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Epidermal growth factor 
receptor cascade prioritizes 
the maximization of signal 
transduction
Kaori Kiso‑Farnè1 & Tatsuaki Tsuruyama1,2,3,4,5*

Many studies have been performed to quantify cell signaling. Cell signaling molecules are 
phosphorylated in response to extracellular stimuli, with the phosphorylation sequence forming 
a signal cascade. The information gain during a signal event is given by the logarithm of the 
phosphorylation molecule ratio. The average information gain can be regarded as the signal 
transduction quantity (ST), which is identical to the Kullback–Leibler divergence (KLD), a relative 
entropy. We previously reported that if the total ST value in a given signal cascade is maximized, 
the ST rate (STR) of each signaling molecule per signal duration (min) approaches a constant value. 
To experimentally verify this theoretical conclusion, we measured the STR of the epidermal growth 
factor (EGF)‑related cascade in A431 skin cancer cells following stimulation with EGF using antibody 
microarrays against phosphorylated signal molecules. The results were consistent with those from the 
theoretical analysis. Thus, signaling transduction systems may adopt a strategy that prioritizes the 
maximization of ST. Furthermore, signal molecules with similar STRs may form a signal cascade. In 
conclusion, ST and STR are promising properties for quantitative analysis of signal transduction.

Signal transduction systems are unique chain reactions involving signaling molecules in biological systems. A 
well-known example is the epidermal growth factor (EGF)-driven signal cascade in cancer  cells1. Many pioneer-
ing studies recently reported that information science theory is a powerful framework for quantitatively under-
standing signal  transduction2. Using this framework allows researchers to identify the information transmission 
strategies used by  cells3–5.

We have recently been developing a method for quantifying signal transduction involving the Kullback–Lei-
bler divergence (KLD), a relative entropy that expresses the average difference in information entropy before 
and after a signal event. The difference is called information  gain6–8. The KLD has also been used in other fields, 
such as clinical trial  research9, Bayesian model  diagnostics10, and bioequivalence  evaluations11.

A431 skin cancer cells can be used to evaluate EGF signaling. Stimulating the EGF receptor (EGFR) of the 
cultured cells causes sequential phosphorylation of Raf1, mitogen-activated protein kinase (MAPK)-extracellular 
signal-regulated kinase 1 (MEK1), and kinase-extracellular signal-regulated kinase 1 (ERK1), which allows 
for the transmission of information along with other transcription factors into the nucleus, followed by cell 
 proliferation12–19. This sequential phosphorylation of signaling molecules is considered to form the Raf1-MEK1-
ERK1 signaling  cascade1. In addition, the MAPK cascade is essential for cancer cell  proliferation14–17. In the 
absence of EGFR stimulation, signaling molecules are constitutively phosphorylated through other types of 
stimulation. Therefore, the phosphorylation level at the time of signal transduction by EGF receptor stimulation 
should be evaluated as the difference between the post- and pre-stimulation values. The KLD is an information 
gain, representing the average value of the difference in information entropy before and after signal transduction; 
therefore, the KLD is an appropriate approach for quantitatively evaluating differences before and after receptor 
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stimulation. This study utilized the KLD to quantify signal transduction in the Raf1-MEK1-ERK1 and MAPK 
signaling cascades in A431 cells.

Results
Signal transduction model. First, we consider the signal cascade consisting of n steps in which the signal 
molecules are phosphorylated. The j-th molecule Xj denotes the signal molecule that is phosphorylated at the j-th 
step (1 ≤ j ≤ n). For example, in Raf1-MEK1-ERK1, the 1st, 2nd, and 3rd molecules are Raf1, MEK1, and ERK1, 
respectively. The initial proportion of the j-th signal molecules participating in signal transduction before EGF 
stimulation is expressed as follows:

where X (= Σj =1
n Xj) denotes the sum of signal molecules, and the superscript st denotes the stable state before a 

signal event. The proportion after EGF stimulation is expressed as follows:

