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Ansatz‑Independent Variational 
Quantum Classifiers and the Price 
of Ansatz
Hideyuki Miyahara & Vwani Roychowdhury*

The paradigm of variational quantum classifiers (VQCs) encodes classical information as quantum 
states, followed by quantum processing and then measurements to generate classical predictions. 
VQCs are promising candidates for efficient utilizations of noisy intermediate scale quantum (NISQ) 
devices: classifiers involving M-dimensional datasets can be implemented with only ⌈log

2
M⌉ qubits 

by using an amplitude encoding. A general framework for designing and training VQCs, however, 
is lacking. An encouraging specific embodiment of VQCs, quantum circuit learning (QCL), utilizes 
an ansatz: a circuit with a predetermined circuit geometry and parametrized gates expressing a 
time-evolution unitary operator; training involves learning the gate parameters through a gradient-
descent algorithm where the gradients themselves can be efficiently estimated by the quantum 
circuit. The representational power of QCL, however, depends strongly on the choice of the ansatz, 
as it limits the range of possible unitary operators that a VQC can search over. Equally importantly, 
the landscape of the optimization problem may have challenging properties such as barren plateaus 
and the associated gradient-descent algorithm may not find good local minima. Thus, it is critically 
important to estimate (i) the price of ansatz; that is, the gap between the performance of QCL and 
the performance of ansatz-independent VQCs, and (ii) the price of using quantum circuits as classical 
classifiers: that is, the performance gap between VQCs and equivalent classical classifiers. This paper 
develops a computational framework to address both these open problems. First, it shows that VQCs, 
including QCL, fit inside the well-known kernel method. Next it introduces a framework for efficiently 
designing ansatz-independent VQCs, which we call the unitary kernel method (UKM). The UKM 
framework enables one to estimate the first known computationally-determined bounds on both the 
price of ansatz and the price of any speedup advantages of VQCs: numerical results with datatsets of 
various dimensions, ranging from 4 to 256, show that the ansatz-induced gap can vary between 10 
and 20% , while the VQC-induced gap (between VQC and kernel method) can vary between 10 and 
16% . To further understand the role of ansatz in VQCs, we also propose a method of decomposing a 
given unitary operator into a quantum circuit, which we call the variational circuit realization (VCR): 
given any parameterized circuit block (as for example, used in QCL), it finds optimal parameters and 
the number of layers of the circuit block required to approximate any target unitary operator with a 
given precision.

Since the discovery of Shor’s algorithm1, much effort has been devoted to the development of quantum algo-
rithms and quantum computers2. To exploit a near-term quantum device, several variational quantum algorithms 
(VQAs)3 have been proposed, including the quantum approximate optimization algorithm (QAOA)4 and the 
variational quantum eigensolver (VQE)5. Then, quantum circuit learning (QCL) was proposed in Refs.6,7 and 
is now considered to be a promising candidate to utilize near-term quantum devices for implementing efficient 
solutions of machine learning (ML) tasks. QCL itself, however, is a special case of a larger set of hybrid quantum-
classical classifiers – a class that we refer to as variational quantum classifiers (VQCs) – since it assumes an 
ansatz, where the circuit geometry is fixed and only the gates are parameterized. Thus, several questions remain 
unanswered, including (i) whether one can get better performance than QCL by systematically designing an 
ansatz-independent VQC, (ii) given that a VQC and QCL perform end-to-end classical machine learning (ML) 
tasks, whether they are related to well-known classical ML algorithms that perform better. Furthermore, any 
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ansatz-independent upper bound of the performance of QCL is of great interest since the performance of QCL 
itself heavily depends on both an ansatz and on an optimization method.

In this paper, we first discuss the correspondence between a VQC and the well-known kernel method8,9. Then 
we propose an ansatz-independent VQC, which we call the unitary kernel method (UKM). By using the UKM, 
we present ansatz-independent upper bounds on the performance of QCL for a wide range of classification tasks, 
i.e., the price paid by any chosen ansatz, as well as by the use of the gradient-descent algorithm for learning 
the parameters of the chosen ansatz. Next, we construct QCL-type circuits that could implement the unitary 
operator computed by the UKM. Since the UKM computes an ansatz-independent unitary evolution operator 
(hence, computable by a quantum circuit), it provides a tighter bound on QCL than obtained by the classical 
kernel method. It also provides an estimate of the gap between a VQC and a classical kernel-method classifier.

To effectively use the unitary operator obtained by the UKM, we propose a unitary decomposition method 
to create a circuit geometry, which we call the variational circuit realization (VCR). By combining the UKM and 
the VCR, we can efficiently construct a circuit geometry that works well for classification problems.

In the rest of the paper we also use the term quantum advantage to capture both, (i) any potential gain in 
performance over classical ML algorithms, and (ii) any potential gain in hardware efficiency. For example, in the 
case of amplitude encoding, the number of qubits used is logarithmic in the dimension of the data. Thus, even 
if a classical ML algorithm performs better, VQCs can still have an advantage: when quantum devices become 
cheap and well-developed, it could lead to practical methods for implementing high dimensional classification 
problems.

Figure 1 presents a schematic of a general VQC, introduces and compares QCL and the UKM, and explains 
the VCR.

