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Bacterial plasmid‑associated 
and chromosomal proteins have 
fundamentally different properties 
in protein interaction networks
Tim Downing 1,3* & Alexander Rahm 2

Plasmids facilitate horizontal gene transfer, which enables the diversification of pathogens into 
new anatomical and environmental niches, implying that plasmid‑encoded genes can cooperate 
well with chromosomal genes. We hypothesise that such mobile genes are functionally different to 
chromosomal ones due to this ability to encode proteins performing non‑essential functions like 
antimicrobial resistance and traverse distinct host cells. The effect of plasmid‑driven gene gain on 
protein–protein interaction network topology is an important question in this area. Moreover, the 
extent to which these chromosomally‑ and plasmid‑encoded proteins interact with proteins from 
their own groups compared to the levels with the other group remains unclear. Here, we examined 
the incidence and protein–protein interactions of all known plasmid‑encoded proteins across 
representative specimens from most bacteria using all available plasmids. We found that plasmid‑
encoded genes constitute ~ 0.65% of the total number of genes per bacterial sample, and that plasmid 
genes are preferentially associated with different species but had limited taxonomical power beyond 
this. Surprisingly, plasmid‑encoded proteins had both more protein–protein interactions compared to 
chromosomal proteins, countering the hypothesis that genes with higher mobility rates should have 
fewer protein‑level interactions. Nonetheless, topological analysis and investigation of the protein–
protein interaction networks’ connectivity and change in the number of independent components 
demonstrated that the plasmid‑encoded proteins had limited overall impact in > 96% of samples. This 
paper assembled extensive data on plasmid‑encoded proteins, their interactions and associations with 
diverse bacterial specimens that is available for the community to investigate in more detail.

Plasmids are short extrachromosomal DNA elements that are typically circular and with variable copy numbers. 
Conjugative plasmids possess machinery enabling horizontal gene transfer (HGT) between bacterial cells, a key 
mechanism of bacterial evolution. Plasmid DNA may also transfer infrequently between cells by transforma-
tion, vesicles and  phages1–4. This allows plasmid-encoded genes to move between bacterial cells in the same 
 niche5, where these genes may allow new  phenotypes6–9. Plasmid-encoded genes encode proteins performing a 
wide range of functions, including antimicrobial resistance (AMR), virulence, metabolism, and  symbiosis10–12, 
facilitating spread into new environmental  niches13. Importantly, they depend on the environmental context to 
be beneficial, such that they can be lost when no longer  required13.

Mobile genes form part of the accessory genome, distinct from chromosomal genes that typically compose 
the core  genome14, though some chromosomal genes may not be universal within a collection, and so are part of 
the accessory genome. Some genes can be encoded on both plasmids and chromosomes, and there are numer-
ous instances in which beneficial genes have been mobilised to spread from plasmids to chromosomes, such 
as blaCTX-M-1515–23. In this study, we examined the broad patterns of compatibility across bacteria using the 
categorisation of plasmid-encoded versus chromosomal.

Plasmids impose a metabolic fitness cost on their host  cells24–26 and yet persist widely thanks to infectious 
spread, stability mechanisms, and chromosomal compensatory  mutations27. Plasmids are genetically very diverse, 
and their conjugation generates additional variation in bacterial AMR gene  profiles28,29. This high plasmid mobil-
ity creates opportunities for plasmid-host co-evolution in permissive environments that allow plasmids to exist 
in hosts cells for long periods of  time30,31. Gene encoding products that directly interact with host molecules 
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may adapt more rapidly in such a context. This matters because a suitable host-recipient genetic background 
is needed such that the transferred gene can be acquired, integrated, and  expressed32–34. In addition, donor & 
recipient cells may be genetically distinct and yet have high HGT  rates35,36, suggesting that additional factors 
affecting gene and plasmid retention need to be quantified.

HGT depends on the physiological compatibility between the donor and recipient so that a plasmid-borne 
gene can be expressed and provide a fitness benefit to the recipient cell by effectively interacting with the recipient 
 proteins6,37. The complexity  hypothesis38,39 asserts that protein–protein interaction (PPI) network connectivity 
and HGT rates are negatively correlated. In line with this, previous work on small sets of protein orthologs has 
found that less essential genes with higher HGT rates have fewer  PPIs40–42. HGT rates are higher for rarer genes 
like those in the accessory genome on plasmids, and lower for core  genes43,44. Moreover, gene context and physical 
gene distance are related to network  proximity45 such that accessory genes and newly transferred proteins are 
likely to be peripheral in PPI networks, including plasmid-encoded ones, whereas the chromosomal proteins 
should be more central.

Plasmid properties vary extensively based on the host  cell46–52 suggesting that the interaction between the host 
chromosomal proteins and plasmid-encoded proteins is important. The evidence collated so far implies that chro-
mosomes adapt more readily to plasmids as opposed to vice-versa, usually by single nucleotide polymorphisms 
(SNPs)27,53–55, but sometimes also by larger gene  deletions56–58. This co-evolution of plasmid-encoded and chro-
mosomal proteins suggests that a more systematic approach is required to examine the extent to which these pro-
teins interact across bacterial species, which could potentially provide insights into plasmid-host compatibility.

In this study, we assessed the hypothesis that chromosomal and plasmid-encoded genes have different inter-
action levels based on the host species, PPI context and PPI connectivity. Using a core dataset of 4363 bacterial 
samples, we examined PPI network connectivity using PPI data for all chromosomal proteins and for plasmid-
encoded ones. Importantly, HGT is not strongly affected by gene sequence composition and  features37, supporting 
our simple classification of genes as present or absent here. We examined the changes in PPI network structure 
based on changes in direct and indirect connections when plasmid-encoded proteins enter a host’s chromosomal 
PPI network. We identified distinctive features associated with plasmid-encoded proteins and their PPIs, assessed 
their covariation, and thus provide a pilot study of plasmid-related PPIs across all bacteria.