Xj(t) and pj(t) are the functions of time t during the signal event, and t = 0 represents the time for which the 
cell is stimulated. The increases in ∆Xj(t) = Xj(t) - Xj

st and Δpj(t) (= pj(t) − pj
st) depend on the amount of time that 

has passed, and plots of the actual experimental time-course data are provided (S1 Data). The typical time course 
pattern of pj(t) (and Xj) increases and then decreases to pj

st during τj (Fig. 1A)20. This pattern indicates that the 
phosphorylation of one signal molecule increases within the first few minutes after stimulation and declines to 
the initial level within 3 h (Fig. 1A). Subsequently, we designated the average signal duration of the jth signal 
molecule Xj as τj, which indicates the duration from the increase in the phosphorylated signal to the decline to 
the initial phosphorylation level of the molecule. Using τj, total signal event duration τ is defined as the sum of 
each phosphorylation duration multiplied by the molecule concentration.

(1)pstj = Xst
j /X,

(2)pj(t) = Xj(t)/X

(3)τ =
∑n

j=1Xjτj = X
∑n

j=1pjτj
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Figure 1.  (A) Time course of the phosphorylation of signaling molecules in starved A431 cells. The ratio 
pj/pj

st = Xj/Xj
st is shown on the y-axis, and the time after epidermal growth factor (EGF) stimulation (min) is 

shown on the x-axis. Plots of actual experimental time-course data are provided (S1 Data and S2 Data). The 
negative control, Raf1, MEK1, and ERK1 plots represent the ratio intensity. The typical time course pattern 
indicates that the phosphorylation of one signal molecule increases from t = 5 to 15 min after stimulation and 
declines from t = 15 to 45 min. (B) Time course of phosphorylation of the signal molecule Xj. Information 
entropy gain ΔIj (= log pj/pj

st) was calculated using the ratio ∫0τj (ΔXj + Xj
st) dt/∫0τjXj

st dt. In this case, τj = 30 min.
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Information entropy is expressed as Ij = − log pj, and the information entropy gain during the signal event 
is denoted as ΔIj = log pj − log pj

st = log pj/pj
st. The average information entropy gain in a given signal cascade is 

expressed as Σj pj log pj/pj
st7. This form is regarded as the signal transduction quantity (ST), which is identical 

to the KLD, a relative entropy.
In the current study, we evaluated the EGFR signal cascade comprising the chain of phosphorylation reac-

tions of Ras, Raf1, MEK1, and ERK1. Based on the definition above, the signal amount of the EGFR cascade 
was defined using the  KLD4,5,21. For example, when Raf1 has a signal value of − log pRaf1

st before the signal event, 
− log pRaf1 changes in a time-dependent manner following EGFR stimulation. In this case, the signal informa-
tion entropy gain for Raf1 phosphorylation was determined by calculating the log (pRaf1/pRaf1

st). Therefore, ST of 
Raf1-MEK1-ERK1 was calculated in the form of the  KLD2,7:

where j = Raf1, MEK1, and ERK1.  �I represents the expected ST and Ij = log (pj/pj
st).

Signal transduction maximization and signal transduction rate independent of signal mol‑
ecule type. The equation above was obtained from Eqs. (1)–(3); the total signal transduction rate was 
expressed as �I/τ and each signal transduction rate (STR) as �Ij/τj . Then, the STR of the j-th signal molecule 
was expressed as  follows7:

The integrals in the third item in Eq. (5) were calculated using the integral of the plot area (Fig. 1B). The 
STR of each molecule, βj, should vary for each signal molecule. However, we previously reported that signal 
molecules in the same cascade yield identical STR values when the ST is  maximized21; this is discussed in the 
subsequent paragraph.

We assumed that the EGFR signaling cascade maximizes the ST for the duration of signal transduction. We 
int ro duced funct ion L  us ing  the  undetermined parameters  α  and β  as  fo l lows : 
L = X

∑

j

pj�Ij + α

∑

j

pj + βX
∑

j

pjτj . Subsequently, we obtained ∂L/∂pj = X
(

log pj/p
st
j

)

+ βXτj + α + X , 

∂L/∂X =
∑

j

(

pjlog pj/p
st
j + β pjτj

)

 . To determine α and β, ∂L/∂pj and ∂L/∂X were set to zero, which yielded 

−X = α
20 and

Comparing Eqs. (5) and (6), we deduced that βj = − β, indicating that each molecular STR is independent of 
the signal molecule type number, j. Therefore, when the ST is maximized, STRs tend toward a constant value, 
and we predicted that the STR of each molecule in the EGFR cascade would have a similar  value21,22.

