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A voting‑based ensemble feature 
network for semiconductor wafer 
defect classification
Sampa Misra1,4, Donggyu Kim1,4, Jongbeom Kim1, Woncheol Shin2 & Chulhong Kim1,3*

Semiconductor wafer defects severely affect product development. In order to reduce the occurrence 
of defects, it is necessary to identify why they occur, and it can be inferred by analyzing the patterns 
of defects. Automatic defect classification (ADC) is used to analyze large amounts of samples. ADC can 
reduce human resource requirements for defect inspection and improve inspection quality. Although 
several ADC systems have been developed to identify and classify wafer surfaces, the conventional 
ML-based ADC methods use numerous image recognition features for defect classification and tend to 
be costly, inefficient, and time-consuming. Here, an ADC technique based on a deep ensemble feature 
framework (DEFF) is proposed that classifies different kinds of wafer surface damage automatically. 
DEFF has an ensemble feature network and the final decision network layer. The feature network 
learns features using multiple pre-trained convolutional neural network (CNN) models representing 
wafer defects and the ensemble features are computed by concatenating these features. The decision 
network layer decides the classification labels using the ensemble features. The classification 
performance is further enhanced by using a voting-based ensemble learning strategy in combination 
with the deep ensemble features. We show the efficacy of the proposed strategy using the real-world 
data from SK Hynix.

The semiconductor manufacturing process involves complex processes that form integrated circuits on the wafer 
surface. Manufactured wafers are first divided according to whether they have defects or not. Afterward, in order 
to analyze the wafers with defects, a binary wafer map is created where the defective chip on the wafer has a value 
of 1 and vice versa1. A specific pattern (e.g., cluster, scratch, edge, etc.) is usually formed based on those binary 
values on the wafer map2. However, no correlation has been established between the cause of the defect and the 
specific pattern. Therefore, semiconductor manufacturers are trying to find the cause of a defect by gathering 
wafer maps with similar patterns and identifying commonalities between defective wafers3.

Defect classification is the first step for collecting and analyzing wafer maps with similar patterns. In general, 
defect classification is done by humans which is time-consuming, laborious, and causes human error4. Nowadays, 
as the semiconductor manufacturing process has large amounts of samples, the importance of reducing the time 
with high accuracy in this classification process has also increased to improve inspection quality and reduce 
human resource requirements for defect inspection5.

Thus, automatic defect classification (ADC) of the wafer surface in less time and more accurately using 
deep learning (DL) is a welcome approach6. Here, we introduce a convolutional neural network (CNN)-based 
ensemble learning technique with voting for automatic defect classification, reducing analysis time and removing 
human error inconsistencies. Training CNN requires large datasets of labeled images with high computational 
costs, so we used transfer learning (TL) to solve the image shortage for training CNN models7. In addition, we 
adopted the ensemble learning method to further improve classification performance. Our proposed method 
was evaluated on real wafer map data from SK Hynix.

Related work
Conventional ADC methods.  Semiconductor manufacturers have introduced ADC systems to reduce 
manufacturing and labor cost while improving product quality. In the past few years, the primary research 
areas now focus on wafer map feature extraction and defect pattern categorization using machine learning (ML) 
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methods because of their robustness in the initial data deficiency events. The pre-defined hand-crafted features, 
such as edge features, surface texture, and pattern information, were first obtained manually from the wafer 
maps. Then ML techniques, such as support vector machine (SVM), random forest8, K-nearest neighbor (KNN), 
were used to classify wafer defects. Many techniques were employed for feature extraction e.g., geometry-based 
features9, representative features10, radon-based features11, texture features12, and density-based features13. A 
method for wafer map defect pattern recognition was proposed in9 by combining geometry-based and radon-
based feature extraction, and then the SVM classifier was applied to classify the defect patterns. Yu and Lu14 
presented a wafer map defect detection method using local and nonlocal linear discriminant analysis to discover 
intrinsic manifold information to characterize defect patterns. From these studies, it can be observed that cur-
rent defect classification models based on ML need manually extracted features from the skilled semiconductor 
engineer. Therefore, the previously proposed ML-based models are generally expensive, inefficient, and time-
consuming.

