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Potential progression biomarkers 
of diabetic kidney disease 
determined using comprehensive 
machine learning analysis 
of non‑targeted metabolomics
Yosuke Hirakawa1, Kentaro Yoshioka2,3, Kensuke Kojima2, Yasuho Yamashita4, 
Takuma Shibahara4, Takehiko Wada5, Masaomi Nangaku1* & Reiko Inagi3*

Diabetic kidney disease is the main cause of end‑stage renal disease worldwide. The prediction of the 
clinical course of patients with diabetic kidney disease remains difficult, despite the identification 
of potential biomarkers; therefore, novel biomarkers are needed to predict the progression of the 
disease. We conducted non‑targeted metabolomics using plasma and urine of patients with diabetic 
kidney disease whose estimated glomerular filtration rate was between 30 and 60 mL/min/1.73  m2. We 
analyzed how the estimated glomerular filtration rate changed over time (up to 30 months) to detect 
rapid decliners of kidney function. Conventional logistic analysis suggested that only one metabolite, 
urinary 1‑methylpyridin‑1‑ium (NMP), was a promising biomarker. We then applied a deep learning 
method to identify potential biomarkers and physiological parameters to predict the progression of 
diabetic kidney disease in an explainable manner. We narrowed down 3388 variables to 50 using the 
deep learning method and conducted two regression models, piecewise linear and handcrafted linear 
regression, both of which examined the utility of biomarker combinations. Our analysis, based on 
the deep learning method, identified systolic blood pressure and urinary albumin‑to‑creatinine ratio, 
six identified metabolites, and three unidentified metabolites including urinary NMP, as potential 
biomarkers. This research suggests that the machine learning method can detect potential biomarkers 
that could otherwise escape identification using the conventional statistical method.

Diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease in developed and devel-
oping  countries1,2. The poor predictability of progression rate for each patient with classical risk factors such as 
blood pressure and albuminuria indicates the difficulty in managing patients with DKD and conducting clinical 
 trials3. Therefore, serum or urinary biomarkers for identifying rapid decliners of DKD have been the focus of 
intensive research. Early studies attempted to identify biomarkers of DKD progression using a pathophysiologi-
cal pathway-based approach. These potential biomarkers include serum soluble tumor necrosis factor (TNF) 
alpha (TNFα), soluble TNF receptor 1 (sTNF-R1), and soluble TNF receptor 2 (sTNF-R2). These potential bio-
markers were primarily targeted because of the well-known importance of the TNFα pathway in DKD. Recent 
progress in omics analysis, such as genomics, transcriptomics, and metabolomics, has allowed the application 
of multi-omics analysis for biomarker discovery in a non-biased manner. The omics approach is a powerful 
tool to discover novel disease pathways and unpredicted biomarkers, especially in kidney disease, because of 
the application of urine sample  analysis4–7. In contrast, a large number of variables require strict statistical tests 
in the conventional approach to avoid false discovery, and potential biomarkers may be missed, especially in 
studies with small sample sizes. There are two types of metabolomics: targeted metabolomics and non-targeted 
 metabolomics8,9. While targeted metabolomics measures defined substances identified from a priori knowledge, 

OPEN

1Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, 
Japan. 2Kyowa Kirin Co., Ltd., Tokyo, Japan. 3Division of Chronic Kidney Disease Pathophysiology, The University 
of Tokyo Graduate School of Medicine, Tokyo, Japan. 4Research and Development Group, Hitachi, Ltd., Tokyo, 
Japan. 5Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, 
Japan. *email: mnangaku@m.u-tokyo.ac.jp; inagi-r@m.u-tokyo.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-20638-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16287  | https://doi.org/10.1038/s41598-022-20638-1

www.nature.com/scientificreports/

non-targeted metabolomics measures non-defined substances. This approach brings in substances that could be 
good biomarkers and substances with pathogenic roles. Because non-targeted metabolomics have yielded over 
1000 measurement objects, we need to perform strict statistical tests, restricting the utility of omics analysis in 
small-cohort pilot studies. To increase the utility of pilot studies, which have important roles in exploring the 
potential of biomarkers or biomarker combinations to, therefore, determine the value and sample size of future 
scaled-up  studies10, a breakthrough to detect biomarker candidates from numerous variables in a limited number 
of participants is eagerly awaited.

Machine learning is bringing innovation to data science, which is also applicable in medicine including 
 nephrology11. However, an important problem for the application of machine learning to clinical studies is that 
ordinary machine learning cannot yield transparent and simple results. To implement the results of a clinical 
study in real-world medicine, physicians need sufficient justification of the results, with the need for informed 
consent or shared decision-making. Overfitting is another problem. Machine learning can result in a model with 
extremely high performance in the initial training data, but then loses its performance in the validation data. This 
overfitting is a result of deep and complicated model construction with limited data, thereby compromising the 
extrapolability of the  model12. It is important to pay strict attention to overfitting when handling omics data in 
cohort studies because of the large number of variables in a relatively limited pool of patients. However, if these 
problems are resolved, machine learning will certainly be a useful tool for discovering biomarkers for diseases, 
even when analyzing small-cohort results. Moreover, because “statistically non-significant results do not ‘prove’ 
the null hypothesis” considering  uncertainty13, it is important to identify potential biomarkers that are labeled 
as non-significant in conventional statistical tests.