A431 stimulation with EGF. To examine whether STRs tended toward similar values, we stimulated cul-
tured A431 cells with  EGF13. The A431 cells were then collected at different times for protein extraction. The 
phosphorylation molecule ratio, pj/pj

st, in Eq. (4) was obtained from the fluorescence intensity of an antibody 
microarray against phosphorylated signal molecules in the extract. For example, we sampled the cultured cells at 
t = 0, 15, 20, 45, 60, and 90 min after EGF stimulation (t = 0) and serially measured the phosphorylation ratio, pj/
pj

st. The ratio of the common time-course pattern is shown in Fig. 1A. The ratio initially exceeded 1.0 and then 
decreased to 1.0 during τj

1. The ratio was integrated from t = 0 to τj, which was estimated from the plot (see S1 
Text and S1 Fig.).

Signal transduction rate in the Src‑Raf1‑MEK1‑ERK1 cascade. The cascade network expected to 
be activated following EGF stimulation is shown. We applied the Bayesian statistic approach to evaluate the 
similarity of the STRs. The expected a posterior (EAP) values in Bayesian statistics correspond to the mean in 
classical statistics. We set μj representing the EAP of STR of the jth step (n = 6). The STR difference (|μj − μj+1|) 
between the jth and j + 1th steps, effect size |δj| =|μj − μj+1|/σj = Δμj/σj (σj; posterior standard deviation), and prob-
ability of dominance (πd) were  calculated23. (1) When the |δj| value was < 0.3, which satisfied Cohen’s criteria 
for significant data similarity, or (2) when the πd value between the two selected signal molecules (here, jth and 
j + 1th molecules) was > 0.4 and < 0.6, we considered that the STRs of the two molecules to have similar values. 
Specifically, (3) if the probability ∆π  that μj > μj+1 (or μj < μj+1) was > 0.4 and < 0.6, the STRs were considered 
similar. When two of the three conditions of (1)–(3) were met, the STR at the jth step and the STR at the j + 1th 
step were considered similar. 

We prepared two types of A431 cell cultures. One culture was incubated in a medium containing fetal bovine 
serum, whereas the other was incubated in a medium without serum to induce starvation stress. In the absence 
of stress, the Src-Raf1-MEK1-ERK1 (SRME) cascade was activated according to the STR values (Fig. 2A). The 
|δj| values were < 0.3  and the πd values were < 0.5. The probabilities ∆π satisfied (3) (Fig. 2B, Table 1). These 
data indicate that the STRs throughout the SRME cascade had similar values. Although the STR difference for 
ASK1-MMK3 satisfied the criteria, the cascades including steps JNK and HSP27 were not activated following 
stimulation because their STRs were lower (Fig. 2B, S2Data).

(4)�I = X
∑n

j=1 pj�Ij = X
∑

j pjlog
pj
pj st

=
∑

j Xjlog
Xj

Xj
st

(5)
�Ij(0≤t≤τj)

τj
=

1
τj
log

pj(0≤t≤τj)

pjst
=

1
τj
log

∫ τj
0 Xj

st
+�Xjdt

∫ τj
0 Xj

st dt
= βj

(6)
1

τj
log

pj

pjst
= −β
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For A431 cells under starvation stress, the stress-related ASK1-MKK4/MKK3-JNK (AMMJ) cascades were 
activated in addition to SRME, and the STR data met the similarity criteria, indicating that the STRs throughout 
the activated cascades had similar values (Fig. 2A,C, Table 1, S2 Data).

t‑Distributed stochastic neighbor embedding (t‑SNE) analysis. To illustrate the stress effect on 
the activation of signal cascades, t-distributed stochastic neighbor embedding (t-SNE) analysis was performed. 
t-SNE transforms high-dimensional data into two dimensions and visualizes relationships between high-
dimensional data using dimensionality reduction  algorithms24. In this research, the distance distribution of a 
six-dimensional vector, whose elements were the STR numerical data of six replicated measurements of phos-
phorylation, were used. These vector data were converted to two-dimensional data that matched the distance 
distribution of the vector data as well as possible.