Methods
Protein–protein interaction data extraction. We retrieved PPI information for all available valid 
bacterial genomes (n = 4445) from STRING database  v1259,60 with R v4.0.161 and RStudio v2022.2.3.49261 via 
Bioconductor v3.1162 and packages Rentrez v1.2.263, STRINGdb v2.0.159,60, and StringR v1.4.064 (Fig. 1). These 
genomes were selected to encompass all available bacterial genomes with possible PPI data. Of the initial 4445 
potential samples listed, 22 were not accessible and four had more > 300,000 PPIs, suggesting potential accuracy 
issues and so they were excluded from analysis. The valid data (n = 4419 samples) was processed and collated 
using Dplyr v1.0.865, Forcats v0.5.166, Grid v4.4.1, ReadR v2.1.267, Readxl v1.4.068, Tibble v3.1.669, TidyR v1.2.070, 
Tidyverse v1.3.071, VennDiagram v1.7.372 and Xlsx v0.6.0. The total number of unique protein names in the 
entire dataset was 9,551,828, though the true number of gene clusters is likely smaller due to name inaccuracy 

Figure 1.  Summary of data sources and analytical steps. The plasmid resources (top right) and protein–protein 
interaction (PPI) data from StringDB were ultimately merged based on gene matches. Plasmid-encoded proteins 
with PPIs were the focus, and gene prevalence and PPI level per sample were computed, as well as more general 
patterns across sample based on a range of complementary methods. Created with BioRender.com.
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and redundancy. Using a STRINGdb score threshold of > 400, we used this data to compute the numbers of 
unique proteins and pairwise PPIs on chromosomes: this score threshold of > 400 was used throughout this 
study. These 4419 post-QC samples had 3628.5 ± 1710.0 (mean ± SD) proteins and a mean of 57,105.8 ± 34,698.6 
PPIs each. Not all data was accessible for 56 samples among these 4419, leaving 4363 samples. This and subse-
quent data below were visualised with R packages ggplot2 v3.3.573 and ggrepel v0.9.174. All reported p values 
were corrected for multiple testing using the Benjamini–Hochberg approach in R.

The accuracy of gene names in annotation is a pervasive issue where previous work has shown ~ 46 ± 9% of 
genes can be functionally  assigned75. To explore that limiting factor here, we examined the frequency of four-
digit (short) gene names to longer ones with five or more digits, after removing any instances of names ending 
in an underscore or dash or dot followed by any digit. This showed that these samples had a median of 411 ± 410 
short names and a median of 2931 ± 1744 long names each (Figure S1).

Identification of plasmid‑encoded genes and interactions across bacteria. To get all available 
plasmid-encoded genes, we collated 32,839 plasmids: 27,939  from76 and 6642 from PLSDB (v2020_11_19)77 and 
retrieved gene annotation for each plasmid using Genbankr v1.16.0 (Fig. 1). We focused on 16,383 with between 
two and 640 annotated genes (< 640 to avoid chromosome-related contigs). We verified that the plasmids were 
annotated as plasmids, including 12 with lengths > 2 Mb for Ralstonia solanacearum and Rhizobium gallicum. A 
gene was defined as plasmid-encoded if it had been found on a plasmid originating in the same species, yield-
ing two categories for genes: plasmid-encoded or chromosomal. These plasmids had a median of 12 unique 
annotated genes per plasmid and had 8941 unique plasmid-encoded genes across 98,534 unique sample-gene 
associations (Table S1, see full table FigShare https:// doi. org/ 10. 6084/ m9. figsh are. 19525 630). Analyses focused 
on the 288 samples with at least one plasmid gene, and the 5538 plasmid-encoded genes detected in at least one 
sample here.

Next, we identified the numbers of PPIs per protein per sample. A PPI was defined as plasmid-related if 
either (or both) protein(s) were found on a plasmid, yielding three categories for proteins: chromosomal, plas-
mid-related with one plasmid-linked protein in the pair, or exclusively plasmid-related where both protein 
pairs were plasmid-encoded—in practise the latter category was rare and was not investigated in detail here. 
The numbers of PPIs in which both proteins were exclusively chromosomal was large (286,364,425) compared 
to the totals for plasmid-related PPIs (390,592) and PPIs exclusively on plasmid-encoded proteins (46,772). 
This meant the fraction of PPIs that were plasmid-related was 0.136%, and 0.016% of all PPIs were exclusively 
plasmid-related, and the remainder chromosomal (99.86%). In the samples with at least one plasmid-related 
PPI, we used the probabilities of having a plasmid-related or chromosomal protein like allele frequencies to 
compare to the observed frequencies of plasmid-restricted, plasmid-chromosome and chromosome-restricted 
PPIs per sample in a manner analogous to Wright’s F-statistic78 as F = 1− obs/exp where obs was the fraction 
of plasmid-chromosome PPIs, and exp was twice the product of the frequencies of plasmid-related and chro-
mosomal proteins. This compared the expected probabilities of plasmid-restricted, plasmid-chromosome and 
chromosome-restricted PPIs against the observed rates to test for structure (or absence thereof) between the 
plasmid-related and chromosomal proteins.