We previously performed metabolomics of human and animal samples to identify biomarkers to predict the 
rapid progression of  DKD14. In that study, we analyzed the identified metabolites using conventional statistical 
analysis, focused on lysophospholipids, and elucidated their pathological role. However, in the current study, 
we performed explainable machine learning analysis using non-targeted metabolomics of plasma and urine 
samples of patients with advanced DKD and identified new biomarkers, including unidentified metabolites, for 
rapid decliners while avoiding overfitting.

Results
Cohort formation and conventional analysis. We included 150 patients in the UT-DKD cohort and 
135 patients completed the follow-up visit. Patients who ceased to participate in the study were 1 patient who 
withdrew consent, 3 with cancer, and 11 who were referred to other hospitals for personal reasons. The base-
line characteristics of the 135 patients are summarized from a previous report and are shown in Supplemen-
tary Table  214. We defined rapid decliners of DKD as patients whose annual estimated glomerular filtration 
rate (eGFR) change rate was below − 10% of baseline eGFR, which corresponded to the surrogate endpoint in 
chronic kidney disease, a %GFR change of less than − 30% over 2 or 3  years15. In the UT-DKD cohort, 14 patients 
were classified as rapid decliners. We next divided non-rapid decliners into three groups according to the eGFR 
change rate: patients whose eGFR change rate was above 0% as group1 (n = 46), below 0% and above − 3.3% as 
group2 (n = 34)16, below − 3.3% and above − 10%/year as group3 (n = 39), and < 10%/year (rapid decliner) as 
group4 (n = 14).

Next, relative MS area of the baseline plasma and urinary metabolite of each group were compared between 
the rapid decliners and other participants. The urinary and plasma metabolites with good predictive values are 
shown in Table 1 and Supplementary Table 3.

Several metabolites with good predictive values, such as urinary retinol-1, were detected in less than half of the 
participants in each group. Considering its clinical applications, easily detectable biomarkers are most appropri-
ate; therefore, we focused on metabolites detected in at least half of all participants. Several urinary metabolites 
had good predictive values, and the relative MS area of representative urinary metabolites are shown in Fig. 1. A 
non-defined substance, urinary C_0038, seemed to be the best predictor of those metabolites examined because 
it had a good predictive value and was detected in approximately 70% of the participants. Therefore, we predicted 
the structure of C_0038 and confirmed the structure by mass spectrometry. These analyses led to the identifica-
tion of this metabolite as 1-methyloyridin-1-ium (NMP) (Fig. 2a and b, and Supplementary Figure 1). It was also 
confirmed that the urinary NMP concentration was lower in rapid decliners than in non-rapid decliners of DKD 
and healthy subjects (Fig. 2c). Trigonelline, a metabolite that has been measured in this metabolomics study, 
is a precursor of NMP, and its concentration was also lower in rapid decliners, similar to NMP (Fig. 2c). These 
results indicate that urinary NMP and trigonelline can be used as markers for predicting the progression of DKD.

Biomarker candidates based on decliner prediction models. Next, we applied a machine learn-
ing approach to identify potential biomarkers using data from non-targeted metabolomics. First, we examined 
whether the combination of clinical data and metabolomics data would improve prediction performance. We 
compared the prediction performance of three datasets: metabolomic dataset, clinical dataset, and metabolomic 
and clinical dataset. Table 2 summarizes the prediction performance of the results for rapid decliners. Other con-
ventional prediction performances (F-measure, Accuracy, Precision, Recall, false positive rate, and false negative 
rate,) are represented in Supplementary Table 4.

The 12 results were combinations of 4 models (deep learning, logistic regression, random forest, and sup-
port vector machine (SVM) and three datasets, respectively. The AUCs of models were calculated using tenfold 
double cross validation (tenfold DCV)17. In tenfold DCV, the samples are split randomly into 10 folds and the 
test set as well as the training set are defined for each fold. A model was constructed using the training set and 
the trained model was evaluated using the test set for each fold, i.e., 10 times in total. The respective sample sizes 
for the training and test sets are 121 and 14 in five-folds and 122 and 13 in the other five folds. The prediction 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16287  | https://doi.org/10.1038/s41598-022-20638-1