Deep learning and ensemble learning methods.  DL has recently shown great merits since it can 
automatically extract compact features from highly dimensional and complex data. The CNN model has dem-
onstrated state-of-the-art performance classifying image data among different DL models. The CNN model 
has also been employed in the semiconductor industry: Nakazawa and Kulkarni1 employed a CNN model for 
wafer map classification. A CNN model was designed by15 to classify wafer map patterns for failure recurrence 
monitoring. Cheon et al.6 developed a CNN model to extract features for defect categorization. In order to clas-
sify defects in through-silicon through processes, a CNN-based model was developed in7. While the proposed 
DL methods have shown promising results, the fundamental disadvantage of these techniques is that they need 
more than a few thousand training data sets with precise ground-truth labelling. Thus, limited data set would 
lead to insufficient training of the DL network. The TL approach can alleviate this problem of inadequate train-
ing data in DL16,17. The network is first trained in the TL approach with an available large-scale dataset, e.g., 
ImageNet. The trained model is then fine-tuned using the limited dataset. A CNN based on the TL method is 
developed in7,18 for automatic defect classification. Yu et al.19 focused on the issue of not enough images with 
labels. They developed a semi-supervised DL-based TL method by utilizing features and labels in an adversarial 
network. However, these methods used a single deep network for semiconductor wafer defect classification, 
potentially limiting their ability to extract features learned by various CNN networks.

Ensemble learning has become one of the hot topics in ML as it overcomes the limitation of the individual 
model. Compared to the individual deep network, ensemble learning methods utilize a set of learning algorithms 
to obtain better classification results, improving the stability and robustness of the approach than the constitu-
ent learning algorithms alone. Saqlain et al.20 extracted geometry, density, and radon-based features from the 
raw wafer image and then trained four classification methods using extracted features. The ensemble soft voting 
technique then combined accuracy from these classifiers. Kang and Kang21 built a hybrid classifier by combining 
ML classifier and CNN for wafer map defect pattern classification. An integrated densely connected convolu-
tional network (DenseNet) and the deep forest for wafer map defect-recognition model were developed in22. The 
performance of these ensemble learning methods is established on custom features, which are unsatisfactory for 
indicating the semiconductor wafer defect images.

In this study, we propose an ensemble method, where CNN models are pre-trained using the ImageNet data-
set. Among several CNN models, ResNet1823, AlexNet24, and VGG1625 models are employed in this study. One 
superior classifier is created by combining three CNN models for excellent prediction performance. The CNN 
models are initially trained using a sizable dataset of naturally occurring image annotations (ImageNet)24. Then, 
these models are fine-tuned using annotated semiconductor wafer defect dataset. The models are ensembled in 
two ways: first by combining features and then based on voting. The following sections give specifics about our 
implementation and test findings.

Methods
Deep ensemble feature framework.  This section presents the proposed deep ensemble fea-
ture framework (DEFF) for wafer defect detection. The whole ensemble framework is shown in Fig.  1. Let 
X = {(xi , ci)1 ≤ i ≤ N} be the dataset comprising of N training images with the corresponding class label 
ci = {1, 2, …, C}, where C is the total number of classes. The DEFF contains K different CNN models with fully 
connected (FC) layers and softmax layers. The proposed ensembled model can ensemble the random number 
of CNN models. However, we could only load three CNN (k = 3) models instantaneously due to the physical 
memory limits of the GPU card. The output of the last FC layer of the kth CNN produces the deep features fk for 
kth CNN model. A deep ensemble feature f is defined as f = [f1, f2, … fk], which consists of all the deep features. 
In each epoch, the forward propagation is accomplished to produce features from each CNN model and the 
ensemble feature f is computed by concatenating these features. The decision network layer predicts the label of 
test images based on the voting ensemble features using yn = O(f1, f2, … fk, f).