We examined the taxonomic classifications of the samples across families, orders, classes and phyla using R 
package taxize v0.9.9879 to examine their scaled pairwise Euclidean distances of the plasmid presence-absence 
data in a dendrogram from hierarchical clustering from R packages stats v3.6.2 and dendextend v1.15.280. This 
identified totals of 100 families, 46 orders, 20 classes and 10 phyla.

Screening for correlated bacterial samples and plasmid‑encoded genes. We examined patterns 
of covariance across the set of the samples and 3023 plasmid-encoded genes using three approaches. To resolve 
highly correlated sets of samples, the first approach was to assess genes and sample-gene pairs using principal 
components analysis (PCA) implemented with R packages stats v3.6.2 and factoextra v1.0.781. The second was 
the distributional semantics method, latent semantic indexing (LSA): the probabilistic version has been used 
to examine other bacteria’s drug resistance genomic data  previously82. Here, it applied a classical vector space 
model and singular value decomposition to determine the samples’ plasmid-encoded genes: allocating genes to 
samples with which they are strongly associated. LSA allocated the samples across the maximum possible 360 
dimensions here, which represented the plasmid-encoded genes.

The third approach was non-negative matrix factorisation (NMF)83 to examine the associations of individual 
plasmid-encoded genes with individual bacterial samples using R packages nmf v0.23.084 and Biobase v2.52.085. 
This was applied to 331 samples with at least three plasmid-encoded genes, and to 1733 plasmid-encoded genes 
found in at three samples. This data was analysed as binary presence-absence data. The optimal rank was deter-
mined by examining changes in the cophenetic correlation coefficient across ranks 4–26 for 10 runs per rank 
to ensure clustering was stable and to select the maximum rank that retained a high cophenetic coefficient. 
This reduced the complexity of the data per sample to six groups (ranks) (cophenetic correlation coefficient 
maximised at 0.971). We also examined the covariation of samples with the PPI levels per gene for 481 samples 
and 2363 plasmid-encoded genes where the input data was the number of PPIs per protein per sample using the 
NMF approach (as outlined above) where each protein had at least 30 PPIs across the sample and each sample 
had at least ten PPIs in total. The smaller dataset was due to a number of samples and genes with zero plasmid-
related PPIs. The optimal rank was determined as above, and an estimate of seven groups (ranks) was obtained 
(cophenetic correlation coefficient maximised at 0.9856).

Topological data analysis of the bacterial protein–protein interaction networks. We developed 
computationally efficient metrics to investigate the topology of a PPI network, with a focus on the PPI network’s 

https://doi.org/10.6084/m9.figshare.19525630
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indirect connectivity as well as direct PPIs. Constructing the Vietoris-Rips  complex86 on the PPI network allows 
counting "non-trivial loops": loops made of chains of PPIs (the PPIs are the edges of our Vietoris-Rips complex), 
such that some of the proteins involved were not directly connected to each other by a PPI. A pair of such pro-
teins was then indirectly connected by two chains of PPIs along the loop (each obtained by starting from one 
protein and following the loop in one of the two directions until reaching the protein which was not directly 
connected to it by a PPI). For this reason, we called a non-trivial loop an "indirect connection".

The number of indirect connections and the number of PPIs are positively correlated, and previously we 
observed that the ratio of these two (number of indirect connections divided by number of PPIs) varies only 
moderately when we varied the StringDB combined score threshold, which modified the PPI network topology 
by reducing the number of  PPIs9. If the indirect connectivity of the PPI network was defined as this ratio for 
one score threshold, it would lose information about the strength of the PPIs. Therefore, we introduced here a 
measurement which takes the PPI network topologies at all thresholds into account; we called it the Persistent 
Maximum of Non-trivial Loops per Edge (PMNLE). This is the maximal ratio (number of indirect connections 
divided by number of PPIs) which was reached or exceeded across an interval of at least 100 score thresholds. 
Measuring the PMNLE by calculating the indirect connections at all score thresholds was computationally 
inefficient, so to reduce the ecological impact and computation time 20-fold, we used an approximate PMNLE 
(aPMNLE), which was the PMNLE measured only at score thresholds from 400 to 900 with a step of 20. For 
16 samples, the scaled deviation between the PMNLE and aPMNLE was small at just 0.02% with a standard 
deviation of 0.25% (Table S2).

The PPI networks of the 491 samples with plasmid-encoded proteins were analysed with all proteins, and then 
with chromosomal ones only. This used a specialised open-source  tool87 that constructed the two-dimensional 
part of the Vietoris-Rips complex by registering the trios of proteins (namely, triangles consisting of three pro-
teins connected to one another by three PPIs) and then ran sparse matrix computations with the LinBox library 
(with LinBox v1.1.688) to obtain the 1st Betti number, which is the number of indirect connections, and the 0th 
Betti number, which is the number of connected components (subnetworks of the PPI network in which each 
pair of proteins is joined by a chain of PPIs—hence there is no chain of PPIs joining two distinct connected 
components). Additionally, we use the numbers of PPIs, trios, connected components and indirect connections 
computed at the combined score threshold 400 for comparison: where unstated, the combined score threshold 
used was 400. In many bacterial PPI networks, the purely chromosomal part determined the indirect connectivity, 
i.e., if the aPMNLE for the full PPI network was similar to the aPMNLE of the chromosomal PPI network, then 
the influence of the plasmids on the aPMNLE was negligible. We examined the difference of the former minus 
the latter of these two aPMNLE values, which we scaled by the aPMNLE of the full PPI network to measure the 
percentage change when plasmid-linked proteins were removed. The aPMNLE was associated with the numbers 
of PPIs per sample (r = 0.42, p = 8e−182).