www.nature.com/scientificreports/

performance for each learning model had a mean AUC value over the 10 folds. The AUC value of the test set 
was highest in metabolomic and clinical dataset with the deep learning model, suggesting that a combination of 
clinical and metabolomics data would be useful. Ignoring the statistical error that inevitably becomes large for 
the test set because of the small sample size, the mean AUC value of the test sets (0.775 ± 0.182) is comparable to 
that of the training sets (0.770 ± 0.035), which suggests that the deep learning model seemed to avoid overfitting 
for metabolomic and clinical dataset. Supplementary Table 6 summarizes the list of features and their importance 
scores generated from the deep learning model for metabolomic and clinical dataset, the one with the best AUC 
value (0.775 ± 0.182). The importance score of each table evaluates the extent to which each feature contributes to 
raising (or lowering) the model’s output probability to classify rapid decliners. The importance scores were sorted 
in descending order, and we truncated the features whose absolute values were < 0.04 in the list. For example, 
a high urinary threonic acid signal increased the rapid decliner probability, while the negative missing flag of 
urinary NMP lowered the rapid decliner probability. We selected 50 features according to the following criteria: 
39 features whose absolute importance score was over 0.25 and 11 features that were known to be related to 
the pathogenesis or progression of DKD or related to NMP metabolism (Supplementary Tables 7 and 8)14,18–20. 
Among the 50 features, 30 were continuous variables and 20 were binary variables (missing flag). Notably, only 
two clinical parameters, systolic blood pressure and urinary albumin-to-creatinine ratio, were included. Of the 
remaining 48 parameters, 14 were known plasma metabolites and 7 were unidentified plasma metabolites, 16 
were known urinary metabolites, and 11 were unidentified urinary metabolites.

Table 1.  Logistic analysis for rapid decliner using urinary metabolome. RD rapid decliners.

m/z

Comparative Analysis Detected number

Compound name
RD vs non-RD RD

(14 total)

non-RD

(120 total)Ratio p-value q-value

Retinol-1 287.234 5.8 0.004 4 5

C_0038 94.066 0.1 0.071 4 90

1-Stearoyl-glycero-3-phosphocholine 524.372 1.4 0.071 2 2

C_0075 112.040 0.1 0.071 0 37

-Tocopherol 431.383 1.8 0.072 4 5

Palmitoylcarnitine 400.341 2.1 0.112 3 5

A_0324 191.056 0.3 0.112 2 53

Ethanolamine 62.060 0.7 0.112 14 120

Choline 104.107 1.5 0.141 14 120

Threonic acid 135.030 1.7 0.340 14 120

Quinic acid 191.056 0.3 0.340 14 118

C_0047 100.112 0.2 0.340 1 34

Sphingomyelin(d18:1/18:0)-2 731.606 3.5 0.340 14 107

C_0380 180.080 1.3 0.373 10 59

C_0608 247.094 1.7 0.377 6 44

Trigonelline 138.056 0.5 0.377 14 120

Sphingomyelin(d18:1/16:0)-2 703.576 3.5 0.429 14 120

C_0263 152.039 0.5 0.429 8 81

Citrulline 176.104 1.6 0.429 11 68

A_0126 149.046 1.2 0.429 14 120

0.000007

0.00025

0.00041

0.00045

0.00057

0.0013

0.0013

0.0014

0.0020

0.0056

0.0064

0.0067

0.0070

0.0083

0.0092

0.010

0.012

0.014

0.014

0.014
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Piecewise linear model and handcrafted linear regression model. Targeting these 50 features, we 
investigated the utility of PWL and HCLR models. For the PWL model, the missing flag cannot be used as a 
binary parameter. Therefore, 30 features were employed in the PWL model, whereas 50 features were employed 
in the HCLR model. Representative classifications that displayed the highest and second-highest AUC in each 
model are shown in Fig. 3. We defined high-AUC models by 65 PWL models with AUC values over 0.8, 23,040 
HCLR models with AUC values over 0.9, and features frequently included in high-AUC models as candidates of 
biomarkers for rapid decliner prediction (Table 3, Supplementary data 1 and 2).

We also supposed that the prognostic potential of each feature could be assessed by the difference between the 
average AUC of the equation including the feature and the overall average (Table 3). In HCLR models, however, 
it is not fair to examine the mean of all models that contain each feature because the presence of a high-accuracy 
HCLR model often leads to the presence of a low-accuracy HCLR model; for example, A–B is a good biomarker, 
but A + B becomes a poor biomarker because the substitution of B is essential. Therefore, we showed the average 
of the top 10% of AUCs of equations including the feature (instead of the average of all the AUCs of equations 
including the feature) in the HCLR models. Two clinical features, systolic blood pressure and urinary albumin-
to-creatinine ratio; five identified metabolites, plasma kynurenine, plasma gluconolactone (gluconate), urinary 
threonic acid, urinary 1-palmitoyl-glycero-3-phosphocholine, and urinary sphingomyelin(d18:1/16:0); and two 
unidentified metabolites, plasma CE-C0218 and plasma CE-A0242, were identified in both PWL and HCLR 
models. These features are considered potential biomarkers. Twenty-one binary features (missing flags) were only 
included in the HCRL model, and the missing flags for U-CE-A0324, U-NMP, and U-Dehydroisoandrosterone 
3-sulfate-2 seemed to be potential biomarkers considering the average AUC. The combination of multiple features 
is important; therefore, the combination frequencies of the high-AUC models are shown in Fig. 4 (please see 
supplementary data 3 and 4 for full list). From this graph network, P-CE-C0218 and U-threonic acid respectively 
locate the center of the PWL and HCLR models’ networks, i.e., they connect with many other features. Also, 
C0218 and U-threonic acid have the strongest interactions among the interactions between all the feature pairs 