Variational quantum classifier
We first introduce an analytical formalism for a VQC. Suppose that we are given an n-qubit system and a clas-
sical dataset D := {xi , yi}

N
i=1 , where xi ∈ R

M is a feature vector and yi ∈ {1,−1} is the corresponding label for 
i = 1, 2, . . . ,N . In this paper, we consider amplitude encoding7; thus we fix n = ⌈log2 M⌉ . One can embed xi into 
a higher dimensional vector φ(xi) ∈ R

L with L = O(Mc) and then use the rest of the framework; the number of 
qubits n will still be O(logM) , thus retaining any potential quantum advantage. Here, O(·) is the big-O notation 
and c is a certain constant. In this paper, however, we stick to amplitude encoding. Let us consider making a 
prediction on yi by the following function:

Figure 1.   Schematic of the algorithms discussed in this paper: (a) A general form of a hybrid quantum-classical 
classifier, which we refer to as a VQC, (b) QCL, (c) UKM, and (d) VCR. (a) In the architecture of a VQC, the 
initial state is |init� := |0�⊗n . We first encode a given classical vector xi : |ψ in(xi)� := Ŝ(xi)|init� . One can embed 
xi into a higher dimensional vector φ(xi) ∈ R

L with L = O(Mc) and then use the rest of the framework; the 
number of qubits n will still be O(logM) , thus retaining any potential quantum advantage. Second, we apply 
Û : |ψout(xi; Û)� := Û |ψ in(xi)� . Third, we perform measurements with respect to {Ôj}j=1,2,...,Q . Finally, we 
make a prediction on the label of xi by using the outputs of the measurements. (b) In QCL, we assume a circuit 
geometry parameterized by θ for Û : Ûc(θ) . In most cases, a circuit used for QCL is composed of single- and two-
qubit operators and has a layered structure. A typical example is shown. (c) In the UKM, we directly optimize 
Û . (d) In the VCR, we decompose a unitary operator into a quantum circuit by assuming a layered structure for 
a quantum circuit. For a circuit realization, a simpler circuit is preferable; so, we explicitly denote the number of 
layers L.
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where

|ψout(xi; Û)� := Û |ψ in(xi)� , and Q is the number of observables. In the case of M = 2n [For the details of 
amplitude encoding, see also Sect. S–S-V of the supplemental material (SM) and Refs.7,10. Amplitude encoding 
in the case of M  = 2n is described in Sect. V of the SM.],

where n is the number of qubits. Here, xi,j is the j-th element of xi . We denote, by Ŝ(xi) , the unitary operator 
that maps |init� := |0�⊗n into |ψ in(xi)� in Eq. (3): |ψ in(xi)� = Ŝ(xi)|init� . While {ξj}Qj=1 can also be learned and 
optimized, the convention in Refs.6,7 is to treat them as fixed parameters and θb is a bias term to be estimated.

In a VQC, we estimate Û  and θb in Eq. (1) imposing the unitarity constraint on Û  as follows:

where

here ℓ(·, ·) is a loss function, such as the mean-squared error function or the hinge function8,9, and 1̂n is the 
n-dimensional identity operator. As explained later, we consider a parameterized unitary operator and optimize 
it in QCL and we directly optimize the unitary operator in the UKM.

Correspondence between a VQC and the kernel method
In the conventional kernel method8,9,11, a function φ(·) : RP → R

G is used to map any input data point zi ∈ R
P 

to φ(zi) ∈ R
G , and then a linear function is used to make a prediction on yi by

where φk(zi) is the k-th element of φ(zi) , and v := [v1, v2, . . . , vG]
⊺ is a real vector. For example, in a commonly 

used degree-2 polynomial kernel function, the products of all the pairs of the coordinates of zi are used to gener-
ate a higher dimensional embedding, along with a constant term. That is, G = P2 + 1 , φk+P(l−1)(zi) = zi,k · zi,l , 
for k, l = 1, 2, . . . ,P , and finally φ(P2+1) = 1 . With this choice of a kernel function, Eq. (6) can be written as

Once an embedding has been defined, we minimize the following function to determine v:

We show next how the VQC problem in Eq. (4) can be mapped to the above kernel form, i.e. any solution 
obtained by a VQC is a constrained solution of a corresponding kernel based classifier. Thus, the performance 
of a suitably defined kernel method – without any constraints on {vk}k – will always provide an upper bound on 
the performance of a VQC, including classifiers based on QCL. In the case of VQCs, we have P = 2n . Introduc-
ing ψ in

l (xi) := �l|ψ in(xi)� , Oj,(k,l) := �k|Ôj|l� , and uk,l := �k|Û |l� for k, l = 1, 2, . . . , 2n , �Ôj�xi ,Û , introduced in 
Eq. (2), can be rewritten as

(1)fpred(xi; Û , θb) :=

Q
∑

j=1

ξj�Ôj�xi ,Û + θb,

(2)
〈

Ôj

〉

xi ,Û
:=

〈

ψout
(

xi; Û
)∣

∣

∣
Ôj

∣

∣

∣
ψout

(

xi; Û
)〉

,

(3)|ψ in(xi)� :=
1

√

∑M
j=1 |xi,j|

2

M
∑

j=1

xi,j|j�,

(4)
{Û∗, θb,∗} = argmin Û ,θb

Jcost(Û , θb),

subject to Û†Û = 1̂2n ,

(5)Jcost(Û , θb) :=
1

N

N
∑

i=1

ℓ(yi , fpred(xi; Û , θb)).

(6)fpred(zi; v) :=

G
∑

k=1

vkφk(zi),

(7)fpred(zi; v) :=

P2+1
∑

k=1

vkφk(zi)

(8):=

P
∑

k,l=1

(zi,kvk+P(l−1)zi,l)+ v(P2+1).

(9)Jcost(v) :=
1

N

N
∑

i=1

ℓ(yi , fpred(zi; v)).

(10)�Ôj�xi ,Û =

2n
∑

k,l=1

ψ in
k (xi)wj,(k,l)ψ

in
l (xi),
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where, for k, l = 1, 2, . . . , 2n,

uk := [u1,k , u2,k , . . . , u2n ,k]
H for k = 1, 2, . . . , 2n ( (·)H is the Hermitian conjugate), and uHk ul = δk,l.