Results
We retrieved PPI data from StringDB to compare the properties of plasmid-encoded versus chromosomal pro-
teins, with a view to understand the potential compatibility and signals of co-evolution for plasmid-chromosome 
combinations. This focused on the numbers of chromosome-linked PPIs, plasmid-associated PPIs, taxonomical 
classification based on plasmid gene profiles, relative rate of PPIs, indirect connections, and the effect on PPI 
network structure.

A positive correlation between the numbers of proteins and the numbers of interactions. We 
examined the association between the numbers of proteins and PPIs across representatives spanning 4363 valid 
bacterial samples based on their unique annotated proteins on StringDB. As expected, the numbers of pro-
teins and PPIs was highly correlated (adjusted r = 0.914, p = 5.2e−15) (Fig. 2, Table S3—see full data at FigShare 
https:// doi. org/ 10. 6084/ m9. figsh are. 19525 708). This suggested that larger chromosomes have more proteins and 
thus PPIs. It also suggested that the variation in protein and PPI numbers across bacteria did not skew the asso-
ciation between the numbers of proteins and PPIs, enabling evaluation of features of plasmid-encoded proteins 
in different samples combinations in more detail.

Distinct patterns of plasmid‑encoded gene retention across bacterial samples. We compared 
these 4363 samples’ PPI data with the set of 8941 unique plasmid-linked genes where a gene was defined as 
plasmid-encoded if it was detected on a plasmid from the same species. 66.2% (5918) of these genes were not 
detected, yielding 3023 detected genes. 491 samples (11.2%) had plasmid-encoded genes, leaving 88.8% (3872) 
samples with no such genes detected. In this set of 491, the median number of samples in which a plasmid-
encoded gene was found was three (interquartile range four, Fig.  3A), and the median number of plasmid-
encoded genes per sample was five, with an interquartile range of 12 (Fig. 3B). The fraction of plasmid-encoded 
genes per sample was 0.65 ± 2.5% (27 ± 112 out of 3927 ± 1367, mean ± SD) in these 491 (Fig.  3). Six E. coli 
genomes had a median of 1035 plasmid-encoded genes per sample and were the only samples with over 400 
plasmid-encoded genes. These results illustrated that most plasmid-encoded genes were rare, with few common 
ones, and that widely shared plasmid-encoded genes were unusual (Figure S2, see full figure FigShare https:// 
doi. org/ 10. 6084/ m9. figsh are. 19525 453).

Plasmid‑encoded genes are structured and reflect taxonomic groups. The samples were clus-
tered by similarity based on their binary 3023 unique plasmid-encoded gene data (presence-absence). Taxo-
nomic classifications across the 100 families, 46 orders, 20 classes and 10 phyla in these 491 samples showed 
that the Enterobacteriaceae were the most diverse family (n = 24 samples, Z = 1.49), and that the Enterobacterales 
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(n = 57, Z = 0.77) was the most variable order, with limited changes at the class and order levels. Overall, the 
plasmid-encoded gene profiles per taxonomic group did not yield an informative taxonomic resolution (Fig-
ure S3, see full figure FigShare https:// doi. org/ 10. 6084/ m9. figsh are. 19525 435).

Evidence for this low overall covariation came from PCA of this data where six E. coli and three Ralstonia 
solanacearum samples explained most variation across PC1 (34.5%) and PC2 (5.6%) (Figure S4A). These six 
E. coli had far more plasmid-encoded genes compared to the sample with the next highest number (Ralstonia 
solanacearum PSI07 with 347), which in turn exceeded the other samples substantially. Excluding these nine 

Figure 2.  The number of proteins per bacterial genome (x-axis) was highly predictive of the number of PPIs 
(y-axis) (adjusted  r2 = 0.835). The data was for 4363 bacterial samples, each of which is shown by a blue dot, with 
a linear model line of best fit shown in red.
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Figure 3.  (A) The number of samples in which each plasmid-encoded gene (red) was found was generally 
small with a median of five. (B) The number of plasmid-encoded genes per sample (grey) had a median of three, 
including six E. coli samples with a median of 1035 plasmid-encoded genes per sample that represent all samples 
with > 400 genes. These figures excluded samples with no plasmid-encoded genes.
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divergent E. coli and R. solanacearum samples, the remaining 482 samples’ PC1 had 7.0% of variation and PC2 
had 5.0% (Figure S4C). The plasmid-encoded proteins had a similar rate of covariation across all 491 samples 
where 16.8% of variation was allocated to PC1, and 14.9% to PC2 (Figure S4B), with higher heterogeneity in the 
482 samples (6.8% to PC1, 4.9% to PC2, Figure S4D, see full figure at FigShare https:// doi. org/ 10. 6084/ m9. figsh 
are. 19525 465, and data at FigShare https:// doi. org/ 10. 6084/ m9. figsh are. 19525 471). These patterns were largely 
recapitulated by LSA of all samples, which showed limited variation across the 1st (10.0% of variation) and 2nd 
(4.1% of variation) dimensions (Figure S5).

