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Machine learning‑based derivation 
and external validation of a tool 
to predict death and development 
of organ failure in hospitalized 
patients with COVID‑19
Yixi Xu1,4, Anusua Trivedi1,4, Nicholas Becker1,4,5, Marian Blazes1, Juan Lavista Ferres1,4,6, 
Aaron Lee1,6, W. Conrad Liles1,3,6,7 & Pavan K. Bhatraju1,2,3,6,7*

COVID‑19 mortality risk stratification tools could improve care, inform accurate and rapid triage 
decisions, and guide family discussions regarding goals of care. A minority of COVID‑19 prognostic 
tools have been tested in external cohorts. Our objective was to compare machine learning algorithms 
and develop a tool for predicting subsequent clinical outcomes in COVID‑19. We conducted a 
retrospective cohort study that included hospitalized patients with COVID‑19 from March 2020 to 
March 2021. Seven Hundred Twelve consecutive patients from University of Washington  and 345 
patients from Tongji Hospital in China were included. We applied three different machine learning 
algorithms to clinical and laboratory data collected within the initial 24 h of hospital admission 
to determine the risk of in‑hospital mortality, transfer to the intensive care unit, shock requiring 
vasopressors, and receipt of renal replacement therapy. Mortality risk models were derived, internally 
validated in UW and externally validated in Tongji Hospital. The risk models for ICU transfer, shock 
and RRT were derived and internally validated in the UW dataset but were unable to be externally 
validated due to a lack of data on these outcomes. Among the UW dataset, 122 patients died (17%) 
during hospitalization and the mean days to hospital mortality was 15.7 +/− 21.5 (mean +/− SD). Elastic 
net logistic regression resulted in a C‑statistic for in‑hospital mortality of 0.72 (95% CI, 0.64 to 0.81) 
in the internal validation and 0.85 (95% CI, 0.81 to 0.89) in the external validation set. Age, platelet 
count, and white blood cell count were the most important predictors of mortality. In the sub‑group 
of patients > 50 years of age, the mortality prediction model continued to perform with a C‑statistic of 
0.82 (95% CI:0.76,0.87). Prediction models also performed well for shock and RRT in the UW dataset 
but functioned with lower accuracy for ICU transfer. We trained, internally and externally validated a 
prediction model using data collected within 24 h of hospital admission to predict in‑hospital mortality 
on average two weeks prior to death. We also developed models to predict RRT and shock with high 
accuracy. These models could be used to improve triage decisions, resource allocation, and support 
clinical trial enrichment.

The ongoing COVID-19 pandemic, caused by human infection with SARS-CoV-2, has been a major cause of 
mortality  worldwide1. A robust public health and biomedical response to a pandemic is contingent on timely and 
accurate information, including rapid diagnosis and assessment of patients at risk for severe  disease2. A clinical 
model, incorporating recognized risk factors and clinical features, that could effectively identify individuals at risk 
for severe disease and adverse clinical outcomes could greatly assist with rational triage and resource  allocation3.
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Sequential Organ Failure Assessment (SOFA) score has been widely used to assist with triage of patients 
with COVID-19. However, the accuracy of SOFA for predicting mortality in COVID-19 is poor (AUC of 0.59 
(95% CI, 0.55–0.63), possibly because SOFA was developed in patients with various and alternative forms of 
 sepsis4. While multiple papers have focused on the development of prognostic models to predict mortality risk 
using demographic and clinical data, these papers have had limited validation in external patient  cohorts5–9. For 
example, one prediction model that used three blood biomarkers initially reported a 90% accuracy to predict 
mortality. However, when this model was tested in an external cohort, accuracy declined to only 40–50%10,11. 
Previous COVID-19 prediction models have been limited in reporting how features were selected, timing of 
variable collection and outcomes and calibration performance of the  model5,6.

To date, COVID-19 prediction models have largely focused on  mortality5,12,13, rather than risk for specific 
organ dysfunction, such as hypotension requiring vasopressors (shock), renal failure requiring renal replace-
ment therapy (RRT), or hypoxemic respiratory failure requiring invasive mechanical ventilation. An accurate 
means to predict risk for specific organ injury in severe COVID-19 would greatly assist clinical decision-making. 
Studies have attempted to assess such risks by grouping several outcomes of interest together and building a 
predictive  model13–16. Despite the success of this kind of model, grouping the outcomes together is less useful 
for resource allocation and triage, as patients will require different equipment and staffing expertise depending 
on their disease course and  complications3,17. To address this concern, we created separate models to predict 
risk of in-hospital mortality, ICU transfer, shock, and renal replacement therapy (RRT) based on demographic 
and clinical information collected on the first day of hospital admission. We then used an open source COVID-
19 dataset to validate our mortality prediction model. Additional outcomes, such as ICU transfer, shock and 
need for RRT, were not available in the external validation set. Since the mortality risk among a population of 
COVID-19 may vary by age and a number of studies have shown that older age is a risk factor for COVID-19 
 mortality1,13,18,19, we conducted sub-group analyses to test whether our prediction models performed well in 
patients older than 50 years of age.