Figure 1.  Representative relative MS area of promising metabolites. A point plot and box plot of four promising 
metabolites, C_0038, ethanolamine, threonic acid, and choline, are shown. The vertical bar shows the relative 
area of each metabolite. The dotted line is equal to the average. Annual eGFR change rate for each group was as 
follows; group1, above 0%; group 2, below 0% and above − 3.3%; group3, below − 3.3% and above − 10%, and 
group 4, below -10%.
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Figure 2.  Identification of C_0038 as NMP, and concentration of NMP and trigonelline. (a) Four predicted 
structural formula of C_0038. (b) Identification of C_0038 as NMP. Result of MS/MS analysis of C_0038 in the 
representative human urine analyzed in this research and standard chemicals of four possible structural formula 
was shown (Collision Energy: 30 eV). A similar pattern was detected in the C_0038 and 1-methylpyrydin-1-ium 
(NMP). Human healthy urine samples were obtained from BioIVT (U.S.) (c) Urinary concentration of NMP 
and trigonelline. Urinary concentration of NMP (upper) and trigonelline (lower) was measured in healthy 
subjects, patients with diabetic kidney disease who were not rapid decliners, and rapid decliners among diabetic 
kidney disease patients. Data indicated by Tukey box plot. *p < 0.05, **p < 0.01, ***p < 0.005, n.s. not significant 
(Kruskal–Wallis test). RD rapid decliner.
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in the PWL and HCLR models, respectively. Therefore, we considered that P-CE-C0218 in the PWL model 
and U-threonic acid in the HCLR model appeared to be key features in creating high-AUC regression models.

Discussion
In this study, we performed an explainable machine learning analysis using data from non-targeted metabolomics 
of the plasma and urine of patients with DKD. We also analyzed unidentified metabolites, and the number of 
variables was as high as 3388. A large number of variables hindered us from identifying potential biomarkers; 
therefore, we applied an explainable machine learning method to detect potential biomarkers. To the best of our 
knowledge, this is the first longitudinal study to focus on the results of non-targeted metabolomics in advanced 
DKD.

Table 2.  Comparison of four analysis methods.

Training Test

Metabolomic dataset Clinical dataset
Metabolomic and clinical 
dataset Metabolomic dataset Clinical dataset

Metabolomic and clinical 
dataset

Deep learning 0.758 ± 0.028 0.766 ± 0.026 0.770 ± 0.035 0.688 ± 0.225 0.651 ± 0.288 0.775 ± 0.182

Logistic regression 0.739 ± 0.052 0.633 ± 0.064 0.754 ± 0.046 0.597 ± 0.214 0.557 ± 0.179 0.596 ± 0.222

Random forest 0.751 ± 0.037 0.784 ± 0.04 0.768 ± 0.028 0.575 ± 0.318 0.644 ± 0.177 0.665 ± 0.272

SVM 0.704 ± 0.039 0.772 ± 0.061 0.738 ± 0.047 0.522 ± 0.217 0.611 ± 0.263 0.643 ± 0.252

Figure 3.  Representative plots of PWL model and HCLR model. Representative plots of (a) PWL and (b) 
HCLR models with high AUC values. The orange and blue areas show the regions classified as rapid decliners 
and others by each model, respectively. The orange and blue points correspond to the rapid decliners and others 
in the dataset, respectively. The dashed line represents the classification boundaries by setting the threshold level 
of the rapid decliner probability to the one with which the f1-measure was maximum. PWL piecewise linear, 
HCLR handcrafted linear regression.
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In this study, the conventional statistical test revealed that only urinary NMP could be a prognostic marker, 
but machine learning analysis revealed five identified metabolites and two unidentified metabolites that were 
listed in both HCLR and PWL models. A missing flag was set if the detection ratio of the feature value was more 
important than the measured value. Note that the missing flag is a binary feature; therefore, such features were 
only assessed using the HCLR model. Three missing flags, including the missing flag for urinary NMP, were likely 
potential biomarkers based on the results of the PWL models. Among these potential biomarkers, P-CE-C0218 
and urinary threonic acid have good utility in combination with other biomarkers. This dissociation of the results 
stemmed from the difference between the univariate analysis and bi- or multivariate analysis. Using PWL or 
HCLR models, the prognostic utility of feature combinations can be assessed. For example, plasma CE-C0218 did 
not appear to be a good prognostic marker in the univariate analysis but turned out to be a promising prognostic 
marker when combined with other features (Supplementary Table 3 and Fig. 4).

In this study, we employ a two-step strategy to obtain explainable results. First, we selected 50 features using 
a deep learning method. This method, based on the deep learning model, was not expected to yield a result that 
was overfitted to the training data. The deep learning model in this study used a unified architecture characterized 
by the binding of each network layer and neurons in a mesh-like  form21. This mesh-like form was designed to 
avoid the overfitting drawbacks of deep learning. It was found that the deep learning process yielded the high-
est AUC value in the test dataset, even though the metabolites with low detection frequency were not excluded 
(Table 2). Increasing the number of features could result in overfitting; in other words, including more variables 
could result in a lower AUC value in the test set. In the deep learning models, the difference between the trained 

Table 3.  Representative features in PWL models and HCLR models.