Plasmid‑encoded proteins are rare and collectively interact with diverse chromosomal pro‑
teins. We examined the samples’ 3023 unique plasmid-encoded proteins to identify PPIs where one or both 
proteins were plasmid-related (termed plasmid-related PPIs here, see data at FigShare https:// doi. org/ 10. 6084/ 
m9. figsh are. 19672 527) to distinguish them from chromosomal PPIs where no plasmid-encoded proteins were 
found, and we also tracked the rarer category of plasmid-related PPIs where both protein pairs were plasmid-
encoded (see data per sample at shorturl.at/mtFNZ). Overall, as a percentage of all PPIs, plasmid-related PPIs 
constituted a median of 0.35 ± 4.76% (mean ± SD) PPIs per sample, including 0.02% of all PPIs exclusively 
involving plasmid-encoded proteins. 3874 samples had zero detected plasmid-related PPIs, 489 samples had at 
least one plasmid-related PPI (two samples had one plasmid-encoded protein with no PPIs). These 489 samples 
had a median of 169 PPIs where at least one protein was plasmid-related and a median of 53,947 ± 27,590 chro-
mosomal PPIs per sample, which was comparable to the rate for all samples (48,834 ± 46,615, Table S3). Their 
total number of plasmid-related PPIs had no clear association with the numbers of proteins per sample (r = 0.05), 
but did with the numbers of chromosomal PPIs per sample (r = 0.27, Figure S6). Of these 489 samples, 283 had 
at least one PPI involving only plasmid-encoded proteins, with a median of five such PPIs.

We examined the plasmid-gene associations across 331 samples that had at least three of the 1733 plasmid-
encoded proteins detected in at least three samples using NMF (Figure S7). This allocated these samples and 
proteins to six distinct groups based on their pattern of plasmid-encoded protein sharing (Figure S8, see full 
figure at FigShare https:// doi. org/ 10. 6084/ m9. figsh are. 19525 492), and the proteins to these same six groups as 
mixture coefficients based on their prevalence in the samples (Figure S9, see full figure at FigShare https:// doi. 
org/ 10. 6084/ m9. figsh are. 19525 59). There were just five samples in rank 3 that were five E. coli (all but E. coli 536), 
which was far below the mean number of samples per rank (77.3, Figure S10). These were associated with 1065 
plasmid-encoded genes, far above the average number of proteins per rank (526.2, Figure S11).

Similarly, we investigated 2363 plasmid-encoded proteins’ associations based on PPI rates across the same 
481 samples where each protein had > 30 PPIs and each sample had > 10 PPIs. This allocated these samples and 
proteins to seven distinct groups based on their pattern of PPI numbers (Figure S12, see full figure at FigShare 
https:// doi. org/ 10. 6084/ m9. figsh are. 19611 276), and these same proteins to the seven groups as mixture coef-
ficients based on their PPI numbers for each sample (Figure S13, see full figure at FigShare https:// doi. org/ 10. 
6084/ m9. figsh are. 19611 282). Like above, all six E. coli (including E. coli 536) were the sole members of a rank 
(five), and corresponded to 238 proteins’ PPI rates as mixture coefficients (Figure S14), which again was more 
than the average number of PPI rates associated with each rank (748, Figure S15).

Plasmid‑encoded proteins have two‑fold higher rates of protein–protein interactions. The 
mean number of PPIs per protein was 2.2-fold higher for plasmid-related proteins compared to chromosomal 
ones using data for all samples, though with large variations (n = 13,348 plasmid-related proteins in 491 samples: 
39.0 ± 35.0 vs n = 15,450,151 chromosomal proteins in 4363 samples: 17.6 ± 5.7, mean ± SD, t-test p = 4.8e−16, 
Fig. 4). This was not due to artefacts in the 489 samples with plasmid-related PPIs: their rate of chromosomal 
PPIs at 14.8 ± 3.7 PPIs per protein was similar to the other samples (Table S3, see data at FigShare https:// doi. 
org/ 10. 6084/ m9. figsh are. 19575 820). However, this effect was protein-specific and not consistently discrimina-
tory because these different groups overlapped considerably (Fig. 4C), implying that genomic context was not a 
major determinant of PPI rates, and plasmid-related proteins simply had a wider range of PPI levels. To control 
for the high variation in PPI rates per plasmid-related protein, we found that 19% (65 out of 345) of samples with 
sufficient numbers of plasmid-related proteins and PPIs to test quantitatively had plasmid-encoded proteins 
with much higher PPI rates per sample (t-test p < 0.05), including all six E. coli (Figure S16, see data at FigShare 
https:// doi. org/ 10. 6084/ m9. figsh are. 20230 299). As an illustration of PPI network structure, a network centred 
on the SfmC protein in E. coli K12 MG1655 showed high levels of connectivity amongst 20 other proteins (Fig-
ure S17, Table S4).

Nearly all (> 99%) plasmid-encoded proteins had a PPI with a chromosomal protein, whereas only 7% of 
plasmid-encoded proteins had a PPI with another plasmid protein in the 489 samples with at least one plasmid-
related PPI. Using the plasmid protein frequency information above, we tested for structure between plasmid-
related proteins and chromosomal ones based on the rates of intergroup PPIs in a manner analogous to Wright’s 
F-statistic to quantify the difference between the observed and expected levels of plasmid-chromosome and 
plasmid-specific PPIs per  sample78. We found a relatively higher rate of plasmid-plasmid PPIs compared to 
plasmid-chromosome PPIs, which in turn were much higher than chromosomal PPIs (Figure S18). This sug-
gested that plasmid-encoded proteins tended to interact with other plasmid proteins more often than would be 
expected by chance, indicating PPI network separation of plasmid-encoded and chromosomal proteins.