Deep CNN ensemble based on voting.  A voting ensemble method can be divided into majority or hard 
voting and soft voting. The hard voting ensemble (HVE) can also be different types based on how the ensemble 
model selects class c: when all classifiers predict class as c; half of the base classifiers (majority) predict class as c. 
However, it is not optimal when the odd number of base classifiers exist and also when outputs of classifiers are 
independent. In our work, we use a soft voting ensemble (SVE), where the probability value is used instead of 
class labels for the ensemble. The output class is predicted by the average of the probability values. This approach 
provides more flexibility and fine-grained results than majority voting.
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Description of employed CNN models.  In this study, we employed three state-of-the-art CNN models: 
deep residual network-18 (ResNet18)23, AlexNet24, and VGG1625 models. These popular CNN models have been 
widely used in many applications and show their robustness. Many researchers26–28 showed they have achieved 
the highest classification accuracy using these models for wafer map defect pattern identification. The network 
architecture of these models is shown in Supplementary Fig. 1. The ResNet18 model proposed by He et al.23, 
has one 7 × 7 convolutional layer, 5 residual blocks, and one fully connected (FC) layer. There are two regular 
residual blocks (Res block1) and three residual blocks with 1 × 1 convolution (Res block2). Each residual block 
contains two 3 × 3 convolutional layers, two batch normalization layers, and one ReLU layer. The AlexNet model, 
developed by Alex Kriszhevsky24 comprises five convolutional layers and the FC layers. After the first, second, 
and fifth convolutional layers, max-pooling layers are applied to reduce overfitting. The fifth convolutional layer 
(after max and avg pooling) is connected to the FC layers. The VGG16 model, developed by the Oxford Visual 
Geometry Group25, consists of 13 convolutional layers, five pooling layers, and three FC layers. For higher accu-
racy, a ReLu activation was employed for each convolutional layer.

All three models were pre-trained using the ImageNet dataset. The decision layers (softmaxI1, softmaxI2, … , 
softmaxIk) of these models were removed since these pre-trained CNN models aimed to classify 1000 classes. The 
features produced by these models were then concatenated to the ensemble feature, which served as the input of 
the softmaxE layer in ensemble feature network. The classification outcomes based on the deep ensemble features 
are computed as one of the inputs of the decision network layer. The final classification result is computed using 
a voting-based ensemble learning strategy from softmax1, softmax2, … , softmaxk, softmaxE. The convolution 
part was used for feature extraction. The outputs from the FC layer are directly utilized as feature descriptors 
for classification. The outputs of each layer are called features, and features from various layers have distinct 
significance. Local image features are extracted from the lower layer, and more semantic features are extracted 
from higher layers by convolution.

Experiments
Dataset.  The dataset employed in this study was obtained from the semiconductor manufacturing process of 
SK Hynix. An experienced engineer determined the wafer maps’ class labels. There were a total of 2690 images 
and were divided into 5 classes, as shown in Table 1 (cluster: 500, complex: 141, edge: 395, face: 519, scratch: 
1135). The sample defect images for each class are shown in Fig. 2.

Figure 1.   Schematic of deep ensemble feature framework. The framework is comprised of ensemble feature 
network and the decision network (softmax layer). The ensemble feature network includes k pre-trained CNN 
models using ImageNet data, and each CNN model provides the feature for classification. Ensemble feature is 
computed by concatenating features from different CNN models which acts as one of the inputs of the decision 
layer for the semiconductor wafer defect classification.
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Experimental setting.  The dataset was split randomly as follows: 80% for the training + validation and 
20% for the testing for each class. The train + validation set was again randomly split as 80% for the training and 
20% for the validation using fivefold cross-validation. This fivefold cross-validation process was repeated 4 times 
to generate 5 × 4 = 20 train and validation sets to statistically validate the model. The model could be evaluated 
using the validation set. However, it could result in overfitting. So, the test set, which is completely unknown 
during training time, is used to evaluate the model for avoiding the overfitting problem and showing the model 
robustness. The splitting process is shown in Supplementary Fig. 3. The number of images for train, validation, 
and test sets for all five defect classes are shown in Table 1. The total number of images in the train set, validation 
set, and test set was 1722, 430 and 538, respectively.

We implemented the DL models using PyTorch as the back-end programming language on a server that 
contained a total of 8 Dell PowerEdge MX740c blade servers. There were 500 training epochs in total. An early 
stopping criterion was also implemented, i.e., stop training and have the weights from the best epoch recovered 
from memory if the validation loss does not reduce across 50 successive epochs. We used the most widely used 
saqldens-entropy loss function and the stochastic gradient descent (SGD) optimizer29 for training. The batch size, 
learning, and momentum were 32, 0.0001, and 0.8, respectively. The size of all the training and testing images 
been changed to 224 × 224.