Methods
Study design and patient population. The University of Washington (UW) dataset includes demo-
graphic and clinical data from COVID-19 positive adult (≥ 18 years of age) patients who were admitted to two 
hospitals at the UW (Montlake and Harborview campuses) between March, 2020 and March, 2021. A confirmed 
case of COVID-19 was defined by a positive result on a reverse-transcriptase–polymerase-chain-reaction (RT-
PCR) assay. The COVID-19 dataset at Tongji Hospital is publicly  available6. In brief, patients from the Tongji 
COVID-19 dataset were enrolled from January 10th to February 18th, 2020. Patients from the Tongji dataset 
made the external validation cohort for the mortality model. In the UW and Tongji datasets, mortality predic-
tion models were developed using clinical data collected during the first 24 h after hospital arrival.

Ethics approval and consent to participate. The University of Washington institutional review board 
(IRB) approved the study protocol (STUDY10159). All clinical investigations were conducted based on the prin-
ciples expressed in the declaration of Helsinki. Written informed consent was waived by the University of Wash-
ington IRB due to the retrospective nature of our study of routine clinical data.

Outcomes. The primary outcome was in-hospital mortality. We developed and internally validated a pre-
diction model for in-hospital mortality and externally validated the model in the Tongji dataset. Secondary 
outcomes were ICU transfer, shock and receipt of RRT. These secondary outcomes were missing in the Tongji 
dataset and so we developed and cross-validated prediction models for secondary outcomes using the UW data-
set. Shock was defined as new receipt of vasopressor medications after the first day of hospitalization.

Feature selection. Since the mortality prediction model was developed in the UW dataset and externally 
validated in the Tongji dataset, we first selected variables that were overlapping between both datasets. Twenty 
features overlapped between both datasets, and these 20 features were used for the mortality prediction model. 
All clinical and laboratory data were abstracted from the medical record within the first day of hospital admis-
sion, and patients were included in the analysis for each outcome only if the patients did not have the outcome 
on the first day of hospitalization. An individual prediction model was developed for each of the outcomes.

The following steps were taken for feature selection. First, features were dropped if > 10% of the values were 
missing. Second, near-zero variance features were removed, as these features almost exclusively had one unique 
value. Third, pair-wise correlations between all the features were calculated. If two features had a correlation 
larger than 0.8, the feature with a larger mean absolute correlation was dropped. Fourth, missing values were 
replaced by the mode if the variable was categorical or by the median otherwise. Finally, all the continuous vari-
ables were standardized.

Data partitioning, UW dataset. We randomly split the UW dataset into development and internal vali-
dation sets by stratified sampling. The training set included 475 patients, and the internal validation set included 
237 patients. First, we trained models on the training set, and then selected the best model by its performance 
on the internal validation set. Top models for in-hospital mortality were then tested in the external validation 
set. We performed cross validation in the internal validation set for the three prediction models for ICU transfer, 
shock and RRT. We used the UW dataset as follows (1) patients were randomly split into 10 folds in a strati-
fied fashion using the outcome variable; (2) the model was trained using nine of the ten folds and tested on the 
remaining fold. The procedure was repeated ten times until each fold had been used as a test fold exactly once.
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Machine learning models. Least absolute shrinkage and selection operator (LASSO) logistic regression is 
a logistic regression approach with L1  penalties20. The L1 penalty terms encourage sparsity, thus preventing 
overfitting and yielding a small model. A weighted LASSO logistic regression was used to handle the imbalanced 
data. The hyperparameter lambda was selected by stratified tenfold cross validation.