Protein–protein interaction networks are generally robust to the loss of plasmid proteins. To 
examine the effect of plasmid-encoded proteins on PPI network topology, we examined the aPMNLE for all 
proteins and for chromosomal proteins only, such that the difference between these aPMNLE values indicated 
plasmid-driven effects (Figure S19). The aPMNLE reflects indirect (or secondary) connections, which may be 
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reduced when plasmid-related proteins are removed if there are no alternate paths between remaining chromo-
somal proteins. However, if there are many PPI paths between chromosomal proteins, then this high indirect 
connectivity may indicate robustness within the PPI network such that the elimination of plasmid-related pro-
teins has no effect (plasmid-related proteins thus have few indirect connections). Moreover, if plasmid-related 
proteins tend toward the PPI network periphery, the total number of indirect connections may not change 
relative to a larger drop in the numbers of PPIs, again indicating plasmid-related proteins had few indirect con-
nections. In contrast, if plasmid-related proteins are central and mixed among chromosomal proteins in the PPI 
network, the number of indirect connections and numbers of PPIs will be closely correlated (here, plasmid-
related proteins have proportional indirect connection rates).

A majority of samples (96.3%, 471 out of 489 samples) showed no substantive differences in aPMNLE values 
between all proteins versus chromosomal ones alone, indicating that plasmid-encoded proteins had no large 
effects on the PPI network structure even though the plasmid-related proteins contributed large numbers of PPIs, 
consistent with robust networks. This was consistent with the idea that for these 471 samples the plasmid-encoded 
proteins overall had comparable indirect connection rates with the chromosomal proteins, but perhaps higher 
relative PPI rates because no evidence of excessive indirect connection numbers was observed.

3.7% (18 out of 489) samples had an aPMNLE for all proteins (including plasmid-encoded ones) exceeding 
the chromosomal aPMNLE by two standard deviations, indicating that plasmid-encoded proteins increased 
the indirect connection rates and that these PPI networks were less robust. No samples had a chromosomal 
aPMNLE that was two standard deviations above the full network aPMNLE, so no plasmid-encoded protein set 
strongly increased the rate of indirect connections per sample. When compared to the other 471 samples with 
plasmid genes, these 18 had altered aPMNLE values for chromosomal proteins (t-test p = 4.9e−5) but not for all 
proteins (p = 0.82, Figure S20). Furthermore, if the plasmid-encoded proteins were included for each sample, the 
number of PPI network connected components grew by 71% for the 471 samples with robust networks, whereas 
for these 18 samples with less robust networks it grew by 327%, indicating that these plasmid-encoded proteins 
had high PPI rates, fewer indirect connections and were often disconnected from the main network. We also 
observed these 18 had fewer genes per sample compared to the larger set of 471 (2314 ± 1429 vs 4013 ± 1336, 
mean ± SD), perhaps because smaller genomes have fewer PPIs overall and so were less robust to plasmid-related 
protein removal.

To quantify the extent to which plasmid-encoded proteins increased PPI rates but not indirect connections, 
we compared the correlation between plasmid-related proteins and PPIs per sample in the 489 samples with 
plasmid-related PPIs, which were positively correlated (r = 0.51, p = 1e−143, Fig. 5A). However, increasing the 
number of plasmid-encoded proteins did not have the same magnitude of effect on the number of indirect con-
nections per sample (r = 0.06, p = 1, Fig. 5B). Similarly, the latter was negatively associated with the number of 
plasmid-related PPIs (r = − 0.08, p = 0.30, Fig. 5C). The partial correlations for each pair of variables were similar 
(0.86, 0.04, − 0.10, respectively). For example, the 69 plasmid-encoded proteins of Serratia marcescens subsp. 
marcescens Db11 had 92 plasmid-plasmid PPIs with one another and an additional 2214 plasmid-chromosome 
PPIs (with an average of 33.4 PPIs per plasmid protein), compared to 58,857 chromosomal PPIs among the 4614 
chromosomal proteins (12.8 PPIs per chromosomal protein, Table S4, Figure S21). Overall, this implied that 
plasmid-related proteins tended to be at the PPI network periphery connected to chromosomal proteins, and 
not mixed usually with the main chromosomal proteins in the PPI networks.

Figure 4.  The average number of PPIs per (A) plasmid-related protein (green, 39.0 ± 35.0, mean ± SD) was 
higher than that for (B) chromosomal proteins (purple, 17.6 ± 5.7), but (C) there was no consistent evidence for 
a consistent difference in PPI rates between these two groups (plasmid-related proteins in green, chromosomal 
proteins in purple—note log10-scaled y-axis and minor differences in binning per plot).
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Plasmid‑related proteins are generally peripheral to PPI networks. Given that plasmid-related 
proteins were highly connected but not central to PPI networks mainly composed of chromosomal proteins, we 
scaled the numbers of indirect connections by protein. We observed a trimodal pattern of indirect connections 
per protein. In the 489 samples with plasmid-related PPIs, the chromosomal proteins had more indirect con-
nections per protein than plasmid-encoded proteins (average per sample 3.7 ± 2.1 vs 0.9 ± 0.6, t-test p = 5.2e−15). 
The indirect connections per protein in these 489 samples were positively correlated with the number of PPIs per 
sample for chromosomal (r = 0.61, Fig. 6A) but not all proteins (r = 0.02) due to the effect of plasmid-encoded 
proteins, confirming that the latter tended not to be mixed among the PPI networks. The chromosomal proteins 
of those 489 samples had a lower level of indirect connections per protein compared to the 3874 samples with-
out plasmid-related PPIs (average per sample 3.7 ± 2.1 vs 5.5 ± 3.1, t-test p = 5.2e−15). The latter 3874 samples 
had higher levels of indirect connections that were positively correlated with the PPIs per sample, as previously 
observed in the chromosomal proteins for 489 samples (Fig. 6B).