In the absence of stress, SRME and AMMJ cascade molecules showed a linear trend distribution (Fig. 3A), 
indicating that the STRs of the molecules participating in SRME and AMMJ were weakly similar. Under stress 
conditions, the AMMJ molecule STRs clustered separately from those of the SRME molecules, indicating that the 
AMMJ molecule STRs were similar (Fig. 3B). The clustering can be interpreted by the signal transduction cascade 

Figure 2.  Signal transduction rate (STR) values in non-stressed and stressed cells. MAPK signal cascade in 
A431 cells. (A) Box plots of EGFR-related signaling molecules. The vertical axis represents the STR  (min−1; 
n = 5 or 6 per protein). N represents the negative control using a value of the array without antibody binding. 
The horizontal line with the asterisk indicates significant differences between non-stressed and stressed cells 
(*p < 0.01, in hsp27, MKK4, HSF1, Tau, c-Jun for non-stressed vs. stressed cells). (B) & (C) Schematics of the 
signaling cascades during stress. (B) represents the non-stressed state, and (C) represents the stressed state. The 
numbers in red represent the STRs in the working cascades (|σj| ≤ 0.3). HSF1 heat shock transcription factor 
1, hsp27 heat shock protein  2734,35, ATF2 activating transcription factor 2, MKK3/4 mitogen activated protein 
kinase 3/4, JNK c-Jun N-terminal kinase.
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induced by stress. These different topologies of the plots indicate that STR-based numerical analysis effectively 
distinguishes cell states.

Discussion
The KLD-based method provides a theoretical framework for quantifying signal transduction. Our experimental 
results indicate that the STR of each signal molecule in the cascade approached similar values when the cascades 
were  activated4. The results also suggest that the cascade was activated to maximize the ST per signal. ST maxi-
mization suggests that the signal cascade does not allow for signal redundancy and that signaling transduction in 
A431 cells adopts a strategy that sends as many signals as possible. Another strategy is prioritizing signal accuracy 
that allows for redundancy. For example, sensory adaptation systems prioritize signal  accuracy25.

Moreover, the STR analysis provides essential data on cell status. EGF stimulation in a stable state before stress 
mainly activates the SRME cascade, which is thought to be mainly involved in cell proliferation; however, stress-
induced activation of response AMMJ cascades involving MKK3 and MKK4 was not evident. Under starvation 
stress, EGF stimulation activated the AMMJ cascade, as evidenced by the plots of STR similarity data and t-SNE.

Signal transduction pathways are composed of multiple steps, some of which may be phosphorylation reac-
tions of unknown signaling molecules. In this case, if a molecule STR is similar to the STR of molecules in a 
given cascade, the molecule may be responsible for that unknown step in the cascade as a signal molecule. For 
example, the Tau transcription factor showed similar STR values at approximately 3.0  min−1. HSF1 contributes 
to Tau  phosphorylation26,27 (Fig. 2A,C); for the HSF1-Tau step, |δj| satisfied the STR similarity criteria. There-
fore, STRs throughout the ASK1-MKK4-JNK and HSF1-Tau cascade had similar values, suggesting that Tau 
phosphorylation occurs downstream of the ASK1-MKK4-JNK  cascade28 (Fig. 2A,C, S2 Data). MKK3 and MKK4 
 cooperate29, and MKK3 can modulate JNK  phosphorylation30. In this study, MKK4 and JNK showed similar 
STRs, suggesting MKK4 may participate in JNK phosphorylation in cooperation with MKK3. Thus, STR similar-
ity aids in identifying new steps and signal molecule cooperation in signal cascades.