By using Eqs. (10) and (11), the VQC prediction function in Eq. (1) can be written as

Now, if we compare the VQC prediction function in (12), to the kernel method prediction function in (8), we 
get a direct correspondence, where a VQC is reduced to a constrained version of the kernel method, and thus, the 
kernel method provides an upper bound on the performance of VQCs. Formally, the following choice of φm(·) 
and vm in (6) is required [The kernel method is discussed in Sect. S-VI of the SM and the relationship between 
a VQC and the kernel method is discussed in Sect. S-VII of the SM in detail.]: for i = 1, 2, . . . , 2n , zi = ψ in(xi) , 
for k, l = 1, 2, . . . , 2n,

and

Furthermore, we have P = 2n and G = 22n + 1.
Another advantage of showing this relationship is that it helps us benchmark how well a VQC optimization 

method performs: since the kernel method is an upper bound, if the VQC attains performs very close to that of 
the kernel method, then it would show that it is performing at its highest capacity.

Quantum circuit learning
Here, we review QCL proposed in Refs.6,7 from the viewpoint of a VQC. In QCL, we assume a parameterized uni-
tary operator Ûc(θ) [Both Ûc(θ) and Ûc(θ; L) are used to denote a unitary operator realized by a quantum circuit; 
but we use Ûc(θ; L) when we want to explicitly emphasize the number of layers L.] as Û  and optimize θ [Refer 
to Sect. S-V B of the SM for the details of quantum circuits.]. We then compute |ψout(xi; θ)� := Ûc(θ)|ψ

in(xi)� . 
Then, we make a prediction on xi by

where �Ôj�xi ,θ := �ψout(xi; θ)|Ôj|ψ
out(xi; θ)� . Similarly to Eq. (1), {ξj}Qj=1 are fixed parameters and θb is a bias 

term to be estimated. The second step of QCL is to update θ and θb by

where

and ℓ(·, ·) is a loss function [For details, refer to Sec. S-V of the SM.]. For this purpose, we often use the Nelder-
Mead method12 and other sophisticated numerical methods13,14.

As mentioned above, QCL assumes a parameterized unitary operator Ûc(θ) ; thus, its performance heavily 
depends on the circuit geometry of Ûc(θ) . An assumed circuit geometry is also called an ansatz; thus we can say 
that QCL is an ansatz-dependent VQC. This fact strongly motivates us to devise an ansatz-independent VQC, 
that is, the UKM. Furthermore, Ref.15 pointed out the difficulty of learning parameters of quantum circuits, 
which they call the barren plateau problem. Then, a VQC that is free of the barren plateau problem is of interest.

Unitary kernel method
We here describe the UKM, which is one of the main algorithms in this paper. In the UKM, we directly minimize 
Eq. (5). To this end, we employ the unitary version of the method of splitting orthogonal constraints (SOC)16. 
Hereafter, we denote, by X̂ , an operator obtained via the method of SOC. We introduce P̂ and D̂ and iterate update 

(11)wj,(k,l) :=

2n
∑

k′ ,l′=1

u∗k,k′Oj,(k′ ,l′)ul′ ,l ,

(12)fpred(xi; Û , θb) :=

2n
∑

k,l=1

ψ in
k (xi)

( Q
∑

j=1

ξjwj,(k,l)

)

ψ in
l (xi)+ θb.

(13)φk+(l−1)2n(xi) = ψ in
k (xi)ψ

in
l (xi),

(14)vk+(l−1)2n =

Q
∑

j=1

wj,(k,l),

(15)φ22n+1 = 1,

(16)v22n+1 = θb.

(17)fpred(xi; θ , θb) :=

Q
∑

j=1

ξj�Ôj�xi ,θ + θb,

(18){θ∗, θb,∗} = argmin θ ,θb
Jcost(θ , θb),

(19)Jcost(θ , θb) :=
1

N

N
∑

i=1

ℓ(yi , fpred(xi; θ , θb)),
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equations for X̂ , P̂ , and D̂ until convergence. Furthermore, we denote X̂ , P̂ , D̂ , and θb at the k-th iteration by X̂k , 
P̂k , D̂k , and θb,k , respectively. At the first step of the k-th iteration, we compute X̂k and θb,k by

where

To solve Eq. (20), we optimize the real and complex parts of X̂k independently [See Sect. S-IX B of the SM for 
details.]. Next, we compute P̂k by

where K̂1,k and K̂†
2,k are unitary operators that satisfy K̂1,k�̂kK̂

†
2,k = X̂k + D̂k−1 and �̂k is a diagonal operator. At 

the end of the k-th iteration, we compute

We repeat the above equations, Eqs. (20), (22), and (23), until convergence. We call this method the UKM. In 
Algorithm 1, the UKM is summarized [For the details of the UKM, refer to Sect. S-IX A of the SM.].

It is clear from the formulation of the method of SOC that X̂ does not strictly satisfy the unitarity constraint; 
instead, P̂ and OU of X̂ does. Thus, using the optimal value of X̂ obtained from the UKM leads to a classical 
classifier (it cannot be implemented using a quantum circuit), and will in general have higher performance than 
the unitary operators given by P̂ and OU of X̂ that approximate X̂ . Thus, we compute the success rates for the 
training and test datasets by using all the versions: X̂ , P̂ , and OU of X̂ [OU is explained in Sect. S-IX A of the 
SM.], of which only P̂ and OU of X̂ correspond to VQCs.

