than random guess despite the circuit depth exceeding 100 
two-qubit gates. This progress can be clearly observed by comparing the size and the complexity of the circuits 
used in our experiments to the previous results discussed in “Related work” above. The results we present here 
were obtained with no error mitigation, which is not the case for many of the previous demonstrations. Our 
execution of complex circuits for constrained optimization benefits from the underlying hardware’s all-to-all 
connectivity, as the circuit depth would increase significantly if the circuit had to be compiled to a nearest-
neighbor architecture.

We additionally show the necessity of embedding the constraints directly into the quantum circuit being used. 
If the circuit does not preserve the constraints, the in-constraint probability and the quality of the in-constraint 
solution have to be traded-off against each other. This trade-off is hard to do in general. This observation further 
motivates our investigation of XY-QAOA on H1-1, and gives additional weight to our results. At the same time, 
we show that further advances are needed to reduce the hardware requirements of implementing such circuits 
and improve the fidelities of the hardware.

Data availability
The data presented in the paper is available at https://​doi.​org/​10.​5281/​zenodo.​68198​61.

Appendix 1: Details of the optimization problem formulation
The formulation of extractive summarization as an optimization problem requires a meaningful measure of 
centrality of sentences and similarity between two sentences. To calculate similarity, we use vector embeddings 
obtained from a neural language model37, specifically the Bidirectional Encoder Representations from Transform-
ers (BERT)67. Neural Transformers68 have resulted in many recent successes in various natural language process-
ing tasks69. We measure sentence similarity by computing the cosine similarity of BERT embeddings defined as

where vj · vi denotes the usual dot product, and � · �2 the ℓ2 norm. We refer the reader to the work done by 
Achananuparp et al. 70 for various techniques used to measure similarity.

For a measure of centrality, we use the tf-idf statistic38,71. In contrast to embeddings obtained from pre-trained 
language models like BERT, term frequency-inverse document frequency (tf-idf) is a technique of measuring the 
“salience” or “importance” of a word in a document by counting its occurence in the entire corpus. The tf-idf 
measure of a word is computed by multiplying a measure of term frequency (tf) with a measure of inverse docu-
ment frequency (idf). The tf is the proportion of a document, D, that contains the word w. The idf scales down 
the raw proportion based on the how frequently the word occurs across all documents. Mathematically, for a 
word w appearing in a sentence s of a document D,

where fw,S is the frequency of word w in S and N is the number of unique words in the document.
While the measure in (10) was defined for words, we need a similar measure defined for sentences. To define 

a tf-idf-based measure for sentences, we take the mean of the tf-idf values of the words in the sentence:

where nS is the length of the sentence S.

Appendix 2: Details of numerical studies
For each instance of the optimization problem, we evaluate QAOA for each of the values in the grid using 1000 
shots. In order to decide the best parameters for each optimization instance, we impose a threshold on the QAOA 
in-constraint ratio to be higher than 0.06 and we selected the γ ,β that maximize the expected approximation 
ratio. For all the instances, the value obtained was higher than the expected approximation ratio of a random 
feasible solution.

For L-VQE and XY-QAOA the parameters are optimized by running COBYLA72,73 from a fixed number of 
randomly chosen initial points. The number of initial points is 20 for L-VQE with 14 qubits, 5 for L-VQE with 5 
qubits and 10 for XY-QAOA for all qubit counts. We choose the parameters giving the best approximation ratio. n.
In the main text, we present the distribution of Hamming weight distances for optimization instances on 20 
qubits. For completeness, we present the same distribution for 14 qubits in Fig. 5. As it happens with 20 qubits, 
for algorithms with shallow circuits (L-VQE) the ideal distribution is concentrated around zero even when 
executed on hardware. Whereas XY-QAOA, an algorithm that natively preserve cardinality, when executed on 
noiseless simulation produces a distribution concentrated at k = 0 , when it is executed on the emulator and real 

(9)
vi · vj

�vi�2�vj�2
,

(10)
tf-idf(w, S,D) :=

(
fw,S

∑

w′∈S fw′ ,S

)

︸ ︷︷ ︸

tf (w,S)

×

(

log
N

|{S ∈ D : w ∈ S}|

)

︸ ︷︷ ︸

idf (w,D)

,

(11)tf-idf(S) :=
1

nS

∑

w∈S

tf-idf(w, S,D)
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hardware, it produces a much wider distribution and it is more similar to the random distribution. Notably, for 
QAOA, both in noiseless simulator and in emulator, the distribution is concentrated far away from k = 0 and it 
is even concentrated at a k higher that the center of the random distribution.