We used a minimal EGF dose to measure phosphorylation. Stimulation with a high EGF dose causes excessive 
and non-specific cell responses in non-EGFR cascades, such as the c-Met31 and protooncogene c-kit32 receptor-
related cascades. Therefore, it remains unclear how cells react to strong in-vivo stimuli, and the ligand dose limits 
the applicability of our results. Further studies are needed to verify our findings and investigate the stimulation 
range for which the cell uses a maximization strategy.

Table 1.  Statistics of the expected a posteriori STR difference. EAP, expected a posteriori, is an alternative to 
the mean in classical statistics. A–B represents the difference between steps A and B in the cascade shown in 
the left column. “STR difference” represents the difference between STR of A (STR(A)) and STR of (STR(B)). 
σ = Δμ (A − B)/δ (A) represents the effect size, where Δμ (A − B) represents the EAP difference between STR(A) 
and STR(B), and δ (A) represents the posterior standard deviation of STR(A). Values in the upper column 
“EAP” represent the EAP values of the STR difference, |σ|, and πd. The value under “Probability” Δπ in the 
upper column represents the larger probabilities of Δμ (A − B) and Δμ (B − A) (the closer the two STRs, the 
closer the value to 0.5). Bold letters indicate the STR differences that satisfy similarity.

Without starvation

EAP Probability

STR difference |σ| πd  ∆π

SRME cascade

Src-Raf1 0.2 0.1 0.5 0.6

Raf1-MEK1 0.0 0.0 0.5 0.5

MEK1-ERK 0.5 0.2 0.4 0.6

ERK-p53 0.2 0.6 0.3 0.9

AMMJ cascade

ASK1-MKK4 0.2 0.6 0.3 0.9

ASK1-MKK3 0.0 0.0 0.5 0.5

With starvation STR difference |σ| πd ∆π

SRME cascade

Src-Raf1 0.7 0.1 0.5 0.6

Raf1-MEK1 0.8 0.1 0.5 0.6

MEK1-ERK 0.1 0.0 0.5 0.5

ERK-p53 2.3 0.7 0.7 0.9

AMMJ cascade

ASK1-MKK4 0.4 0.3 0.4 0.8

MKK4-JNK 0.4 0.2 0.6 0.7

JNK-HSF1 0.7 0.7 0.7 0.9

HSF1-Tau 0.0 0.0 0.5 0.5

ASK1-MKK3 0.3 0.3 0.5 0.6

MKK3-JNK 0.7 0.5 0.6 0.6
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Conclusions
The signal transduction system in A431 cells prioritizes the transduction of as many signals per unit time as 
possible, which may be an essential property of cell signal transduction. In addition, our approach based on the 
ST and STR is a promising method for identifying novel active cascades and investigating cellular responses.

Methods
Cell culture. The A431 human cell line derived from epidermoid carcinoma was obtained from RIKEN 
BioResource Research Center (Tsukuba, Japan). For the first experiment, A431 cells (0.6 ×  105) in 6 mL of Dul-
becco’s Modified Eagle’s Medium (Nacalai Tesque, Kyoto, Japan) containing 10% fetal bovine serum were cul-
tured in a 5%  CO2 atmosphere at 37 °C for five days. EGF (100 ng/mL; Cell Signaling Technology, Danvers, 
MA, USA) or phosphate-buffered saline as a negative control was added to the cultures and incubated for 0 
(untreated), 15, 30, 45, 60, 120, and 180 min. The total cell protein was extracted using a radioimmunoprecipita-
tion buffer containing a protease inhibitor and phosphatase inhibitor cocktail (Nacalai Tesque). The cell extract 
was purified using an antibody array assay kit (Full Moon BioSystems, Inc., Sunnyvale, CA, USA).