Variational circuit realization
There are some studies on decomposing unitary operators into quantum circuits17–19, including Knill’s decompo-
sition and the quantum Shannon decomposition (QSD). In these methods, however, the number of the CNOT 
gates scales quadratically in M.

Here we propose an alternate method: the assumed circuit is comprised of L layers of a parameterized sub-
circuit with parameterized gates and a fixed circuit geometry; similar to the ansatz used in QCL. We then solve for 
the minimum number of layers L, such that the optimized circuit approximates the given unitary operator with 
a specified precision of δ . We refer to this circuit methodology as the VCR. The schematic of the VCR is demon-
strated in Fig. 1d. Let Û  and Ûc(θ; L) be a target unitary operator and a unitary operator realized by a quantum 
circuit that is parametrized by θ and has L layers, respectively. Typically, the target unitary operator is obtained by 
the UKM discussed above. Furthermore, we define the global phase unitary operator �̂2n(�) := e−i�1̂2n . When 
Û  and Ûc+p(θ , �; L) := �̂2n(�)Ûc(θ; L) are identical, we have

Then, we can estimate θ , for any p > 0 , by

where

In a circuit realization, the complexity of a circuit is of great interest. In this paper, we assume a layered structure 
for a quantum circuit. Thus, given an error threshold δ , it is convenient to define Lδ:

where

Numerical simulation
We first show the numerical results of QCL and the UKM for the cancer dataset (0 or 1) [The iris dataset in the 
UCI repository20 has two labels: (0) ‘B’ and (1) ‘M.’ In the cancer dataset (0 or 1), we consider the classification 
problem between the 0 label and the 1 label. Furthermore, we relabel 0 with −1 to adjust labels with the eigen-
values of σ̂z . For the numerical results for other datasets, refer to Sect. S-IX B of the SM.] in the UCI repository20. 
The results for multiple datasets with different dimensions, M, are presented in Table 1.

(20)
{

X̂k , θb,k

}

= argmin X̂,θb
JUKM

(

X̂, θb; P̂k−1, D̂k−1

)

,

(21)JUKM

(

X̂, θb; P̂, D̂
)

:= Jcost

(

X̂, θb

)

+
r

2
�X̂ − P̂ + D̂�2F.

(22)P̂k = K̂1,kK̂
†
2,k ,

(23)D̂k = D̂k−1 + X̂k − P̂k .

(24)Û†Ûc+p(θ , �; L) = 1̂2n .

(25){θ∗, �∗} = argmin θ ,�Jcost

(

θ , �; L, p, Û
)

,

(26)Jcost

(

θ , �; L, p, Û
)

:= �Û†Ûc+p(θ , �; L)− 1̂2n�
p
F.

(27)
Lδ := argmin LǫL,

subject to ǫL ≤ δ,

(28)ǫL := min
θ ,�

Jcost(θ , �; L, p, Û).
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Before getting into the numerical results, we state the numerical setup [For the details of numerical settings, 
refer to Sect. S-IX A of the SM.]. For the UKM, we put r = 0.010 and set K = 30 in Algo. 1. Furthermore, we use 
the conjugate gradient (CG) method to find the solution of Eq. (20) and run the CG iteration 10 times [Refer to 
Sect. S-IX B of the SM for the details of the CG method and Sect. S-IX C of the SM for the details of the UKM 
with the CG method.]. The UKM can be programmed to yield both real and complex unitary matrices and hence, 
we consider the performance for both cases separately; see the appendix and the SM. For QCL, we consider four 
types of quantum circuits: the CNOT-based circuit, the CRot-based circuit, the 1-dimensional (1d) Heisenberg 
circuit, and the fully-connected (FC) Heisenberg circuit [The definitions of the CNOT-based circuit, the CRot-
based circuit, the 1d Heisenberg circuit, and the FC Heisenberg circuit are given in Sect. S-V B of the SM.], and 
run iterations 300 times. To accelerate QCL, we utilize the stochastic gradient descent method9. In both cases, 
we use the squared error function ℓSE(a, b) := 1

2 |a− b|2 for ℓ(·, ·) in Eqs. (5) and (19), and set Q = 1 and ξ1 = 1 
in Eqs. (1) and (17). Furthermore, we consider two cases with the bias term and without the bias term in Eqs. (1) 
and (17). Note that we use the optimize function provided in the SciPy package21 for the implementation of the 
UKM and the Pennylane package22 for QCL. Because of the nature of SOC, the performance of the solutions 
often oscillates; thus, we run the UKM for a certain number of iterations and choose the solution of the best 
performance. Then we summarize the results of 5-fold cross-validation (CV) with 5 different random seeds of 
QCL and the UKM in Tables 2 and 3, respectively. For each method, we select the best model for the training 
dataset over iterations to compute the performance.

In Fig. 2, we plot the data shown in Tables 2 and 3.

Table 1.   Results of 5-fold CV with 5 different random seeds of the UKM ( X̂ , P̂ , and OU of X̂ ), QCL, and 
the kernel method for all the datasets. The numbers of data points N and dimensions M of the datasets are 
shown. The number of qubits n required for amplitude encoding is also shown. Note that n = ⌈log2 M⌉. The 
performance cells are of the format “training performance/test performance.” We choose the model that shows 
the best test performance for each algorithm. For the UKM, we consider the complex and real cases with and 
without the bias term. We set r = 0.010 . For QCL, we consider the CNOT-based, CRot-based, 1d-Heisenberg, 
and FC-Heisenberg circuits with and without the bias term for the iris, cancer, sonar, and wine datasets, and 
the CNOT-based and CRot-based circuits with and without the bias term for the semeion and MNIST256 
datasets. We set the number of layers L to 5. For φ(·) in the kernel method, we consider linear and quadratic 
functions with and without the bias term for � = 10−2, 10−1, 1 . The values of the best VQC for each dataset are 
printed in bold.