Factor Frequency Mean Difference from overall mean Manually selected features

PWL

P-CE-C0218 17 0.801 0.080 No

Systolic_blood_pressure 10 0.763 0.042 No

P-Guanidinosuccinic acid 8 0.773 0.052 Yes

U-Threonic acid 8 0.761 0.041 No

P-CE-A0242 8 0.746 0.025 No

U-Xanthine 8 0.769 0.048 Yes

P-Kynurenine 7 0.763 0.042 Yes

Alb/Cre 6 0.756 0.035 No

U-1-Palmitoyl-glycero-3-phosphocholine 6 0.734 0.013 Yes

U-Xanthosine 6 0.741 0.020 No

U-Sphingomyelin(d18:1/16:0) 5 0.739 0.018 Yes

U-CE-C0134 5 0.763 0.042 No

P-Homocitrulline 4 0.758 0.037 No

P-Gluconolactone (gluconate) 4 0.751 0.030 Yes

P-FA(17:0)-2 Heptadecanoic acid-2 4 0.743 0.022 No

HCLR

U-Threonic acid 15,074 0.897 0.050 No

P-CE-C0218 7183 0.884 0.037 No

Missing flag for U-CE-A0324 5766 0.873 0.026 No

U-CE-A0666 4294 0.859 0.012 No

Alb/Cre 4171 0.874 0.027 No

U-Sphingomyelin(d18:1/16:0) 3739 0.873 0.026 Yes

Missing flag for U-CE-A0401 2749 0.850 0.003 No

Missing flag for U-NMP 2718 0.868 0.021 No

P-Gluconolactone (gluconate) 2636 0.858 0.011 Yes

Missing flag for U-Dehydroisoandrosterone 
3-sulfate-2 2286 0.858 0.011 No

U-1-Palmitoyl-glycero-3-phosphocholine 2217 0.862 0.015 Yes

Missing flag for U-U-CE-C0352 2141 0.856 0.009 No

Missing flag for P-XC0138 2075 0.853 0.007 No

Missing flag for P-Solanidine 1942 0.856 0.009 No

U-Trigonelline 1867 0.857 0.011 Yes

Missing flag for P-FA(15:1)-1–2 FA(15:1)-2–2 1858 0.854 0.007 No

P-Kynurenine 1772 0.856 0.010 Yes

Missing flag for U-CE-C0047 1770 0.855 0.009 No

P-CE-A0242 1727 0.854 0.007 No

Systolic_blood_pressure 1659 0.856 0.009 No
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AUC value and test AUC value for metabolomic and clinical dataset was apparently smaller than those for 
metabolomic dataset and clinical dataset, unlike the other machine learning models. Our deep learning model 
avoids overfitting metabolomic and clinical dataset with larger features. The second step was comparing the 
selected 50 features using PWL and HCLR models. This two-step strategy enabled us to avoid overfitting and 
yielded explainable results.

To date, intensive research has focused on the identification of biomarkers to predict the progression of 
DKD. The urinary albumin-creatinine ratio is a classical ratio, and urinary sTNFR1, sTNFR2, and KIM1 are 
representative of new biomarkers. One study of early and advanced DKD cohorts indicated that the AUC value 
of the prognostic model for renal endpoint was 0.680 in clinical models alone, ranging from 0.709 to 0.735 in 
clinical models plus one biomarker (either urinary sTNFR1, TNFR2, or KIM1) and 0.752 in clinical models 
plus all three  biomarkers22. In another recent study that applied a random forest model to patients with DKD, 
the AUC value for the renal endpoint was 0.61 in the validation set using the clinical model only and 0.77 in 
the validation set using the clinical model plus urinary sTNFR1, sTNFR2, and KIM-123. These results indicate 
that the clinical model could not precisely predict the renal outcome. However, considering an AUC value of 
approximately 0.75, the prediction model using clinical parameters and known biomarkers remains insufficient 

Figure 4.  Graph network of features in PWL models and HCLR models. Graph network derived from high-
AUC models of (a) PWL and (b) HCLR. The width of an edge between two nodes represents the interaction 
strength between the biomarker candidate’s pair that the two nodes represent. For visibility, we ignored all nodes 
whose interaction strength was smaller than a threshold value: 0.8 in PWL models and 500 in HCLR model. 
PWL piecewise linear, HCLR handcrafted linear regression.
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for clinical use. Therefore, novel biomarkers for DKD are still needed. Therefore, we focused on metabolomics, 
especially non-targeted comprehensive metabolomics, in advanced DKD.