In order to increase the training dataset, we also used a standard augmentation technique. As an augmenta-
tion technique, we used random cropping, 1° rotations, and horizontal flipping here.

Evaluation metrics.  In the multi-label classification problem, various metrics listed in Supplementary 
Table I can be used as evaluation indicators. The most commonly used metric is accuracy. However, accuracy is 
generally effective when the data is balanced30. The F1-score can measure performance even in the imbalanced 
data. Since the F1-score is based on the harmonic average and not on a simple average, it gives a penalty for a 
large value. With this principle, even if there is an imbalanced class with a large dataset, such as scratch, it is 
possible to effectively measure the performance of the model. In most real-life classification problems, imbal-
anced class distribution is prevalent, so the F1-score should be considered in evaluating the model. Macro is the 
average value without considering label imbalance by giving the same weight to all classes. The weighted average 
considers the amount of data in each class.

Table 1.   Class distribution of the dataset (Train, Validation, and Test sets).

Class name Availablesamples Training Validation Test

Cluster 500 320 80 100

Complex 141 90 23 28

Edge 395 253 63 79

Face 519 332 83 104

Scratch 1135 726 182 227

Total 2690 1722 430 538

Figure 2.   Typical examples of 5 wafer surface defect classes: (a) Cluster, (b) Complex, (c) Edge, (d) Face, and 
(e) Scratch.
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Results
Pre‑trained models versus without pre‑trained models.  To overcome the limited data set issue, 
we used TL approach. We first trained six networks: ResNet1823, AlexNet24, and VGG1625, DenseNet12131, 
GoogLeNet32, and SqueezeNet33 with the training set. These models are well known and have performed well 
when adapted to the classification of defected patterns in wafer bin maps26–28,34,35. The key salient features of 
these models are shown in Supplementary file. We compared the performance of six networks with TL and with-
out TL. Models with TL have pre-trained weights from large datasets, and we used them to train our new models. 
On the other hand, the models without TL have randomly initialized weights without pre-trained weights. In 
other words, models without TL don’t use ConvNets pre-trained with large datasets of ImageNet.

The classification performance in terms of accuracy and weighted F1-score on the test dataset with and 
without using TL is shown in Fig. 3. As shown in Fig. 3, we can see that the overall performance increased when 
TL was used compared to without TL. The accuracy increased from 92.56 to 98.42%, 91.12 to 98.31%, 94.38 
to 98.11%, 95.7 to 96.02%, 94.48 to 98.0% and 89.98 to 98.14%, for ResNet18, AlexNet, VGG16, DenseNet121, 
GoogleNet, and SqueezeNet models, respectively. The results confirm that even when the data is limited, the TL 
method can improve performance.

Various pre‑trained CNN models.  The classification performance in terms of accuracy for vari-
ous pre-trained (ImageNet) CNN models is shown in Fig. 4. The classification accuracy of 10 CNN models, 
namely, ResNet1823, AlexNet24, and VGG1625, DenseNet12131, GoogLeNet32, SqueezeNet33, InceptionV336, 
MobileNetV237, EfficieneNetB038, InceptionResNetV239 are compared. For some CNN models, the performance 
is not that much significant when adapted to another field, although classification accuracy of the CNN models is 
higher using ImageNet dataset. For example, DenseNet (2016) model is a more recent and advanced model than 
AlexNet (2012), ResNet (2015), and VGG (2014) models. However, the performance of the DenseNet model is 
inferior to the other models using our dataset.

Ensemble versus single models.  We applied ensemble learning to further improve the classification 
performance of pre-trained CNN models. The ensemble of the different models complements each other and 
overcomes the limitations of the single model. The ensemble architectures can be incredibly useful in acquir-
ing different features. The proposed ensembled model can ensemble the random number of CNN models and 
modify the parameters of these models in an end-to-end trainable manner. However, we could only load three 
CNN models instantaneously due to the physical memory limits of the GPU card. The 3 best CNN models 
shown in Fig. 3 are ResNet18 (R), AlexNet (A), and VGG16 (V) were used as sub-models for ensemble learning.