Elastic net logistic regression (LR) is an approach that combines LASSO LR and ridge logistic regression, 
incorporating both L1 and L2  penalties21. It can generate sparse models which outperform LASSO logistic 
regression when highly correlated predictors are present. The hyperparameters alpha and lambda were selected 
by stratified tenfold cross validation.

eXtreme Gradient Boosting (XGBoost). XGBoost is a gradient boosted machine (GBM) based on decision trees 
that separate patients with and without the outcome of interest using simple yes–no splits, which can be visualized 
in the form of decision  trees22. GBM builds sequential trees, such that each tree attempts to improve model fit 
by more highly weighting the difficult-to-predict patients. The following hyperparameter settings were applied: 
nrounds = 150, eta = 0.2, colsample_bytree = 0.9, gamma = 1, subsample = 0.9 and max_depth = 4. We also used 
grid search to select the optimal hyperparameters for XGBoost on the training set. The hyperparameter candi-
dates were generated exhaustively from number of boosting rounds (nrounds) = {150,250,350}, eta = {0.1,0.2,0.3}, 
colsample_bytree = {0.5,0.7,0.9}, gamma = {0.5,1}, and max_depth = {4,8,12}. We used stratified fivefold cross 
validation to select the optimal hyperparameter that maximized the average AUC for the mortality prediction 
model. Then we retrained the model using the optimal hyperparameters on the training set and then tested and 
validated this model on the internal validation and external validation sets, respectively.

Class imbalance handling. A weighted version of each of the three above methods was used to handle 
imbalanced data. For example, if there were 90 positives and 10 negatives, then a weight of 10 over 90 was 
assigned to a positive sample and a weight of one was assigned to a negative sample.

Probability calibration. Isotonic regression was used to calibrate the probabilities outputted by the 
machine learning  models23. The calibration model was fitted on the training samples only. Calibration plot was 
created to assess the agreement between predictions and observed outcomes in different percentiles of the pre-
dicted values, and the 45-degree reference line indicates a perfectly calibrated model. If the fitted curve is below 
the reference line, it indicates that the model overestimates the probability of the outcome. As a comparison, a 
fitted curve above the reference line reflects underestimation.

Model comparison. We tested the three machine learning methods (LASSO LR, elastic net LR, and 
XGBoost) independently to predict each outcome. Model performance was compared using the area under the 
receiver operatory characteristic curve (AUC) and 95%  CI24,25. Top performing models for in-hospital mortality 
in the internal validation cohort were then carried forward to the external validation cohort. We also completed 
a pre-specified sub-group analysis of model performance in patients older than 50 years of age and in patients 
younger than 50 years of age. Two-sided p values < 0.05 were considered statistically significant. All models were 
developed using R.

Ethics approval. The University of Washington Institutional Review Board approved this study.

Results
Patient characteristics. A total of 1057 patients were included in the analysis, 712 from UW and 345 from 
Tongji Hospital. Baseline characteristics for patients in both cohorts who died vs survived are shown in Tables 1 
and 2. In the UW cohorts, 10% of patients were treated with hydroxychloroquine, 24% with remdesivir and 4% 
with tocilizumab during hospitalization. In the UW cohorts, patients who died were older (median [IQR] age 
66 [54–75] vs. 55 [41–66] years), more likely to be male (70% vs. 61%), had lower platelet count (median [IQR] 
155 [114–234] vs. 200 [155–265]), and higher white blood cell counts (median [IQR] 9.85 [7.01–14.44] vs. 7.87 
[5.64–11.37]. In the Tongji cohort there was a similar difference in baseline characteristics between patients who 
died and survived during hospitalization.

Machine learning model for in‑hospital mortality. Among 712 patients in the UW dataset, 122 (17%) 
died. The mean length of hospital stay was 15.7 (standard deviation 21.5) days for all patients and 14.8 (standard 
deviation 13.7) days for those that died. Among 328 patients from the Tongji Hospital dataset, 159 (46%)  died26. 
We applied three machine learning methods (LASSO LR, elastic net LR and XGBoost) to the training set and 
evaluated the model performance in the interval validation set. Elastic net LR model had the highest AUC in 
the internal validation set (0.72, 95% CI: 0.64 to 0.81) for in-hospital mortality. Next, we tested the elastic net 
LR model in the external validation cohort, and obtained an AUC of 0.85 (95% CI: 0.81 to 0.89) for in-hospital 
mortality (Fig. 1A and B and Table 3). To examine the effect of hyperparamater optimization on XGBoost algo-
rithm, we trained both XGBoost with hyperparameter optimization and compared to our original XGBoost 
algorithm (fixed hyperparameters) for five times. The mean internal validation AUC by fixing hyperparameters 
and with hyperparameter optimization were 0.638 and 0.668, respectively, and the difference was not statistically 
significant, p = 0.08. We also compared the mean AUC in the external validation and there was no significant 
improvement (p = 0.80). Based on these results, we carried forward the elastic net LR model to predict in-hos-
pital mortality (Table 4).