Research highlighting the importance of metabolomics as a biomarker for DKD is limited. In a longitu-
dinal study, a recent report that examined 13 metabolites in the Chronic Renal Insufficiency Cohort study 
cohort demonstrated the prognostic value of 3-hydroxyisobutyrate and 3-methylcrotonyglycine, citric acid and 
aconitic  acid7. Another study examined urinary metabolites in patients with type 1 diabetes using NMR and 
advocated that several urinary metabolites such as leucine, isoleucine, and threonine can be biomarkers for 
DKD  progression24. These studies examined a limited number of metabolites (< 100); therefore, the threshold p 
value for traditional statistical tests was relatively loose. Our research employed non-targeted, comprehensive 
metabolomics; therefore, we identified 474 plasma metabolites, 442 urinary metabolites, and other unidenti-
fied metabolites and examined their utility as biomarkers in DKD progression. Metabolites with low detection 
frequency, were not excluded, as these specific metabolites could be potential biomarkers and rapid decliners 
represented only 10.4% of the patients. In light of the low proportion of rapid decliners, it was deduced that 
metabolites with low detection frequency could also be biomarkers. This approach did not limit the number 
of variables, however statistical tests were more rigorous. If we used only a traditional statistical test, we could 
not detect any metabolites under the threshold q value of 0.05. Such strict statistical tests may veil the potential 
biomarkers. In this study, we attempted a novel analysis approach that can widely detect potential metabolites 
by employing machine learning.

In this study, we focused on machine learning methods that maximize the utilization of the discovery cohort, 
that is, a large number of variables in a limited number of patients. Although we performed double cross-val-
idation as a strict internal validation, we did not perform an external validation study. Therefore, the detected 
metabolites were not externally validated. Nevertheless, two metabolites, urinary threonic acid and plasma 
CE-C-0218, appeared to be good predictors of rapid decliners of DKD, because they were listed higher in both 
the PWL and HCLR when compared with urinary alb/Cre, a known prognostic marker in DKD. However, the 
relationship between threonic acid and kidney disease or diabetes has rarely been reported. A recent report indi-
cated that urinary threonic acid is a potential biomarker for monitoring nonsteroidal anti-inflammatory drug use 
in  cats25. However, no previous report has indicated its significance in human kidney diseases. CE-C-0218 was 
an unidentified metabolite. This metabolite is 4-(trimethylammonio) but-2-enoate. We should wait for future 
research and further meta-studies that perform non-targeted metabolomics in DKD patients to judge whether 
this metabolite is associated with DKD progression and whether this metabolite can be a good predictive marker.

The limitations of this study are as follows. First, sample size was as small as 14 rapid decliners in a total of 
135 patients. Second, we analyzed only the discovery cohort. Metabolites highlighted in this study, such as thre-
onic acid and CE-C-0218, were not considered biomarkers in this study. This study focused on the extraction of 
potential biomarkers from the screening cohort, and we did not include a validation cohort. Thus, the possibility 
of overfitting remained. Third, in this study, we did not set hard outcomes, such as dialysis induction and overall 
death. During this short 30-month research period, no patient developed end-stage kidney disease; therefore, we 
set a surrogate endpoint. An eGFR change of − 10%/year corresponds to − 20%/2 years, which has been recently 
advocated as a good surrogate  endpoint15. Fourth, although we used a non-target metabolomic approach and 
AUC-based potential metabolite identification, several metabolites were manually selected according to known 
biological significance (Supplementary Table 7). Although two metabolites, urinary threonic acid and plasma 
CE-C0218, were selected according to the importance score or, in other words, not manually selected, the results 
must be interpreted with caution.

In summary, we performed non-targeted metabolomics and comprehensive machine learning analysis in 
patients with DKD and found that machine learning analysis can reveal features that are important in DKD pro-
gression prediction. This technique can be applied to other discovery studies and will be helpful for researchers 
to maximize the utilization of discovery cohort studies.

Methods
Cohort formation and sample collection. This study was approved by the ethics committee of the Uni-
versity of Tokyo Graduate School of Medicine (ethical approval number 10660). The UT-DKD cohort consisted 
of CKD G3 DKD  patients14. The inclusion criteria were diabetic CKD G3 patients over 20 years of age who were 
not previously diagnosed with other kidney diseases, such as glomerulonephritis and polycystic kidney disease. 
The exclusion criteria were as follows: systolic blood pressure > 170 mmHg, HbA1c > 9.5%, any form of cancer, 
kidney diseases other than DKD or nephrosclerosis, organ transplant as a recipient, and those who had under-
gone systemic steroid therapy within 1 month before enrollment.

A total of 150 patients were recruited between January 2015 and September 2016. Written informed consent 
was obtained from all participants. Plasma and urine samples were collected at the baseline and follow-up visits 
(set 10 months after the baseline visit). All plasma and urine samples were collected under fasting conditions, 
defined as at least 10 h of fasting, and were preserved at − 80 °C. Information about family history, medical his-
tory, smoking and drinking habits, and medication were collected at the baseline visit. Laboratory data were 
collected from electrical medical record (collected items are shown in Supplementary Table 1). The Japanese-
MDRD equation was used to calculate  eGFR26, and all eGFR data for 30 months from the baseline visit were 
collected. The annual decline rate of eGFR was calculated at every 10 months (i.e., at four time points) using the 
least squares method.

Sample preparation and mass spectrometry (MS) analysis for metabolomic profiling. Metab-
olomic analyses were performed by Human Metabolome Technologies Inc. (HMT, Tokyo, Japan). Plasma and 
urine samples were analyzed by capillary electrophoresis time-of-flight MS (CE-TOF–MS) and liquid chroma-
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tography time-of-flight MS (LC-TOF–MS) using HMT Advanced Scan  methods27. All samples at baseline and 
10 months were measured once independently.