The classification performance of pre-trained single models and ensemble models is shown in Table 2. The 
union of each CNN’s acronyms represents the combination of CNNs. For example, R + A + V implies ResNet18, 
AlexNet, and VGG16 were used in our proposed method for the end-to-end training. The classification perfor-
mance of the ensemble model based on the proposed DEFF method as well as HVE and SVE are superior to that 
of single models. It is important to note that the performance of the proposed DEFF model using 3 models is 
superior to the DEFF model using 2 models. Finally, after applying ensemble voting with the proposed DEFF, we 
obtained an accuracy of 99.15%. The accuracy of 99.15% implies except for 4 images all were classified accurately. 
The confusion matrix is shown in Supplementary Fig. 2.

Ablation studies.  Here, we performed various combinations of CNN models for ablation studies. The accu-
racy of the ablation studies with different combinations of CNN models (e.g., DenseNet121 (D), GoogLeNet (G), 

Figure 3.   The graph representation of classification performance (mean) for each model without TL and that 
with TL. Error bars represent standard deviation (SD).
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MobileNetV2 (M)) is shown in Fig. 5. From Fig. 5, we can see that when we combine two CNN models, the best 
and the second-best accuracy values are obtained for A + V and R + A models, respectively. Nevertheless, the 
ensemble method with three CNNs (R + A + V) still accomplished the best accuracy value. It is worth noting that 
if we increase the number of CNNs, classification accuracy may be improved more.

Figure 4.   The graph representation of classification accuracy (mean) for pre-trained CNN models. Error bars 
represent standard deviation (SD).

Table 2.   Classification performance (mean and SD) using different strategies from 20 independent runs. Three 
CNNs including ResNet18 (R), AlexNet (A), and VGG16 (V) are applied. The Highest Performance Values are 
Highlighted in the red box in the table.

Strategy Model 

Macro  

Precision 

(%) 

Weighted 

Precision 

(%) 

Macro  

Recall 

(%) 

Weighted 

Recall 

(%) 

Macro  

F1-score 

(%) 

Weighted 

F1-score 

(%) 

Accuracy 

(%) 

Single R 98.42 ± 0.64 98.26 ± 0.39 97.89 ± 0.67 98.22 ± 0.40 98.12 ± 0.59 98.21 ± 0.41 98.22 ± 0.41

Single A 98.31 ± 0.58 98.11 ± 0.29 97.21± 0.59 98.07 ± 0.31 97.73 ± 0.71 98.05 ± 0.52 98.06 ± 0.51

Single V 98.11± 0.77 97.97± 0.65 96.96± 1.42 97.92± 0.71 97.49± 1.13 97.92 ± 0.71 97.93± 0.71

Ensemble (DEFF) R + A 99.00± 0.34 98.77 ± 0.22 98.52 ± 0.24 98.72 ± 0.26 98.75 ± 0.28 98.76 ± 0.22 98.77 ± 0.22

Ensemble (DEFF) R + V 98.75 ± 0.33 98.52 ± 0.18 98.08 ± 0.40 98.51 ± 0.18 98.39 ± 0.34 98.50 ± 0.18 98.51 ± 0.18

Ensemble (DEFF) A+ V 99.06 ± 0.29 98.80 ± 0.29 98.60 ± 0.32 98.78 ± 0.30 98.81± 0.29 98.78 ± 0.30 98.79 ± 0.30

Ensemble (DEFF) R + A + V 99.22 ± 0.30 98.95± 0.18 98.74 ± 0.23 98.94 ± 0.19 98.97± 0.23 98.94 ± 0.19 98.95 ± 0.19

Ensemble (HVE) R + A + V 99.04 ± 0.41 98.77± 0.36 98.19 ± 0.77 98.76 ± 0.37 98.59± 0.57 98.75 ± 0.37 98.76 ± 0.37

Ensemble (SVE) R + A + V 99.02 ± 0.31 98.78± 0.27 98.29 ± 0.74 98.76 ± 0.28 98.66± 0.51 98.76 ± 0.28 98.76 ± 0.28

Ensemble (DEFF + 
SVE) 