Plasmid-related proteins had a median of 4.4-fold fewer indirect connections per sample than chromosomal 
proteins in the set of 489 samples (Fig. 7A). We also observed that additional plasmid-chromosome PPIs con-
stituted 89.7% of all PPIs in these 489, and 93% of plasmid-encoded proteins had no plasmid-related PPIs. To 
explain this, consider a PPI network where part of it had four chromosomal proteins (A, B, C, D) sharing PPIs 
A-B, B-C, C-D and D-A, so it has one indirect connection (with a path A-B-C-D, Figure S22). If we added a 
plasmid protein P to this network such that it had PPIs with all four proteins, the indirect connection across 
A-B-C-D would be lost but the network would gain four PPIs. An alternative model where A, B, C and D had no 
PPIs with one another would be less likely because then the addition of P would create PPIs and more indirect 
connections, which was not observed in our findings. In addition, if A, B, C and D interact with P then it is more 
likely that they are both functionally related and interact with one another.

Finally, we assessed the numbers of PPI network connected components for all proteins versus chromosomal 
ones: the latter had fewer connected components compared to all proteins in the 489 samples with plasmid-
related PPIs (50.0 ± 34.6 vs 227 ± 95.9, median ± SD, Fig. 7B). The numbers of proteins per connected component 
was more strongly associated with the chromosomal proteins than for all proteins in relation to the numbers 
of PPIs (r = 0.35 vs 0.01), chromosome-related PPIs (r = 0.35 vs 0.00), and proteins per sample (r = 0.18 vs 0.00) 
but not plasmid-related PPIs (r = 0.04 vs 0.00, Figure S23) in these 489 samples. Additionally, these 489 samples 
had far more connected components compared to 3872 samples without plasmid-related PPIs (means 222.4 vs 
40.5, t-test p = 4.8e−15). This highlighted that when there were more PPIs and proteins present, chromosomal 
proteins were spread across fewer connected components, whereas plasmid proteins could be found in more 
separate connected components.

Figure 5.  The (A) log10-scaled numbers of plasmid-related proteins per sample (x-axis) was positively 
correlated with the numbers of plasmid PPIs per sample (y-axis) (black, r = 0.51) in the 489 samples with 
plasmid-related PPIs, but less so with (B) the change in the numbers of indirect connections per sample due 
to the inclusion of the plasmid-encoded proteins (blue, r = 0.06). (C) The log10-scaled numbers of plasmid 
PPIs per sample (x-axis) was negatively associated with the numbers of indirect connections per sample due to 
the inclusion of the plasmid-encoded proteins (green, r = − 0.08). The lines of best fit for each plot shows the 
linear correlation of the number of PPIs per sample with the number of indirect connections per protein. The 
histograms indicate the marginal densities per axis for each dataset.
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Figure 6.  The number of PPIs per sample (x-axis) was positively correlated with the number of indirect 
connections per protein for (A) chromosomal (red, r = 0.61) but not all proteins (including plasmid-encoded 
ones, blue, r = 0.02) in the 489 samples with plasmid-encoded proteins. (B) The other samples with no plasmid-
encoded proteins had positive correlations (green, r = 0.63 and r = 0.67) though with a bimodal pattern (groups 
of n = 2415 and n = 1336). The lines of best fit for each plot shows the linear correlation of the number of PPIs 
per sample with the number of indirect connections per protein. The histograms indicate the marginal densities 
per axis for each dataset.
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Figure 7.  The log10-scaled numbers of (A) indirect connections (blue) and (B) connected components (green) 
for all (chromosomal and plasmid) proteins (x-axis) related to chromosomal proteins only (y-axis) for the 
489 samples with plasmid-related PPIs. The red lines show the expected rate if (A) the numbers of indirect 
connections for all proteins and chromosomal proteins were identical and (B) the numbers of connected 
components for all proteins and chromosomal proteins were identical. (A) The blue line shows the correlation 
between the numbers of indirect connections for all proteins and chromosomal proteins (> 98% of samples 
had more indirect connections when plasmid-related proteins were omitted). (B) The green line shows the 
correlation between the numbers of connected components for all proteins and chromosomal proteins (> 97% of 
samples had more connected components when plasmid-related proteins were retained).



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19203  | https://doi.org/10.1038/s41598-022-20809-0

www.nature.com/scientificreports/

Discussion
Bacterial genome structure has been shaped by HGT more so than gene duplication in many species, such as E. 
coli89,90. Mobile plasmid-encoded genes can endow host cells with new phenotypes, including those linked to 
changed adhesion, AMR and  virulence91, and their fitness effects are associated with specific genetic, regulatory 
and protein  interactions8. To further our understanding of how new plasmid-encoded proteins can affect the 
structure and signalling bacterial PPI networks, we compared the PPI profiles of plasmid-linked and chromo-
somal proteins across 4363 representative samples of well-characterised bacteria using data from StringDB to 
find 491 samples with evidence of plasmid-encoded genes within the same species.

We found that the number of proteins per sample was correlated with the number of PPIs, as anticipated. 
This allowed further exploration to compare plasmid-encoded proteins with chromosomal ones. Most plasmid-
encoded proteins were rare across bacteria, and the total fraction of the genome they constituted varied exten-
sively. We defined plasmid-related PPIs as PPIs where at least one of the interacting proteins had previously been 
observed on a contig labelled as a plasmid within the same species, separate from chromosomal PPIs where 
neither protein was plasmid-linked. Only 11.2% of samples (489 out of 4363) had plasmid-related proteins and 
PPIs. Even in these samples, plasmid-related genes made up only 0.65% of all genes detected and thus were rare. 
As a consequence, plasmid-related PPIs made up only 0.14% of all PPIs, and PPIs that were exclusively plasmid-
related were very rare (0.016%).