The top 3 variables in the in-hospital mortality prediction model included, age, minimum platelet count, 
and maximum white blood cell count (Fig. 2A). Partial dependence plots for the most important continuous 
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variables in elastic net LR are shown in Fig. 3A. Older age was associated with a linear increase in mortality. In 
contrast, platelet count showed a relatively flat risk profile up to 500 ×  109/L after which risk of death increased 
linearly with lower platelet counts. The predicted risk of in-hospital mortality compared with the observed risk 
was well calibrated in the test set (Fig. 4). In Table 5, we provide the sensitivity, specificity, positive predictive 
values (PPV) and negative predictive values (NPV) across the three different cohorts for in-hospital mortality. We 

Table 1.  Features in the UW dataset stratified by survivors and non-survivors. All variables are median and 
interquartile range unless otherwise specified.

Total (n = 712) Non-survivors (n = 122) Survivors (n = 590)

Age, years 57 (44,69) 66 (54.25,75) 55 (41,66)

Female, n (%) 267 (38) 37 (30) 230 (39)

Male, n (%) 445 (62) 85 (70) 360 (61)

Maximum Serum Creatinine, mg/dL 0.97 (0.73,1.5) 1.16 (0.77,2.5) 0.95 (0.72,1.4)

Minimum Serum Creatinine, mg/dL 0.83 (0.64,1.19) 1.05 (0.67,1.82) 0.8 (0.63,1.11)

Maximum White Blood Cell Count, per  mm3 8.11 (5.81,12.12) 9.85 (7.01,14.44) 7.87 (5.64,11.37)

Minimum White Blood Cell Count, per  mm3 6.72 (4.8,9.89) 7.34 (5.28,11.17) 6.53 (4.63,9.63)

Maximum Glucose, mg/dL 138 (111,186.5) 154.5 (118,236) 135 (109,182)

Minimum Glucose, mg/dL 108 (92,133) 111.5 (95,138) 106.5 (91,132)

Maximum Serum Potassium, mmol/L 4.1 (3.8,4.6) 4.4 (4,4.8) 4.1 (3.8,4.6)

Minimum Serum Potassium, mmol/L 3.7 (3.4,4) 3.8 (3.5,4.2) 3.7 (3.4,4)

Maximum Platelet Count,  109/L 223.5 (176,302) 190 (138.5,254.25) 228.5 (183.75,312)

Minimum Platelet Count,  109/L 194 (148, 259) 155 (114, 234) 200 (155, 265)

Maximum Serum Sodium, mmol/L 137 (134,140) 137 (134,140.25) 137 (135,140)

Minimum Serum Sodium, mmol/L 135 (132,138) 134 (132,138) 135 (132,137)

Maximum Serum Chloride, mmol/L 103 (100,106) 103 (98.75,107.25) 103 (100,106)

Minimum Serum Chloride, mmol/L 100 (97,103) 99 (95,104) 100 (97,103)

Maximum Hematocrit, % 38 (33,42) 36 (32,41) 38 (34,43)

Minimum Hematocrit, % 35 (30,39) 34 (29,38) 35 (31,39)

Maximum Blood Nitrogen Urea, mg/dL 19.5 (13,33) 30 (17,54) 19 (13,31)

Minimum Blood Nitrogen Urea, mg/dL 16 (11,27) 23 (15,39.25) 15 (10,24)

Table 2.  Features in the Tongji dataset stratified by survivors and non-survivors.

Total (n = 345) Non-survivors (n = 159) Survivors (n = 186)

Age, years 62 (46,70) 69 (63,77.5) 51 (37,62.75)

Female, n (%) 143 (41) 43 (27) 100 (54)

Male, n (%) 202 (59) 116 (73) 86 (46)

Maximum Serum Creatinine, mg/dL 0.86 (0.66, 1.1) 1 (0.79, 1.29) 0.72 (0.6, 0.97)

Minimum Serum Creatinine, mg/dL 0.86 (0.64, 1.1) 0.98 (0.76, 1.28) 0.72 (0.6, 0.97)

Maximum White Blood Cell Count, per  mm3 7.2 (4.75, 12.89) 10.75 (7.08, 15.97) 5.38 (4.15, 7.59)

Minimum White Blood Cell Count, per  mm3 5.7 (4.08, 9.09) 9.14 (6.07, 13.4) 4.61 (3.6, 5.8)

Maximum Glucose, mg/dL 125 (104, 164) 151 (119, 204) 109 (94, 138)

Minimum Glucose, mg/dL 124 (104, 163) 150 (118, 203) 109 (94, 138)

Maximum Serum Potassium, mmol/L 4.2 (3.9,4.6) 4.3 (3.9,4.8) 4.1 (3.8, 4.5)