R + A + V 99.53 ± 0.10 99.16± 0.10 98.99± 0.18 99.15± 0.10 99.26± 0.14 99.14± 0.09 99.15± 0.10



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16254  | https://doi.org/10.1038/s41598-022-20630-9

www.nature.com/scientificreports/

Robustness.  The robustness of the proposed method is validated by its superior performance on publicly 
available datasets. German TILDA defect database27,40,41 (https://​www.​aitex.​es/​afid/ TILDA-C1R141, TILDA-
C2R241, TILDA-C2R341), MT42 (https://​github.​com/​abin24/​Magne​tic-​tile-​defect-​datas​ets), and AITEX43 
(https://​www.​aitex.​es/​afid/) datasets are employed to evaluate the model. The classification performance in terms 
of accuracy of these datasets is shown in Table 3. The proposed ensemble model shows the overall values of accu-
racy 97.505, 90.00, 92.50, 94.90 and 98.90% using TILDA-C1R1, TILDA-C2R2, TILDA-C2R3, MT, and AITEX 
datasets, respectively. It is worth noting that the ensemble model outperforms other single CNN models. Among 
3 CNN models, the performance of VGG16 is superior to ResNet18 and AlexNet models.

Statistical analysis.  All the results were statistically validated for all the test cases using the two-tailed 
paired t-test44 considering the null hypothesis that the performance of the two models was equivalent. The sta-
tistical analysis is shown in Table 4. The p values are provided for a 95% confidence interval, and the significance 
is denoted by two signs: * indicates that the model performed significantly better (i.e., p 0.05, rejecting the null 

Figure 5.   The graph representation of classification accuracy (mean) with different combinations of CNN 
models.

Table 3.   Classification performance using different datasets.

Dataset/Model

Accuracy (%)

TILDA-C1R1 TILDA-C2R2 TILDA-C2R3 MT AITEX

ResNet18 95.00 80.00 87.50 89.54 91.50

AlexNet 75.00 72.50 80.00 84.64 92.00

VGG16 90.00 82.50 87.50 91.40 95.50

Proposed (Ensemble) 97.50 90.00 92.50 94.90 98.90

Table 4.   Statistical analysis of ensemble models and single models from 20 runs. Here, * denoting the model’s 
performance is noticeably better than that of other models and ≈ indicating the performance of two models is 
equivalent.

R + A R + V A + V R + A + V HVE SVE DEFF + SVE

R * * * * *

A * * * * *

V * * * * *

R + A ≈ ≈ * * * *

R + V ≈ ≈ * * * *

A + V ≈ ≈ * * * *

R + A + V * * *

HVE ≈ *

SVE ≈ *

https://www.aitex.es/afid/
https://github.com/abin24/Magnetic-tile-defect-datasets
https://www.aitex.es/afid/
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hypothesis), and indicates that the performance of two models was equivalent (i.e., p > 0.05 could not be used to 
reject the null hypothesis).

Saliency map.  The saliency maps of five various defect image classes are demonstrated in Fig. 6. It illustrates 
which part of the images is used by the CNN model for classifying defects. It is obtained by computing the gra-
dient values of the output class score to input image pixel intensity. For example, a test image of a given class is 
input to a trained CNN model, the associated output class is predicted from the classification layer. Then, the 
gradient of the predicted class for each input pixel is obtained by performing backpropagation. The map shows 
the gradient values of all input pixels. The more a pixel is activated for categorization, the higher its gradient 
value. The detailed description of the saliency map is described in Simonyan et al.45. Figure 6 shows the region of 
the wafer where the defects were located. The trained CNN model focuses on the location of the bright pixel of 
the saliency map. This result shows that the proposed ensemble model successfully locates the positions of defect 
occurrences and captures high-quality classification features.

Comparison with existing methods.  Due to the difference in the quantity of test images and data 
sources, it is not possible to compare the performance of the proposed approach with other existing methods. In 
Table 5, we have summarized the performance in terms of accuracy, classifiers, and the architecture used in our 
proposed model, other existing traditional ML models13,14, DL models1,2,6, and ensemble-based11,20,21,34 classifica-
tion models for wafer map pattern classification.