Plasmid-encoded proteins covaried with one another depending on the genetic background of the host cell 
such that clustering the samples based on their plasmid-encoded gene similarity identified six groups of covary-
ing plasmid-encoded proteins and bacterial samples, including a specific one for E. coli alone. This aligned with 
existing expectations of plasmid-host co-evolution30,31. The Enterobacterales was the clearly the most variable 
order, but overall known taxonomical differences were not apparent. Similarly, the PPI rates per protein per 
sample had even less taxonomical resolution power, showing that the numbers of PPIs per protein was typically 
a more dynamic feature.

The complexity  hypothesis38 asserts that proteins undergoing HGT have fewer PPIs and are mostly operational 
genes (those involved in cellular processes) rather than informational genes (those involved in transcription or 
translation)38,92,93. It has been asserted that proteins with many PPIs are less likely to be encoding by genes that 
undergo HGT  extensively89,94–96, but we found that plasmid-linked proteins had two-fold more PPIs on average. 
Nonetheless, the predictive power of this across chromosomal versus plasmid-related proteins was low, suggest-
ing that there is no intrinsic difference in PPI rates between these groups of proteins. Nuances to the complex-
ity hypothesis have been found before: firstly, the being in a protein complex versus HGT  chances94; secondly, 
the effect of cellular component state, function complexity and function conservation on adaptive evolution 
 potential41; thirdly, HGT-linked genes have higher numbers of regulatory  factors89; and fourthly, PPI connec-
tivity has a large effect for proteins with a similar  function95,96. Notably, many previous studies have focused on 
conserved orthologs, whose genomic contexts and features may differ from genes that are more mobile. Con-
sequently, operational versus informational processes, complex protein functions, an intracellular location, an 
ancient essential function, and host-recipient genetic distance may be more dominant factors in determining 
PPI rates than HGT given our results here. An important caveat is that the general trends we observed may not 
hold for all genera, families or orders.

We found that plasmid-related proteins interacted with large numbers of other chromosomal and plasmid 
proteins. However, plasmid-related proteins contributed much less towards indirect (aka secondary) connec-
tions, unlike chromosomal proteins. We found evidence of PPI network structure between chromosomal and 
plasmid-encoded proteins, finding that plasmid proteins had a higher rate of plasmid rather than chromosomal 
protein partners than expected. In addition, by using the aPMNLE as a measure of indirect connections, most 
samples with plasmid-related PPIs (> 96%) were robust to the loss of plasmid-encoded proteins. The samples 
with networks more affected by plasmid-related protein loss had smaller genomes, and thus less redundancy in 
PPI network paths. Altogether, this was consistent with existing assertions that plasmid-encoded proteins tend 
to be at the periphery of a PPI  network88,89, perhaps because plasmids seldom encode essential  proteins5, though 
gene essentiality depends on the  host97.

Our findings were limited by a number of issues. First, our analysis was based on gene name similarity with 
the assumption that the redundancy in the annotated plasmid gene names would help alleviate the imprecision in 
gene naming systems, but this did not mitigate fully the limitation that some proteins were likely misclassified as 
chromosomal or plasmid-encoded. Second, many plasmids and bacterial samples are not annotated consistently, 
so gene name matches were undoubtedly missed. Third, we assumed that previous studies’ labelling of large con-
tigs as plasmids was correct: we made this (and all other) data accessible so that revisions to plasmid annotation 
could be made in light of the high number of genes (> 500) in certain plasmids (see Table S1): sequence-based 
plasmid detection tools could help with this task. Fourth, the numbers of proteins and PPIs per sample varied 
widely due to the diverse ranges of genome sizes examined and the other limitations outlined here: testing if 
genome size affects plasmid-related protein context in PPI networks is an area for further exploration. Fifth, we 
obtained gene name data per sample from  StringDB59,60, and yet 5918 plasmid-encoded genes were not detected 
in these samples, which highlighted imprecision either in the plasmid annotation, the sample annotation or 
(most likely) both. Six, we did not perform sequence alignment nor read mapping to confirm at the sequence 
level matches, which is a next step following this work.

In summary, a broad scan of PPIs between plasmid-related proteins and chromosomal ones across most 
bacteria showed that very few genes in total were plasmid-related (0.65%) and that only 11% of samples had 
plasmid-related PPIs. There was a moderate but complex taxonomic signal arising from the plasmid-related gene 
profiles that was only clear for E. coli. Plasmid-related PPI rates varied more than chromosomal ones, and showed 
structure in the form of relatively higher rates of plasmid-plasmid PPIs compared to plasmid-chromosome ones. 



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19203  | https://doi.org/10.1038/s41598-022-20809-0

www.nature.com/scientificreports/

From this, we inferred that plasmid-related proteins mainly occupy PPI network peripheries, and thus may be 
more expendable than chromosomal proteins. The data from this study (table below) is an asset for the commu-
nity to explore further hypotheses that inform on the functional effects of plasmid gene gain/loss on host cells. 
Genes mediating AMR, virulence, intergration and DNA replication are examples of important functional groups 
whose context in plasmid-chromosome PPI networks that could be explored further to identify the signalling 
pathways affected by gene gain/loss. Studies of samples with known plasmid compositions would illuminate the 
effects of plasmid-encoded and chromosomal proteins on PPI networks. 5918 plasmid-encoded genes were not 
found in the samples studied here, indicating that sequence-level alignment, annotation and comparison of these 
sample-plasmid combinations may reveal the functional effects of these genes’ products.
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