Minimum Serum Potassium, mmol/L 4.2 (3.8,4.6) 4.3 (3.9,4.7) 4.1 (3.8, 4.5)

Maximum Platelet Count,  109/L 179 (134,231) 149 (109,212) 201 (160, 254)

Minimum Platelet Count,  109/L 177 (134,231) 149 (107,206) 201 (160, 254)

Maximum Serum Sodium, mmol/L 139 (136, 142) 139 (136, 144) 139 (136, 141)

Minimum Serum Sodium, mmol/L 139 (136,142) 139 (136,144) 139 (136, 141)

Maximum Serum Chloride, mmol/L 101 (98,104) 101 (97,106) 101 (99, 103)

Minimum Serum Chloride, mmol/L 101 (98,104) 101 (97,105) 101 (99, 103)

Maximum Hematocrit, % 37 (34, 41) 37 (34, 41) 37 (34, 40)

Minimum Hematocrit, % 37 (34, 40) 36 (33, 41) 37 (34, 40)

Maximum Blood Nitrogen Urea, mg/dL 15 (11, 25) 25 (16, 36) 11 (9, 15)

Minimum Blood Nitrogen Urea, mg/dL 15 (11, 25) 25 (16, 36) 11 (9, 15)
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found that the model thresholds can be personalized to either maximize PPV or NPV. We found in the external 
validation cohort that the in-hospital mortality models had a maximum PPV and NPV of 0.84 or higher. Model 
coefficients are provided in Table S1 for future validation in diverse patient cohorts.

To better understand the association between clinical features and in-hospital mortality, we concentrated on 
patients > 50 years of age and re-trained the models excluding age. Elastic net LR model had the highest AUC 

Figure 1.  Receiver operator characteristics curves for mortality prediction. (A) The c-statistic for in-hospital 
mortality using Elastic net LR model had an AUC of 0.72, 95% CI: 0.64 to 0.81 in the internal validation 
cohort. (B) In the external validation cohort the model had an AUC of 0.85 (95% CI: 0.8 to 0.89) for in-hospital 
mortality.

Table 3.  Model performance in the training, internal and external validation sets for in-hospital mortality. 
The cutoff threshold to determine sensitivity and specificity was 0.5

Test Sets Statistics Lasso LR Elastic net LR XGBoost

Training

Sensitivity (95% CI) 0.12 (0.06,0.22) 0.12 (0.06,0.22) 0.99 (0.93,1.0)

Specificity (95% CI) 0.99 (0.98,1.0) 0.99 (0.98,1.0) 1.0 (0.99,1.0)

AUC (95% CI) 0.76 (0.71,0.81) 0.78 (0.73,0.83) 1.0 (1.0,1.0)

Internal validation

Sensitivity (95% CI) 0.05 (0.01,0.17) 0.10 (0.03,0.23) 0.37 (0.22,0.53)

Specificity (95% CI) 0.98 (0.95,0.99) 0.98 (0.95,0.99) 0.89 (0.84,0.93)

AUC (95% CI) 0.68 (0.59,0.77) 0.72 (0.64,0.81) 0.67 (0.59,0.76)

External validation

Sensitivity (95% CI) 0.11 (0.06,0.16) 0.22 (0.16,0.28) 0.50 (0.42,0.57)

Specificity (95% CI) 0.99 (0.97,1.0) 0.97 (0.94,0.99) 0.93 (0.89,0.97)

AUC (95% CI) 0.83 (0.78,0.87) 0.85 (0.81,0.89) 0.77 (0.72,0.82)

Table 4.  Model performance in the training, internal and external validation sets for in-hospital mortality for 
patients over 50. The cutoff threshold to determine sensitivity and specificity was 0.5

Test Sets Statistics Lasso LR Elastic net LR XGBoost

Training

Sensitivity (95% CI) 0.06 (0.02,0.14) 0.25 (0.16,0.36) 0.99 (0.93,1.0)

Specificity (95% CI) 0.98 (0.96,0.99) 0.95 (0.91,0.97) 1.0 (0.99,1.0)

AUC (95% CI) 0.68 (0.62,0.75) 0.7 (0.64,0.77) 1.0 (1.0,1.0)

Internal validation

Sensitivity (95% CI) 0.05 (0,0.3) 0.15 (0.03,0.38) 0.45 (0.23,0.68)

Specificity (95% CI) 1.0 (0.95,1.0) 0.97 (0.9,1.0) 0.91 (0.82,0.97)

AUC (95% CI) 0.66 (0.54,0.79) 0.73 (0.61,0.84) 0.72 (0.6,0.85)