Variational quantum classifiers– Classical classifiers

Dataset N M n UKM ( P̂) UKM (OU of X̂) QCL UKM ( X̂) Kernel method

Iris (0 or 1) 100 4 2 1.0000/1.0000 1.0000/1.0000 1.0000/1.0000 1.0000/1.0000 1.0000/1.0000

Iris (0 or non-0) 150 4 2 1.0000/0.9987 1.0000/1.0000 1.0000/1.0000 1.0000/1.0000 1.0000/1.0000

Iris (1 or non-1) 150 4 2 0.7880/0.7789 0.7953/0.7994 0.6801/0.5872 0.9781/0.9618 0.9751/0.9666

Cancer (0 or 1) 569 30 5 0.9194/0.9131 0.9184/0.9115 0.8797/0.8768 0.9218/0.9160 0.9618/0.9568

Sonar (0 or 1) 208 60 6 0.9159/0.7985 0.9175/0.7909 0.7455/0.6924 0.8903/0.7774 1.0000/0.8198

Wine (0 or non-0) 178 14 4 0.9200/0.9185 0.9212/0.9171 0.9155/0.9126 0.9364/0.9313 0.9987/0.9955

Semeion (0 or 1) 323 256 8 1.0000/0.9943 1.0000/0.9945 0.9210/0.9099 1.0000/0.9957 1.0000/1.0000

Semeion (0 or non-0) 1593 256 8 0.9988/0.9949 0.9990/0.9953 0.8989/0.8982 0.9969/0.9925 1.0000/0.9955

MNIST256 (0 or 1) 569 256 8 0.9991/0.9969 1.0000/0.9951 0.9511/0.9459 0.9985/0.9966 1.0000/1.0000

MNIST256 (0 or non-0) 2766 256 8 0.9922/0.9871 0.9927/0.9889 0.9053/0.9050 0.9894/0.9859 0.9992/0.9953

Table 2.   Results of 5-fold CV with 5 different random seeds for the cancer dataset (0 or 1). The number of 
layers L is 5 and the number of iterations is 300. We consider four types of circuits with and without the bias 
term: the CNOT-based circuit, the CRot-based circuit, 1d Heisenberg circuit, and the FC Heisenberg circuit. 
As shown in Fig. 3, increasing the number of layers L does not lead to better performance, and can in fact 
decrease performance of QCL.

Algo. Condition Training Test

QCL CNOT-based, w/o bias 0.8797 0.8768

QCL CNOT-based, w/ bias 0.8597 0.8577

QCL CRot-based, w/o bias 0.7866 0.7752

QCL CRot-based, w/ bias 0.8085 0.8052

QCL 1d Heisenberg, w/o bias 0.6568 0.6512

QCL 1d Heisenberg, w/ bias 0.7515 0.7427

QCL FC Heisenberg, w/o bias 0.7435 0.7444

QCL FC Heisenberg, w/ bias 0.7744 0.7789
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As shown in Fig. 2, the performance of the UKM is better that of QCL in several numerical setups.
Given our analytical results showing that the kernel method is a superset of VQCs, we next present the 

performance of the kernel method [Particularly, we use Ridge classification as the kernel method. In Ridge clas-
sification, we use the squared error function ℓSE(·, ·) for ℓ(·, ·) in Jcost(v) :=

1
N

∑N
i=1 ℓ(yi , fpred(xi; v))+

�

2�v�
2
F . 

For the details of the kernel method, see Sect. S-VI of the SM. More specifically, Ridge classification is described 
in Sect. S-VI B of the SM. Refs.8,9 are also helpful.]. We set � = 10−1 , which is the coefficient of the regulariza-
tion term, and consider linear and quadratic functions for φ(·) with and without normalization. The norm of 
the vector of each data point is not unity. Normalization means that we normalize the vector of each data point 
before performing classification. The purpose is to see the effect of normalization incorporated into amplitude 
encoding though the original setup of classification does not have the process. Note that we use the scikit-learn 
package23 for the kernel method. Then we summarize the results of 5-fold CV with 5 different random seeds of 
the kernel method in Table 4.

For some � , the performance of the kernel method is better than QCL and the UKM, as expected.
Next, we explore the performance dependence of QCL on the number of layers L. The result is shown in Fig. 3.
One would naturally expect that increasing the number of layers L leads to better performance. In general, 

a circuit with L+ 1 layers can clearly do at least as well as the circuit with L layers: pick the same parameters for 

Table 3.   Results of 5-fold cross-validation (CV) with 5 different random seeds for the cancer dataset (0 or 
1). We show the performance obtained by X̂ , P̂ , and OU of X̂ . We consider real and complex matrices for the 
initial input with and without the bias term. We set r = 0.010 and K = 30 . We repeat the CG iteration for 
Eq. (20) 10 times in each step of the method of SOC. Due to the inherent formulation of the method of SOC, X̂ 
does not strictly satisfy the unitarity condition; P̂ and OU of X̂ strictly satisfy the unitarity condition, yielding 
VQCs. The overall higher performance of X̂ can be attributed to it being a classical classifier; a special case of 
the kernel method. Note, however, that the classifier created by the UKM without bias yield better performance 
than the best classifiers created by QCL, as shown in Table 2.