Time cost.  Table 6 shows the time cost of single CNN models and proposed ensemble model. Although the 
computational effort is large for the implementation of CNN-based approaches, they are simple to use and can 
automatically capture useful features without specialized domain knowledge. Additionally, methodologies based 

Figure 6.   Saliency maps of 5 defect classes: (a) Cluster, (b) Complex, (c) Edge, (d) Face, and (e) Scratch.

Table 5.   Classification performance (accuracy) of proposed and existing methods. The best performance is 
shown in bold font. ML machine learning, CNN convolutional neural network, SVM support vector machine, 
JLNDA joint local and nonlocal linear discriminant analysis, FD fisher discriminative, DT decision tree, 
SVE soft voting ensemble, FNN feed-forward neural network, WMV weighted majority voting, DEFF deep 
ensemble feature framework.

Approach Reference Features/ Model Classifier Accuracy (%)

ML
Fan et al.13 Density, Geometry SVM 88.22

Yu and Lu14 Geometry, gray, texture, projection JLNDA-FD 85.44

ML-Ensemble
Piao et al.11 radon transform, geometric DT 78.48

Saqlain et al.20 density, geometry, radon SVE 95.86

CNN

Nakazawa and Kulkarni1 Wafer Map CNN 98.20

Saqlain et al.2 Wafer Map CNN 96.20

Cheon et al.6 Wafer Map CNN 96.20

CNN-Ensemble

Kang and Kang21 Geometry, Density, Radon, Wafer Map CNN, FNN 94.62

Hsu and Chien34 Wafer Map WMV 98.57

Proposed Wafer Map DEFF + SVE 99.15
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on CNN are gaining popularity for classifying wafer defect patterns since they are highly accurate and outper-
form other ML-based techniques.

Discussion
The presented ensemble model offers excellent performance due to (1) fine-tuning learning features that are spe-
cific to our dataset, and (2) the ensemble of different models overcoming the limitations of the individual models.

Our results indicate that the shallower networks, e.g., AlexNet features are more generalizable and adaptable 
when transferred to a different domain. On the other hand, deeper networks, such as DenseNet features are more 
semantically optimized for natural images. In our study, DenseNet achieved higher accuracy than AlexNet for 
natural image classification, but the performance was lower for semiconductor wafer defect classification. As 
shown in Fig. 3, the improvement of classification accuracy for AlexNet with pre-trained data was 8% in com-
parison to without pre-trained AlexNet. In contrast, the accuracy of DenseNet improved only by 0.04% when 
pre-trained data was used.

The TL results tabulated in Table 2 showed the characteristics and strengths of the various CNN architectures. 
Three CNN models, i.e., including ResNet18, AlexNet, VGG16, achieved better classification performance than 
other CNN models for semiconductor wafer defect classification. Thus, in our ensemble approach, we employed 
these 3 models.

In order to achieve several features, ensemble architectures might be of great assistance. We are able to extract 
image features that are especially pertinent to the semiconductor defect images being classified thanks to the 
fine-tuning of the CNNs in our ensemble model. Herein, we observed that the ensemble model precisely classi-
fies images that individual models often misclassify.

The proposed ensemble method gives a general architecture for ensembling any number of CNN models. 
Thus, the proposed method can learn more representative deep ensemble features to achieve better performance 
compared to the preliminary method.

Even if the proposed strategy is very effective, 4 images were misclassified. Details of the misclassification 
images and their corresponding predictive probability values (PPV) for each class are shown in Fig. 7. The average 
PPV values for the images that were correctly classified are ~ 0.98 for each class. However, for the misclassified 
images, the PPV values are ~ 0.72–0.79. The true class of the misclassified image is the cluster as shown in Fig. 7a, 
but it was misclassified as scratch. The class probability is 0.21 for cluster and 0.79 for scratch. The defect map of 
Fig. 7a is not formed by random particles gathered to form a typical cluster class image, instead line-based defects 
are gathered to form a cluster. Thus, the probability of scratch classification is high because of this defect map 
feature. In the case of Fig. 7b, the class is an edge, but it is misclassified as scratch. The probability for the actual 

Table 6.   Training time of the single and ensemble models.