External validation

Sensitivity (95% CI) 0.05 (0.01,0.08) 0.27 (0.2,0.34) 0.43 (0.35,0.51)

Specificity (95% CI) 0.97 (0.93,1.0) 0.95 (0.9,0.99) 0.89 (0.82,0.95)

AUC (95% CI) 0.8 (0.75,0.86) 0.82 (0.76,0.87) 0.71 (0.66,0.77)
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in the internal validation set (0.73, 95% CI: 0.61 to 0.84) for in-hospital mortality (Table 4). Next, we tested the 
elastic net LR model in the external validation cohort and obtained an AUC of 0.82 (95% CI:0.76,0.87) for in-
hospital mortality (Figures S1A and S1B and Table 4). In Table 6, we provide the sensitivity, specificity, positive 
predictive values (PPV) and negative predictive values (NPV) across the three different cohorts for in-hospital 
mortality in patients > 50 years of age. Partial dependence plots for the most important continuous variables in 
elastic net LR are shown in Fig. 3B. Platelet count, blood nitrogen urea, haematocrit and white blood cell count 
were the top 4 variables that predicted in-hospital mortality in the patients > 50 years of age (Fig. 2B).

Machine learning models for secondary outcomes. We next developed and cross-validated predic-
tion models for ICU transfer, shock and receipt of RRT. For the outcome of ICU transfer, 419 patients from the 
UW dataset were included with 45 (11%) patients were transferred to the ICU within 28 days of admission. A 
total of 293 patients were excluded from this analysis who were transferred to the ICU within the first day of 
hospitalization. The mean length of time to be transferred to ICU was 7.6 (standard deviation 9.1) days. Lasso 
LR achieved the highest AUC (0.60, 95% CI: 0.52,0.68) for prediction of ICU transfer compared with the other 
two methods (elastic net LR, XGBoost) (Fig. 5A and Table 7). The two predictors that most strongly correlated 
with subsequent ICU transfer were age and minimum  SpO2.

Figure 2.  Variable importance plots for mortality in all patients and in patients over 50 years of age. (A) Top 
predictor variables for mortality in all patients. Mean SHAP values are provided on the x-axis, which shows 
that age, minimum platelet count, maximum white blood cell count, minimum blood urea nitrogen, maximum 
serum sodium, minimum haematocrit, maximum hematocrit, minimum serum creatinine, sex and minimum 
glucose are the top-10 variables. (B) Top predictor variables for mortality in patients over 50 years of age. Mean 
SHAP values are provided on the x-axis for the mortality prediction model in patients over 50 years of age, 
which includes the five selected variables: maximum platelet count, minimum blood urea nitrogen, maximum 
hematocrit, minimum white blood cell count, and maximum glucose.
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Figure 3.  Partial dependence plots for mortality prediction model illustrating the relationship between 
mortality and the six top predictor variables A. Risk of mortality increases with increasing age, platelets < 500 
 109/L, and increasing white blood cell count. Risk of mortality increases with increasing blood urea nitrogen 
with an inflection point at 50 mg/dL. The risk of mortality increases with decreasing haematocrit levels and 
increasing sodium levels. B. Risk of mortality increases with increasing age, platelets < 500  109/L, and increasing 
white blood cell count. Risk of mortality increases with increasing blood urea nitrogen until 75 mg/dL and then 
levels off. The risk of mortality increases with decreasing haematocrit levels.

Figure 4.  Calibration plots for prediction models. (A) 28-days mortality in the internal validation. (B) 28-days 
mortality in the external validation. (C) 28-day ICU transfer in the internal validation. (D) 28-day receipt of 
RRT in the internal validation. (E) 28-day shock in the internal validation.
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Table 5.  Negative and positive predictive values for the Elastic net LR model and outcome of in-hospital 
mortality.

Performance goal
Patients above/
below threshold

Sensitivity (95% 
CI)

Specificity (95% 
CI) PPV (95% CI) NPV (95% CI)

Training
Maximizing NPV 409/65 1 (0.96,1.0) 0.17 (0.13,0.21) 0.2 (0.16,0.24) 1 (0.94,1.0)

Maximizing PPV 3/471 0.04 (0.01,0.1) 1.0 (0.99,1) 1.0 (0.29,1.0) 0.83 (0.8,0.87)

Internal validation
Maximizing NPV 165/73 0.93 (0.8,0.98) 0.36 (0.29,0.43) 0.23 (0.17,0.3) 0.96 (0.88,0.99)

Maximizing PPV 1/237 0.02 (0,0.13) 1.0 (0.98,1.0) 1.0 (0.03,1.0) 0.83 (0.78,0.88)

External validation
Maximizing NPV 308/37 0.98 (0.95,1) 0.18 (0.13,0.25) 0.51 (0.45,0.56) 0.92 (0.78,0.98)

Maximizing PPV 40/305 0.22 (0.16,0.29) 0.97 (0.94,0.99) 0.88 (0.73,0.96) 0.59 (0.54,0.65)

Table 6.  Negative and positive predictive values for the Elastic net LR model and outcome of in-hospital 
mortality for patients over 50.