For CE-TOF–MS analysis, 50 µL plasma samples were added to 450 µL methanol containing internal stand-
ards (HMT). The solution was mixed with 500 µL chloroform and 200 µL water and then centrifuged at 2300×g 
for 5 min at 4 °C. The upper layer was centrifugally filtered through a 5-kDa cut-off filter (HMT; Ultrafree 
MC-PLHCC) at 9100×g for 120 min at 4 °C and reconstituted in water. Next, 20 µL urine was added to 80 µL 
of water containing internal standards. This solution was centrifugally filtered through a 5-kDa cut-off filter at 
9100×g for 60 min at 4 °C.

For LC-TOF–MS analysis, 500 µL of plasma samples were added to 1.5 mL acetonitrile with 1% formic acid 
containing an internal standard solution. The solution was centrifuged at 2300×g for 5 min at 4 °C, and the 
supernatant was filtered using a hybrid SPE phospholipid cartridge (55261-U; Sigma-Aldrich, St. Louis, MO, 
USA). After drying, the precipitate was reconstituted in 50% (v/v) isopropanol. Urine samples (100 µL) were 
mixed with 300 µL methanol containing internal standards and centrifuged at 2300×g for 5 min at 4 °C. The 
supernatant was dried and reconstituted in 50% (v/v) isopropanol. Metabolites were measured by CE-TOF–MS 
and LC-TOF–MS using HMT Advanced Scan methods, as previously  described27. For relative quantification, 
each MS peak intensity was normalized based on the sample volumes and internal standards. For urine samples, 
MS intensity was normalized by the intensity of the creatinine peak. The annotation of each metabolite peak was 
identified using the HMT metabolite  database27. For the quantitative comparison of each metabolite, the missing 
value was imputed with half of the minimum MS intensity in all detected subjects, as previously  reported28. The 
annotation for unidentified metabolites is based on the m/z values of the target metabolite, which is estimated 
by referring to the KEGG* compound database. (*KEGG; Kyoto Encyclopedia of Genes and Genomes, https:// 
www. genome. jp/ kegg/ compo und/).

Identification of C_0038 as 1‑methylpyrydin‑1‑ium (NMP) using CE‑MS/MS. A non-defined sub-
stance, urinary C_0038, was identified by CE-MS/MS-based substance structure estimation. First, the estimated 
molecular formula of C_0038 was calculated based on the results of exact MS spectrum and the isotope peak 
of CE-TOF–MS, which is described above as metabolomic analysis (estimated molecular formula: C6H6N−, 
C6H7N, C6H8N+). Next, we performed additional analysis using CE-MS/MS. The condition is as follows for 
CE, Capillary: Fused silica capillary i.d. 50 µm × 80 cm, Instrument: Agilent CE system, Run buffer: 1 M Formic 
acid, Voltage: 30 kV; for MS, Instrument: Thermo Q-Exactive plus, Polarity: Positive, Resolution: 140,000, Scan 
range 60–900 m/z. The MS/MS actual measurements and their retention times under 40 eV collision condi-
tions were matched with in silico predictions using a metabolomics-based chemoinformatics approach reported 
 previously29. Four candidates were estimated, and all of their commercial substances were matched to peaks in 
the urine sample using MS/MS. Finally, C_0038 was identified as NMP.

Biomarker candidates based on decliner prediction models. First, we constructed prediction mod-
els to classify the patients into rapid decliners and non-rapid decliners and to extract important features (i.e., 
features that highly contribute to the classification) as biomarker candidates. Metabolomic dataset included 
baseline metabolomic parameters, clinical dataset included baseline clinical data, and metabolomic and clinical 
dataset included both clinical parameters and metabolomic data.

The variables featured in the three datasets were classified into binary (e.g., sex, family history of diabetes), 
multi-categorical (e.g., NIT, UBG), and quantitative variables (e.g., body height and hemoglobin). We set binary 
feature variables to 1 or − 1 values. Next, we performed one-hot encoding for multi-categorical variables; for 
one multi-categorical variable of K categories, we converted the variable into K variables, each of which takes 1 
as the value if the sample belongs to the corresponding category and -1 otherwise. If a value in the binary and 
multi-categorical variables was missing, missing values were set to 0. The normalization process for each con-
tinuous quantitative variable was performed by subtracting the feature mean value and dividing by the standard 
deviation. For each ordinal quantitative variable, such as the frequency of drinking, we defined the normalized 
ordinal variables so that the values were expressed on a scale in a numerical order. Furthermore, we added a 
missing flag variable to each quantitative variable in the metabolomic data. Missing flag variables were created 
using the following process. There were two types of missing data for the quantitative variables. In the type-1 
case, the value was smaller than the measured sensitivity. The values for the type-2 case were not measured. The 
missing flag variables had three states: 1 for the type-1 case, 0 for the type-2 case, and − 1 for not missing. If a 
value in the quantitative variables was missing, we set 0 as the missing value for the normalized feature variables. 
In this study, we replaced the missing values with 0 because the 0-value input did not change the output in the 
weighted-sum layers of the deep learning model. Thus, the 0-value input does not change the inference of the 
deep learning model. The numbers of feature variables in three datasets were 3311, 77, and 3388, respectively. 
All feature variables are summarized in Supplementary Table 5.