Algo. Condition Training Test

UKM X̂ , complex, w/o bias 0.9219 0.9143

UKM P̂ , complex, w/o bias 0.9204 0.9093

UKM OU of X̂ , complex, w/o bias 0.9184 0.9115

UKM X̂ , complex, w/ bias 0.9207 0.9143

UKM P̂ , complex, w/ bias 0.8870 0.8753

UKM OU of X̂ , complex, w/ bias 0.8912 0.8805

UKM X̂ , real, w/o bias 0.9213 0.9107

UKM P̂ , real, w/o bias 0.9194 0.9131

UKM OU of X̂ , real, w/o bias 0.9170 0.9112

UKM X̂ , real, w/ bias 0.9218 0.9160

UKM P̂ , real, w/ bias 0.7929 0.7879

UKM OU of X̂ , real, w/ bias 0.8107 0.8014

Figure 2.   Results of 5-fold CV with 5 different random seeds for the cancer dataset (0 or 1). For the UKM, 
we put r = 0.010 and K = 30 ; see the appendix for the definitions of r and K. We repeat the CG iteration for 
Eq. (20) 10 times in each step of the method of SOC. For QCL, the number of layers L is 5 and the number 
of iterations is 300. The numerical settings are as follows: (1) UKM: complex matrix without bias, (2) UKM: 
complex matrix with bias, (3) UKM: real matrices without the bias term, (4) UKM: real matrices with the bias 
term, (5) QCL: CNOT-based circuit without the bias term, (6) QCL: CNOT-based circuit with the bias term, 
(7) QCL: CRot-based circuit without the bias term, (8) QCL: CRot-based circuit with the bias term, (9) QCL: 
1d Heisenberg circuit without the bias term, (10) QCL: 1d Heisenberg circuit with the bias term, (11) QCL: FC 
Heisenberg circuit without the bias term, and (12) QCL: FC Heisenberg circuit with the bias term.
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the first L layers, and choose parameters to create an identity operator with the last layer. But Fig. 3 shows it is 
not the case. Rather, the test performance gets worse when we increase the number of layers L. This variability 
is potentially related to the structure of the cost function landscape: as the number of parameters is increased by 
adding an extra layer, there are potentially more local minima or the landscape develops what has been referred 
to as a “barren plateau” in Ref.15.

We also see the performance dependence of the UKM on r, which is the coefficient of the second term in the 
right-hand side of Eq. (20). The result is shown in Fig. 4.

For small r, X̂ in the UKM deviates from unitary matrices and the performance gets better. On the other 
hand, for large r, X̂ in the UKM becomes closer to unitary matrices but the performance gets worse. Thus, we 
should choose an appropriate value of r.

Table 4.   Results of 5-fold CV with 5 different random seeds of the kernel method for the cancer dataset (0 or 
1). We set � = 10−1 . For φ(·) , we use linear and quadratic functions with and without normalization.

Algo. Condition Training Test

Kernel Linear, w/o normalization 0.9623 0.9549

Kernel Linear, w/ normalization 0.9205 0.9176

Kernel Quadratic, w/o normalization 0.9936 0.9361

Kernel Quadratic, w/ normalization 0.9210 0.9195

Figure 3.   Performance dependence of QCL on the number of layers L for the cancer dataset (0 or 1). We 
use the CNOT-based (upper panel) and CRot-based (lower panel) circuit geometries and set θbias = 0 . We 
iterate the computation 300 times. Note that, for any L, the CRot-based circuit has inherently more expressive 
power than the CNOT-based circuit: just fix the controlled versions of the 3-dimensional rotation gate to the 
CNOT gates. The fact that performance in the lower panel is worse than that in the upper panel indicates the 
optimization problems faced in QCL.
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Figure 4.   Performance dependence of the UKM on r, which is the coefficient of the second term in the 
right-hand side of Eq. (20) for the cancer dataset (0 or 1). We use complex matrices for the initial input and set 
θbias = 0 . We put r = 0.010 and K = 30 . We repeat the CG iteration for Eq. (20) 10 times in each step of the 
method of SOC.

Figure 5.   Performance dependence of the kernel method on � , which is the coefficient of the regularization 
term for the cancer dataset (0 or 1). For φ(·) , we use linear and quadratic functions (upper panel) with and 
(lower panel) without normalization.
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In Fig. 5, we show the performance dependence of the kernel method on � , which is the coefficient of the 
regularization term.

Like r in the UKM, we also need to choose an appropriate � to realize good performance.
In Table 1, we summarize the performance of QCL, the UKM, and the kernel method for all the datasets 

investigated in this study. We choose the model that shows the best test performance for each algorithm. For the 
UKM, we consider the complex and real cases with and without the bias term. We set r = 0.010 . For QCL, we 
consider the CNOT-based, CRot-based, 1d-Heisenberg, and FC-Heisenberg circuits with and without the bias 
term for the iris, cancer, sonar, and wine datasets, and the CNOT-based and CRot-based circuits with and with-
out bias term for the semeion and MNIST256 datasets. We set the number of layers L to 5. For φ(·) in the kernel 
method, we consider linear and quadratic functions with and without the bias term for � = 10−2, 10−1, 1 . The 
numerical results support the claim that the UKM lies between the kernel method and QCL. We also show the 
detailed numerical results for all the datasets in the SM [In Sect. S-XI of the SM, the numerical results for other 
datasets are shown.]. The results shown in the SM are consistent with this paper. Finally, we note the difference 
between the squared error and hinge functions. In this paper, we have used the squared error function; we show 
the results of the hinge function in the SM. The results are qualitatively same as obtained with the squared error 
function, and the statements about the relative performances of QCL and the UKM do not change.