Performance goal
Patients above/
below threshold

Sensitivity (95% 
CI)

Specificity (95% 
CI) PPV (95% CI) NPV (95% CI)

Training
Maximizing NPV 352/3 1 (0.95,1) 0.01 (0,0.03) 0.22 (0.18,0.27) 1 (0.29,1)

Maximizing PPV 5/350 0.04 (0.01,0.11) 0.99 (0.97,1) 0.6 (0.15,0.95) 0.78 (0.74,0.82)

Internal validation
Maximizing NPV 76/13 1 (0.83,1) 0.19 (0.1,0.3) 0.26 (0.17,0.38) 1 (0.75,1)

Maximizing PPV 1/88 0.05 (0,0.25) 1 (0.95,1) 1 (0.03,1) 0.78 (0.68,0.86)

External validation
Maximizing NPV 192/55 0.94 (0.89,0.97) 0.47 (0.37,0.58) 0.73 (0.67,0.8) 0.84 (0.71,0.92)

Maximizing PPV 56/191 0.33 (0.26,0.41) 0.94 (0.87,0.98) 0.89 (0.78,0.96) 0.48 (0.4,0.55)

Figure 5.  Receiver operator characteristics curves for ICU transfer, shock, RRT. (A) Receiver operator 
characteristics for ICU transfer in the cross-validation cohort. (B) Receiver operator characteristics for shock in 
the cross-validation cohort. (C) Receiver operator characteristics for RRT in the cross-validation cohort.

Table 7.  Model performance by tenfold cross validation for ICU transfer, shock, and RRT. The sensitivity and 
specificity were calculated at the cut-off value of 0.5.

Outcome Statistics Lasso LR Elastic net LR XGBoost

ICU transfer

Sensitivity (95% CI) 0 (0,0.08) 0.02 (0,0.12) 0.02 (0,0.12)

Specificity (95% CI) 1 (0.99,1) 1 (0.99,1) 0.92 (0.89,0.95)

AUC (95% CI) 0.6 (0.52,0.68) 0.58 (0.5,0.66) 0.51 (0.36,0.65)

Shock

Sensitivity (95% CI) 0.03 (0,0.1) 0.03 (0,0.1) 0.45 (0.33,0.57)

Specificity (95% CI) 0.99 (0.98,1) 0.99 (0.98,1) 0.91 (0.89,0.94)

AUC (95% CI) 0.75 (0.68,0.83) 0.76 (0.69,0.82) 0.7 (0.58,0.82)

RRT 

Sensitivity (95% CI) 0.25 (0.1,0.47) 0.25 (0.1,0.47) 0.58 (0.37,0.78)

Specificity (95% CI) 0.99 (0.98,1) 0.99 (0.98,1) 0.98 (0.97,0.99)

AUC (95% CI) 0.88 (0.79,0.98) 0.88 (0.78,0.98) 0.78 (0.6,0.95)
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For the outcome of shock, 606 patients from the UW dataset were included and 67 (11%) patients developed 
shock within 28 days of admission. A total of 106 patients were excluded from this analysis who had shock within 
the first day of hospitalization. The mean length of time to develop shock was 7.0 +/− 6.5 days (mean +/− SD). 
Elastic net LR achieved the highest AUC of the three methods (0.76, 95% CI: 0.69 to 0.82) (Fig. 5B and Table 7). 
The three predictors that were most highly correlated with subsequent development of shock were ICU admis-
sion, minimum mean arterial blood pressure and minimum Glasgow coma scale score.

For the outcome of receipt of RRT, 671 patients from the UW dataset were included and 24 (2.6%) patients 
received RRT within 28 days of admission. A total of 41 patients were excluded from this analysis who received 
RRT within the first day of hospitalization. The mean length of time to receive RRT was 5.8 + /− 7.2 days 
(mean +/− SD). As shown in Fig. 5C and Table 7, Lasso LR achieved a slightly higher mean AUC compared 
with the other two methods (0.88, 95% CI: 0.79 to 0.98). The predictor that most strongly influenced need for 
RRT was minimum serum creatinine. Variable importance plots for all the secondary outcomes can be found 
in Fig. S2. Model calibration plots for each of the secondary outcomes are provided in Fig. 4. Coefficients for 
variables are provided in Tables S2–S4.