There are four prediction methods and three datasets (metabolomics dataset, clinical dataset, and metabo-
lomic and clinical dataset) included in the prediction models. One of the prediction methods was a deep learn-
ing-based method using a point-wise linear (hereinafter referred to as deep learning)  model30 (implemented 
using PyTorch 1.5.1, Python 3.7.4). This deep learning model derived the output value as a weighted sum of the 
input features whereby weights were calculated using a deep neural network. One can compute the importance 
of each feature using its weight value. Furthermore, the deep learning model used deep unified  networks21 in 
which the network layers and neurons are connected in a mesh-like form. This mesh-like structure reduces the 
risk of overfitting. The other three methods, (1) logistic regression, (2) random forest, and (3) support vector 
machine (SVM), were adopted to build the baseline models (implemented using scikit-learn v0.21.3, Python 
3.7.4) to validate the prediction performance of the deep learning models. The model output is the probability 

https://www.genome.jp/kegg/compound/
https://www.genome.jp/kegg/compound/
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of a sample being classified as a rapid decliner. We calculated each model’s prediction performance using the 
area under the curve value evaluated by tenfold  DCV17. We chose the best prediction performance model among 
the three deep learning models for three datasets and evaluated the importance score for each feature using the 
relative  score30. We selected features as biomarker candidates by imposing importance scores greater than 0.25. 
The importance score of 0.25 indicates that among either rapid-decliner samples or non-rapid-decliner samples 
at least half of the samples considered that the feature is one of the top 10% of important features. We added 
manual selection of metabolomes with importance scores larger than 0.06, which were reported to be important 
in the pathogenesis or progression of DKD. Here, we need to restrict the number of features around 50 in the 
following analysis which is computationally expensive: the total number of models to be examined in one of 
the following analyses is 1.97 ×  107 for 50 features and 4.12 ×  1014 for the whole 3388 features. We selected the 
features using the importance scores, since the features with higher importance scores definitely contribute to 
the prediction result individually. However, the importance score is not the perfect scoring method to measure 
the "importance" that humans often consider. For example, the importance score can underestimate the features 
that need to work with other features to affect the prediction. Therefore, we supplemented the features selected 
by the imperfect scoring method with the ones manually curated based on our biological knowledge.

Relationships between biomarker candidates. Although we obtained the biomarker candidates and 
their importance scores based on the deep learning model that considers nonlinear interactions between the 
features, we could not identify how the features related to each other because of their complexity. Therefore, we 
investigated the explicit nonlinear relationship among biomarker candidates by constructing simple and com-
prehensive nonlinear models that classify rapid decliners with biomarker candidates using two methods. One 
method was to construct two-dimensional classification models (implemented by PyTorch 1.5.1, Python 3.7.4) 
that consist of 2–4 boundary lines derived by a piecewise linear  function31, which we refer to as piecewise linear 
(PWL) models. The other method was to construct two-dimensional logistic regression models (implemented 
by scikit-learn v0.24.2, Python 3.7.4) with handcrafted feature vectors, which we refer to as handcrafted logistic 
regression (HCLR) models. The handcrafted feature vectors were calculated using all possible combinations of 
the four basic arithmetic operations (+, −, ×, and ÷) of the two biomarker candidates.

We evaluated the AUC values for all possible PWL and HCLR models. We then visualized the classification 
boundaries by setting the threshold level of the rapid decliner probability to the one where the f1-measure 
was maximum. The threshold level was well balanced between the true positive and false positive ratios. To 
investigate which features and feature combinations are often adopted in these simple models, we counted the 
number of models containing each single feature in the high-AUC models for each method, which we call each 
feature’s single frequency. In this study, we defined the high-AUC models using 65 PWL models whose AUCs 
were higher than 0.8 and 23,040 HCLR models whose AUCs were higher than 0.9. Additionally, we constructed 
a graph network to visualize the interactions between the biomarker candidates for each method. To evalu-
ate the strength of the interaction between each feature pair in the HCLR models, we counted the number of 
models containing each feature pair in the high-AUC models. For PWL models, on the other hand, we define 
the interaction strength between each feature pair by the AUC of the PWL model of the feature pair because 
the PWL model that contains each feature pair is uniquely determined. In graph networks, the nodes and the 
width of the edges between two nodes represent the biomarker candidates and the interaction strength of the 
corresponding biomarker pair, respectively.

Statistical analysis. The relative MS area of each metabolite in the plasma or urine was compared between 
the groups using the Mann–Whitney U test. Thereafter, the q value was calculated using the Benjamini–Hoch-
berg method. Statistical significance was set at a p value of < 0.05.

Ethical declarations. This study was approved by the ethics committee of the University of Tokyo Gradu-
ate School of Medicine (ethical approval number 10660) and performed in accordance with the Declaration of 
Helsinki and the institutional guidelines.

Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.
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