We then show numerical simulations on the VCR. Let Ûc(θ; L) be the unitary operator realized by a quantum 
circuit that is parametrized by θ and has L layers. For Ûc(θ; L) , we use the CNOT-based circuit. Furthermore, we 
use the BFGS method14 to solve Eq. (25). Note that we use the optimize function provided in the SciPy package21 
for the implementation of the VCR. Here, let us consider the cancer dataset (0 or 1) and minimize Eq. (26) with 
p = 2 . As a target unitary operator, we use the unitary operator that gives the success rate for the training dataset 
0.9194 and that for the test dataset 0.9131. In Fig. 6, we show the values of the cost function in the right-hand side 
of Eq. (26) with different numbers of layers L. In Table 5, we summarize the performance of the input unitary 
operator, QCL, and the circuit geometries computed by the VCR.

Figure 6 and Table 5 show that Ûc(θ; L) gives fairly high performance. Furthermore, we have L0.001 = 80 
where the definition of Lδ is given in Eq. (27). This implies that 80 layers are sufficient to approximate the given 
unitary operator in the case of the CNOT-based circuit.

Note that the optimization problems arising in VQC involve well-known cost functions used in machine 
learning, with the added constraint of unitarity. Thus, in general, the UKM optimization problem is nonconvex 
and there is no rigorous proof that the UKM will achieve the best possible solution; the same is the case with the 
ansatz-dependent QCL. We can, however, make the following observations: (i) Clearly, the optimal performance 
of the UKM is an upper bound for the optimal performance of QCL; by focusing on unitary operations, the 
UKM searches over all possible ansätze; (ii) Given any QCL solution, the UKM can almost always show better 
performance (in the worst case, the same performance), by initializing it with the QCL solution; (iii) Even with 
random initializations, as shown numerically in the paper, the expected performance of the UKM can be bet-
ter than the expected performance of QCL. Thus, the UKM can be framework enables one to estimate the first 
known computationally-determined bounds on the price of ansatz.

We also emphasize that the initialization of the UKM is done randomly, but the numerical simulations show 
that the UKM works stably.

Table 5.   Performance of the VCR for the cancer dataset (0 or 1). We show the success rates for the training 
and test datasets and the value of the cost function for the VCR. The input for the VCR is P̂ created by the 
UKM under the condition of real matrices without the bias term with r = 0.010 . For reference, we add the last 
three rows that show the results of 5-fold CV. The table shows that around 50 layers, by combining the UKM 
with the VCR one can get a better performance than that of QCL.

Algo. Condition Cost Training Test

Input UKM, P̂ , real, w/o bias – 0.9139 0.9483

VCR # of layers: 10 1.9694 0.3929 0.2931

VCR # of layers: 20 1.9734 0.6071 0.7069

VCR # of layers: 30 1.3950 0.6071 0.7069

VCR # of layers: 40 0.7777 0.6909 0.7586

VCR # of layers: 50 0.4657 0.8499 0.9224

VCR # of layers: 60 0.1877 0.9073 0.9483

VCR # of layers: 70 0.0236 0.9073 0.9483

VCR # of layers: 80 0.0000 0.9139 0.9483

VCR # of layers: 90 0.0000 0.9139 0.9483

VCR # of layers: 100 0.0000 0.9139 0.9483

UKM P̂ , real, w/o bias – 0.9194 0.9131

QCL # of layers: 5 – 0.8798 0.8768

QCL # of layers: 10 – 0.7814 0.7767
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Discussions
As shown in this paper, the performance of QCL is bounded from above by the UKM, which in turn has its 
performance bounded above by kernel method based classical classifiers. One of the primary contributing fac-
tors is the difference in the degrees of freedom in QCL and the UKM. In the UKM, we have O(M2) parameters 
to estimate; on the other hand, the number of parameters in QCL is O(L lnM) . This difference implies that a 
circuit ansatz introduces a strong bias in QCL, and may restrict the performance of QCL considerably. Thus, 
by designing the UKM, we can explore the ultimate power of QCL and at least, for the case of a small number 
of qubits n, the numerical results in this paper show that the ultimate power of QCL is limited (see Table 1); 
the performance of the UKM could be up to 10-20% higher than that of the QCL. As noted earlier, we can also 
explore the potential limitations of QCL from the viewpoint of optimization. Figure 3 implies the difficulty of 
optimizing parameters in QCL. The success rates in Fig. 3 should be more smooth and monotonically increasing: 
clearly, a circuit with L layers should perform better than a circuit with L− 1 layers, but it seems the QCL can 
easily get stuck in local minima. This phenomenon may come from the barren plateau problem15. On the other 
hand, the performance of the UKM is very high and close to that of the kernel method in Fig. 4; thus, we can 
say that the UKM does not suffer from a similar optimization problem. This also implies that finding a proper 
ansatz such that the QCL paradigm attains the same performance as the UKM is a computationally challeng-
ing problem. Even if an ansatz has the representation capability to yield optimal results, the QCL optimization 
algorithm might not find the optimal gate parameters.

Then, we turn our attention to discussing the numerical results of the VCR. Recall that M and L are the 
dimension of the data points and the number of layers in an ansatz adopted in QCL, respectively. Note also that 
we use amplitude encoding in this paper. Then circuits in QCL have ⌈lnM⌉ qubits and have O(L lnM) gates. 
The number of parameters to estimate is of the same order since we use the three-dimensional rotation gate as 
a parametrized gate. The UKM also has the same number of qubits ⌈lnM⌉ ; so it retains the qubit efficiency, but 
it optimizes over O(M2) parameters. Moreover, circuits obtained by the combination of the UKM and the VCR 
are still of complexity O(L lnM) , except that now L is not a constant, as in QCL. For the datasets used in this 
paper, the VCR yields much more compact circuits than traditional methods for obtaining circuits for unitary 
operators, such as the QSD, where the number of gates will be O(M2) . Thus, the VCR yields better performance 
than the traditional methods.