Model Training time (s)

VGG-16 1074.23

ResNet 307.41

AlexNet 119.37

Ensemble 925.64

Figure 7.   Examples of misclassified images: (a) actual class: Cluster, predicted class: Scratch, (b) actual class: 
Edge, predicted class: Scratch, (c) actual class: Scratch, predicted class: Cluster, (d) actual class: Edge, predicted 
class: Scratch. 
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class was 0.24, and the probability for the scratch was 0.76. The defect map of Fig. 7b contains defects distributed 
along the edge of the wafer, but the probability of scratch is high because the scratch-type defect is in the center 
part of the wafer surface. In the case of Fig. 7c, the true class is scratch, but it is misclassified as cluster. The prob-
ability for the scratch class was 0.28, and the probability for the cluster class was 0.72. The defect map of Fig. 7c 
is mainly due to incorrect labeling. Defect maps of Fig. 7a and b are due to combined defects of two classes. In 
the case of Fig. 7c, the main reason for scratch characteristics was not found. The wafer maps’ class labels were 
determined by an experienced engineer, and human error is inevitable. The goal of our approach is also to over-
come such human error through auto-classification. Figure 7d shows the misclassification example of edge, and 
the prediction is the scratch. The class probability for edge and scratch class was 47 and 48%, respectively. In the 
defect map of Fig. 7d, the defects are distributed along the edge, but the class probability for edge and scratch was 
0.47 and 0.48, respectively, because the scratch type defect is in the center part of the image, similar to Fig. 7b.

Our method, while showing high performance, however, has few limitations. First, our ensemble approach 
has three CNN models, so it needs a very sophisticated computer for its implementation and requires a very 
high computational cost. Second, we used the same fine-tuning parameters for all CNN models and did not do 
any parameter optimizations. Third, we used the pre-trained data set from a different domain (i.e., ImageNet). 
Although the performance of cross-domain TL is excellent, it may not be the optimal choice.

We intend to enhance the suggested approach by incorporating class imbalance and data scarcity, which are 
real-world data concerns in semiconductor wafer defect analysis. We also intend to combine handcrafted and 
convolutional features to capitalize their respective strengths.

We plan to improve the performance of the ensemble classifier by giving the decision values of that classi-
fier more weight. We are developing a weighted soft voting ensemble (WSVE) to improve the voting ensemble 
method. The weighted soft voting ensemble is defined as:

where wk and CNNk(p) are the weight and probability of the kth CNN model. The predicted class ŷ  of an image 
in the test set is computed by

where m is the number of models used for ensemble learning, w is the weight for each model, p is the probability, 
and function arg max returns the value of j such that the expression in parentheses in Eq. (1) is the maximum 
value. Here, we would use the weighted F1-score of each model as weight, and the model that achieves the best 
classification performance would be given double weight. Thus, when calculating the weighted average of m 
models in weighted voting, it is divided by m + 1 instead of m. We plan to evaluate this equation and then make 
various experimental attempts to find the optimal weights. We expect this approach would improve defect clas-
sification performance further.

Conclusion
In this paper, we proposed a novel voting based DEFF for classifying wafer map defects. We built the classifica-
tion model based on CNN and trained with an industrial real wafer map dataset. The vast majority of earlier 
evaluations of wafer defects utilized machine learning-based classification algorithms, which necessitated human 
feature extraction and many hyper parameter settings. On the contrary, the CNN model presented here has the 
ability to automatically extract useful features from different defect classifications. We have applied the data 
augmentation technique to enhance the number of images available to train the model. The proposed method 
simultaneously learns deep feature representations from CNN models, and the decision layer accomplishes better 
classification accuracy in an end-to-end trainable fashion. We also used soft voting after getting deep ensemble 
features to further improve the performance. In this implementation, we employed three CNN models including 
VGG16, AlexNet, and ResNet18 models. We showed the effectiveness of combining multiple CNN models for 
recognizing wafer map defect patterns through ablation studies. A more reliable automation of wafer map defect 
pattern classification is anticipated as a result of the increased classification performance.

Data availability
The data that support the findings of this study are available from SK Hynix, but restrictions apply to the avail-
ability of these data, which were used under license for the current study, and so are not publicly available. Data 
are however available from the authors upon reasonable request and with permission of SK Hynix.
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