Appendix 3: Details of the H1‑1 quantum processor
The Quantinuum H1-1 Quantum Processor uses quantum charge-couple device architecture with five parallel 
gate zones in a linear trap. The quantum states are stored in hyperfine states of twenty 171Yb+ atoms. All-to-all 
connectivity is implemented by rearranging of the physical location of qubits, which introduces a negligible 
amount of error. Typical single-qubit gate infidelity is 5× 10−5 and typical two-qubit gate infidelity is 3× 10−3 . 
Typical error rate of state preparation and measurement is 3× 10−3 . Memory error per qubit at average depth-1 
circuit (“idle error”) is 4× 10−4 . Additional details are available in Ref.74

Appendix 4: Evaluation of optimization‑generated summaries
A popular evaluation metric used for summarization tasks is the Recall-Oriented Understudy for Gisting Evalu-
ation (ROUGE) metric75. We calculate F1 score of the three variants of ROUGE, namely ROUGE-1-F, ROUGE-
2-F and ROUGE-L-F, which measure unigram-similarity, bigram similarity and longest-common subsequence, 
respectively.

Each of the optimization instances discussed in the main text corresponds to an article from the CNN/Dai-
lyMail dataset, consisting of 14 or 20 sentences, with the linear and quadratic coefficients in the optimization 
objective generated using centrality and similarity measures discussed in Sec A. The predicted summaries consist 
of 8 and 14 sentences respectively. For each of the optimization instances, we calculate the ROUGE metrics with 
the output distribution of the quantum algorithms, weighted by the probability of measuring an in-constraint 
bitstring, which corresponds to a summary with the specified length.

In Fig. 6, we present the quality of summaries generated by the quantum algorithms discussed in the main 
text, in terms of the three ROUGE metrics. For perspective, we also present the metrics when evaluated against 
an uniform distribution, and also the metrics for the optimal extractive summary for each article. Note that 
the ROUGE metrics are obtained by comparing predicted summaries against a human-written “highlight” that 
comes associated with the CNN/DailyMail dataset. The highlights are brief paraphrasings of the article and do 
not necessarily contain any sentences or verbatim phrases from the article. As a result, even optimal extractive 
summaries have the median score that is far from the maximal ROUGE score of 1. Furthermore, as can be 
seen in Fig. 6, the optimal summaries are only slightly better than the summaries generated by sampling from 
a uniform distribution and the solutions obtained from the optimization algorithms discussed in the main text 
only perform as well as random summaries. The fact that even noiseless simulations of quantum algorithms fail 
to consistently outperform random summaries suggests that the usefulness of the optimization framework as 
a route to summary generation remains inconclusive, at least for the dataset, evaluation criteria and the qubit 
counts we consider in our work.

Appendix 5: Tuning hyperparameter �
The complexity of the optimization of (5) comes from the quadratic terms, which penalize redundancies that 
are present in the summary. The hyperparameter � controls the strength of the penalty for including redundant 
sentences. If the value of � is very small, the summary will be informative but potentially redundant. Similarly, 
if � is too large, the algorithm can pick distinct sentences but with very low information content.

Figure 5.   The probability of sampling bitstrings with a given Hamming weight distance to the in-constraint 
subspace for 14 qubits. The Hamming weight distance is given by |wt(x)−M| , where wt (x) is the Hamming 
weight of x and M is the constraint value. The shaded background represents the distribution of Hamming 
weight distance for random bitstrings sampled from a uniform distribution. Note that the overlap with the 
in-constraint subspace is lower on hardware due to the presence of noise. For QAOA, the in-constraint 
probability is lower than that of random guess due to parameter choice as we fix the target in-constraint 
probability to be 0.06.
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We study how the penalization for redundancy presented in the summary affects its quality. Specifically, 
we consider different values of � and compute the average ROUGE metric, for the 10 optimization instances of 
14-sentence articles discussed in the main text. For each article, we generate a set of objective functions 6 for 
� ∈ [0, 0.25] and find optimal solutions to these problems with brute-force. We plot the ROUGE metrics for the 
resulting summaries from the optimal solutions in Fig. 7. We observe a slight increase in average ROUGE for 
� > 0.05 . In the experiments discussed in the main text, we use � = 0.075.
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