Also, we show using the VCR that we can realize the unitary operator obtained by the UKM using the same 
ansatz used in QCL. Furthermore, the combination of the UKM and the VCR leads to better performance and 
a circuit with fewer gates or layers than QCL in some cases; see also the section on the numerical simulation 
of the VCR in the SM [See Sect. S-XII of the SM. We show the numerical results of the VCR on two additional 
datasets, and their results are consistent.]. In other cases, we have bigger circuits (i.e., L is larger) but with better 
performance. If a dataset has very high dimensions, i.e. M is very large, the computational time and circuit size 
might be very large, O(M2) . But we still have the ⌈lnM⌉ advantage in the number of qubits n. However, QCL 
also has two major potential problems, when M is very large. First, the dataset size has to be very large due to the 
curse of dimensionality, as M increases. So the training time and convergence complexity will be a problem no 
matter what the parameter size is. Second, there is no guarantee that a kernel function with O(L lnM) parameters 
will do well, especially for small L. The performance for small L and large M could be poor. There is no theoreti-
cal proof that, for large M, QCL will do well with small L. We both use the same number of qubits ⌈lnM⌉ ; so in 
terms of intermediate-scale quantum computers, we both have the same advantage. And the computation of the 
VCR is O(M2) ; so it is doable for any reasonable dimensions M. In particular, we believe the UKM can be used 
to derive VQC implementations on NISQ devices comprising up to 20 qubits, (i.e. M = 106 or million dimensional 
data sets) using enough classical computing resources. Thus, in addition to the application of UKM in deriving 
bounds and understanding the role of ansatz in quantum algorithms, it can even complement QCL in the short 
term and design optimal VQCs for NISQ devices.

Figure 6.   Values of the cost function Jcost(θ , �; L, 2, Û) , Eq. (26) with p = 2 , for the cancer dataset (0 or 1). We 
set L = 30, 40, 50, 60, 70, 80, 90, 100.
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In this paper, we focused on amplitude encoding. Recently, the relationship between QCL and the kernel 
method was discussed from the viewpoint of encoding in Ref.11. More specifically, the basis encoding, the angle 
encoding, coherent state encoding, and other encodings were investigated besides amplitude encoding. We also 
would like to note that amplitude encoding provides a logarithmic compression: the number of qubits needed 
is logarithm in the dimension of the data. Most other encoding schemes require qubits proportional to the 
dimension (1/2 for example). Given that VQCs are a sub-class of classical kernel methods – that is, there is no 
performance gain over classical ML algorithms – the only potential quantum advantage lies in the logarithmic 
compression in qubits. Hence, from a practical perspective amplitude encoding is the most interesting case to 
study. However, from a research perspective, it will be interesting to investigate the performance of VQCs for 
such encodings via the UKM and to compare the relative performances of QCL and the UKM for such encod-
ings as well.

We next mention some recent related literature related QML. In Ref.24,25, VQAs that changes the form of a 
circuit adaptively are studied. Such an incremental search over the ansatz space might lead to better performance 
than vanilla VQAs. However, their performance should be limited compared to the UKM because the UKM 
directly solves an optimization problem with a weaker constraint: by optimizing over unitary operations, the 
UKM efficiently searches over all ansatz. Thus, we think that the UKM provides one with better bounds though 
they are not compared in this study. In Ref.26, the authors insist that classical machine learning (ML) with data 
rivals quantum ML. This point is very important because it implies the difficulty of showing a quantum advan-
tage of quantum ML. In our manuscript, we demonstrated that the expressive power of QCL is lower than the 
vanilla kernel method even if we get rid of the assumption of a specific form of a quantum circuit, i.e., VQCs 
performance is bounded above by a kernel method. We believe that both, our manuscript and Ref.26, use different 
approaches to reach the same conclusion that QCL may not not be as promising as researchers had originally 
expected it to be.

Finally, we mention the possible applicability of the UKM to other problems. In the QAOA and the VQE, 
optimization problems are dealt with and similarly to QCL some kinds of underlying circuit geometries are 
assumed. By using the UKM, it is expected that we can clarify the power of the QAOA and the VQE in an ansatz-
independent manner. Furthermore, VQAs for a number of problems have been proposed: the general stochastic 
simulation of mixed states27, time evolution simulation with a non-Hermitian Hamiltonian, linear algebra prob-
lem, and open quantum system dynamics28, stochastic differential equations29, quantum fisher information30, 
the simulation of nonequilibrium steady states31, and molecular simulation24. We believe that the UKM is also 
applicable for this class of problems and may clarify the hidden power of VQAs.

Concluding remarks
In this paper, we have first discussed the mathematical relationship between VQCs, which are a superset of QCL, 
and the kernel method. This relationship implies that VQCs including QCL is a subset of the classical kernel 
method and cannot outperform the kernel method.

Then we have proposed the UKM for classification problems. Mathematically the UKM lies between the 
kernel method and QCL, and thus it is expected to provide us an upper bound on the performance of QCL. By 
extensive numerical simulations, we have shown that the UKM is better than QCL, as expected. We also have 
proposed the VCR to find a circuit geometry that realizes a given unitary operator. By combining the UKM 
and the VCR, we have shown that we can find a circuit geometry that shows high performance in classification.

In future work, we plan to explore the performance of VQCs for other methods of encoding the related 
classical data. For example, one straightforward extension would be to embed the feature vector xi ∈ R

M into a 
higher dimensional vector φ(xi) ∈ R

L with L = O(Mc) and then use the rest of the framework; the number of 
qubits n will still be O(logM) , thus retaining any potential quantum advantage. Such extensions can increase 
the power of both VQCs and QCL.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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