Antibody array assay. Antibody arrays were purchased from Full Moon BioSystems (PMK185 and 
PEG214). Biotinylation of the proteins and conjugation and detection by Cy3-streptavidin (PA43001; GE 
Healthcare Life Science, Little Chalfont, UK) were performed using an antibody array assay kit (Full Moon Bio-
Systems) according to the manufacturer’s instructions. Protein samples (60 μg) were used in the antibody array 
assay. To calculate the STR using Eq. (5), the detection assay was performed six times independently following 
the addition of EGF to the cultures (50 ng/mL using the PEG214 array and 100 ng/mL using the PMK185 array). 
The mean fluorescent intensity (± standard deviation) was utilized to calculate the transduction characteristics. 
The antibody arrays were scanned using a SureScan Microarray Scanner (G2565CA Microarray Scanner System; 
Agilent Technologies, Santa Clara, CA, USA), after which the acquired image data were analyzed. The signal 
intensity was normalized by dividing the result by the negative control values from the array. Each value for 
phosphorylated proteins was divided by the respective value for unphosphorylated proteins at 0, 15, 30, 45, 60, 
120, and 180 min. Finally, the results were divided by the value at 0 min to calculate the increase in phosphoryl-
ated molecules. The coefficient of variation for six replicates was < 0.133.

Figure 3.  Dimension-reduction plot in the signal cascade in non-stressed (A) and stressed A431 cells (B). Blue 
letters represent the signal molecules in the SRME cascade, and MEK1 is out of the plot (− 2.73839, 3.19641) in 
(A). Red letters represent the signal molecules in stress-related AMMJ.
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Phosphorylation plot. Before adding EGF, A431 cells were cultured with or without serum starvation. 
After adding EGF to the medium, the cells were collected at different times (0, 15, 30, 45, 60, 120, and 180 min) 
to extract proteins. Next, the change in the phosphorylation ratio ∫0

τj (Xj
st + ΔXj) dt/∫0

τj Xj
st dt of each phospho-

rylated protein was plotted by measuring the fluorescence levels of the antibodies against the protein in the 
microarray as the amount of phosphorylated Xj. The ratio was estimated by measuring the relative fluorescence 
intensity of the antibody microarray. The time required for the phosphorylation level to return to that observed 
before adding EGF was considered the signal duration, τj. Specifically, assuming that the increased level of phos-
phorylated signal molecules at measurement time t1 was ΔX1j and that the increased level of phosphorylated 
signal molecules at measurement time t2 was ΔXj2, then τj is given by the following equation (S1 Fig.):

Finally, the STR during the phosphorylation of each protein was calculated by dividing the logarithm of the 
ratio, pj/pj

st, by τj (S1 Data).

Noise level evaluation. As a negative control, we measured the fluorescence intensity of the microarray 
spot to which the non-specific antibody was bound. Using the negative control data (S2 Data), the noise contri-
bution to the maximal STR was estimated as 0.10  min−1.

Statistics. Bayesian statistics were applied to analyze the STR at each step. For the Markov-chain Monte 
Carlo method, we used the R program (https:// www.r- proje ct. org/; Rstan; http:// mc- stan. org/ users/ inter faces/ 
rstan) to generate random numbers to obtain a posterior predictive distribution of the average entropy change 
rate. The  Rhat value was 1.0  (Rhat is a Markov-chain Monte Carlo convergence index, and the series of values is 
generally considered as "converged" when  Rhat ≤ 1.1). In this study,  Rhat ≤ 1.1 in the calculation.

Measured STR values from five to six experiments were input to the algorithm. Outliers were excluded; 
however, a minimum of five replicate values was used.

Two‑dimensional reduction analysis. We conducted a two-dimensional reduction analysis using 
the Mathematica software (Wolfram, IL, USA). The raw data are shown in S2 Data. The STR data were rep-
resented by a four-dimensional vector, excluding the minimum and maximum data as outliers. The Mathe-
matica core was as follows: vectors = {{a11, a12, a13, a14, a15}, (a21, a22, a23, a24, a25),…,{aj1, aj2, aj3, aj4, aj5},…}; 
DimensionReduce[vectors, 2]. {aj1, aj2, aj3, aj4, aj5} indicates the list of the mean of the STR of the jth molecule. 
The vertical and horizontal axes represent the relative topological distances determined in the dimension reduc-
tion analysis. The distribution pattern indicates the relationship between the STR data, and clustering of the data 
in the plots indicates correlation of those data.

Data availability
The datasets generated and/or analysed during the current study are available from the corresponding author 
upon reasonable request.
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