Discussion
In this derivation, internal validation and external validation study of adult hospitalized patients with COVID-19, 
we developed and validated an in-hospital mortality prediction tool using variables that are routinely collected 
within 24 h of hospital admission. We found the mortality prediction model had high accuracy to predict mor-
tality with a 2-week lead-time. We also found that elastic net logistic regression had the highest prediction and 
best calibration of the machine learning models tested. In addition, we derived models for ICU transfer, shock 
and RRT. Our mortality prediction model provides a simple bedside tool and highlights clinical variables that 
can inform triage decisions in hospitalized patients with COVID-19.

The mortality prediction tool was derived using 20 variables and exported to an external dataset. The model 
had higher discrimination in the external dataset, demonstrating the generalizability of the model. Variables that 
informed model development included age, white blood count, and platelet count. These variables have been 
individually shown to be previously prognostic in COVID-19 hospitalization as well as in  sepsis1,27,28. A machine 
learning study in Germany for mortality prediction in COVID-19, also found that age and markers of thrombotic 
activity were predictive of ICU  survival29. An advantage of our model to other studies is that we included not only 
patients admitted to the ICU but all patients presenting to the hospital. This broad inclusion criteria improves 
generalizability of our findings. We found that elastic net regression was the most accurate algorithm for predict-
ing in-hospital mortality in our datasets. The value of elastic net regression machine learning algorithms is that 
it is interpretable. We provide the variables and the coefficients for each model in the supplemental materials to 
ease future testing in diverse patient cohorts.

The present machine learning models show that a reliable prediction can be made for hospital mortality and 
organ failure in hospitalized patients with COVID-19. The AUC for our model had a performance in the exter-
nal validation set comparable to or improved than alternative COVID-19 prediction  models12,30–32. One benefit 
of our model is that it was developed and internally validated in a US population and externally validated in a 
population from China. This is in contrast to other prediction models developed in COVID-19 that are specific 
to patients admitted to one healthcare system or hospitalized in one  country12,13,29,30,33,34. The ability to validate 
our model in a healthcare system outside the US shows the generalizability of the model and the reproducibility 
of our findings. Our findings also demonstrate the inherent similarities in the patient response to infection and 
the clinical variables that are associated with poor outcomes.

This study has several strengths, including a discovery and validation cohort. In addition, we developed 
models for not only mortality but also organ specific failure. Another strength is that the model predicted out-
comes up to 2 weeks prior to the outcome occurring. This lead time is essential to help inform clinical care and 
provide a window when therapeutics can be tested to change eventual outcomes. Finally, all prediction models 
were developed using routinely collected data that is available in most electronic medical records. This allows 
the easy replication of our models to diverse patient cohorts. Since age is one of the strongest predictors of 
mortality in COVID-19, we specifically developed in-hospital mortality prediction models in the population of 
patients > 50 years of age. We found that clinical biomarkers, such as platelet count, blood urea nitrogen, white 
blood cell count and blood urea nitrogen, in combination continued to accurately predict in-hospital mortality.

There are also several limitations to this work. First, although developed and validated in an external dataset, it 
is possible that our findings may not generalize to other settings. For example, the validation set included patients 
enrolled early during the pandemic when certain immunomodulatory therapies (e.g., dexamethasone and toci-
lizumab) were not widely used. However, patients in the discovery set were enrolled during a broad timespan 
after clinical trials supported the use the corticosteroids in ICU patients with COVID-19. Second, we restricted 
to clinical and laboratory variables collected within 24 h of ICU admission. We restricted to these variables to 
develop prediction models that could be run on electronic health record data. Moreover, the variables used in 
the model are often not missing in the medical record and regularly collected. Third, secondary outcomes, such 
as ICU transfer, shock and need for RRT, were not available in the external validation set.

Conclusions
We developed prediction models with high discrimination for mortality, shock and RRT. The in-hospital mortal-
ity model performed well in the internal validation set and showed improved accuracy in the external validation 
set. Key variables that informed the in-hospital mortality prediction model included age, white blood cell count 
and platelet count. The mortality prediction model on average was able to identify future risk of mortality 2 weeks 
prior to the clinical outcome. All variables to develop the prediction models used clinical variables collected 
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within the first day of hospital admission. These machine learning derived prediction models could be used to 
improve triage decisions, resource allocation, and support clinical trial enrichment in patients hospitalized with 
COVID-19.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due currently 
ongoing research studies, but the data are available from the corresponding author on reasonable request.
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