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Towards a comprehensive 
approach for characterizing cell 
activity in bright‑field microscopic 
images
Stefan Baar, Masahiro Kuragano, Kiyotaka Tokuraku & Shinya Watanabe*

When studying physical cellular response observed by light microscopy, variations in cell behavior 
are difficult to quantitatively measure and are often only discussed on a subjective level. Hence, 
cell properties are described qualitatively based on a researcher’s impressions. In this study, we aim 
to define a comprehensive approach to estimate the physical cell activity based on migration and 
morphology based on statistical analysis of a cell population within a predefined field of view and 
timespan. We present quantitative measurements of the influence of drugs such as cytochalasin D and 
taxol on human neuroblastoma, SH‑SY5Y cell populations. Both chemicals are well known to interact 
with the cytoskeleton and affect the cell morphology and motility. Being able to compute the physical 
properties of each cell for a given observation time, requires precise localization of each cell even when 
in an adhesive state, where cells are not visually differentiable. Also, the risk of confusion through 
contaminants is desired to be minimized. In relation to the cell detection process, we have developed 
a customized encoder‑decoder based deep learning cell detection and tracking procedure. Further, 
we discuss the accuracy of our approach to quantify cell activity and its viability in regard to the cell 
detection accuracy.

Cell motility, which is a phenomenon in which cells arbitrarily change their location and morphology over 
time, is essential for various physiological phenomena. The motility of individual cells is properly regulated in 
embryogenesis, the immune response, and wound  healing1. Especially for neuron cells, migration is necessary 
to the adjust position and form neurites of the appropriate thickness, length, and direction. This is essential for 
the emergence of biological neural  networks2–4.

The cytoskeleton, actin and microtubules (MTs), play a central role in cell migration and morphological 
 regulation5. In front of the migrating cells, actin polymerization and depolymerization dynamically occur, push-
ing the cell membrane and forming pseudopodic structures such as filopodia and  lamellipodia6,7. Nonmuscle 
myosin II, which is a motor protein, pulls F-actin, which is in a polymerized state, together and is able to generate 
a contractile force that is required for cell body retraction during the cell migration  process8,9. Furthermore, the 
dynamics of MT polymerization and depolymerization are indispensable for cell migration. MTs are formed by 
the polymerization of a heterodimer consisting of α - and β-tubulins. MT dynamics are also involved in form-
ing protrusions at the membrane anterior of the cell and the stabilization of the cell-matrix  adhesion5,10. Cell 
front-rear polarity is controlled by the replacement of MT cluster vertices and is located between the leading 
cell end and the  nucleus5,11,12. Protrusion formation and cell body contraction in anterior and posterior regions 
respectively are performed in the appropriate intracellular region and in a proper order, which are essential for 
the formation and maintenance of polarity during cell  migration6. Especially, actin and MTs are essential for 
the formation of neurites, axons and dendrites in the construction of neural networks. Axons are slender, long, 
straight protrusions and act as nerve signal transmitters. Dendrites are many branched protoplasmic extensions 
and act as nerve signal receivers. In general, neurite formation is required at the earliest stage of protrusion 
 formation13,14. It was reported that actin forms the main protrusion in initial steps of neurite formation. Thus, 
even during the formation of neurites, precise spatiotemporal precise morphology is controlled by actin and MTs.

Recently, various evaluation methods have been developed to assess cell morphology and changes in motility, 
mostly for single cell  images15. Furthermore, in the wound-healing assay, where the cell monolayer is scratched 
and cells migrate to a different location, and this method is used to analyze the ability of cells to  move16. Thus, 
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various parameters such as cell velocity, directional persistence, eccentricity, perimeter length, and others have 
been used to qualitatively evaluate cell  motility17,18. However, since it is difficult to comprehensively and quan-
titatively evaluate single cell motility, including movement and morphological changes comprehensively and 
quantitatively, a highly reliable computer-based evaluation standard is required for developing comprehensive 
analytical methods.

Attempts to track and analyze the movement of a single cell by automatically extracting the cell contours have 
been increasing. Due to difficulties in distinguishing the cell edge from low-contrast images such as bright-field 
images, phase contrast images, and differential interference contrast images, fluorescent staining and expression 
of fluorescent proteins for the target cells is often required, resulting in an impairment of the simplicity of the 
experimental procedures. For almost a decade now, Instance-based cell detection using deep learning has been 
actively performed to detect and count individual  cells19,20. However, it is still challenging to differentiate between 
cells in adhered cell groups (where cells become visually inseparable) while at the same time accurately detecting 
cell protrusions. Progress in differentiating cells within a tight environment has recently been achieved using an 
ensemble of instance segmentation procedures which are, for example based on cell pose  estimation19, focused 
on enhanced cell boundary  learning21, or cosine embedding (recurrent hourglass networks)22. It is especially 
challenging to objectively characterize the dynamic cellular properties, not just because of their geometric com-
plexity in temporal and spatially resolved microscopical images, but also because of possible confusion due to 
cell-cell adhesion, overlapping cells, contaminants, and cell division. There have been numerous advancements 
in cell tracking e.g. graph-based  methods23 or recurrent neural networks (RNN)24.

In this study, we focus on establishing a set of cell properties that describe the general cell activity using human 
neuroblastoma SH-SY5Y cells. Therefore, surface area, cell eccentricity, number of protrusions, cell shape (based 
on the area/perimeter ratio), cell velocity and directional persistence were estimated and evaluated, as presented 
in Fig. 1. To confirm the accuracy of detection in change of cell morphology and motility, we treated cells with 
drugs that modify the dynamics of the cytoskeletal proteins. Here, we used two drugs, cytochalasin D and taxol. 
Cytochalasin D is an actin polymerization inhibitor that caps the barbed end of the F-actin25. Previously, it has 
been reported that the inhibition of actin polymerization causes defects in neurite outgrowth and cell  motility18. 
Taxo is well known as an anticancer drug which effects the inhibition of mitosis. It was revealed to promote 
the assembly of  MT26. Excessive stabilization of MT causes inhibition of neurite  formation27. Further, taxol was 
shown to not be effective on inhibiting cell adhesion, but cell migration in various carcinoma cells. As a result of 
the pharmacological treatment of actin and MTs, we superseded the changes in cell morphology and cell motility 
of human neuroblastoma, SH-SY5Y cells. The cell activity was suggested to be linked to the drug-concentration. 
As a result of the pharmacological treatment of actin and MTs using human neuroblastoma SH-SY5Y cells, cell 
motility was suggested to be linked to the concentration of the  inhibitor28.

We have developed a data analysis pipeline for object detection, classification and tracking in 2D gray-scale 
images, which is consistently written in python 3.8. (except for the manual data annotation).

Next, we describe the computational cell localization and tracking approach through instance segmentation. 
In section “Estimation of cell morphology and migration”, we elaborate on the estimation approach for comput-
ing the cell properties, necessary to statistically measure the cell activity. Following, we present the cell activity 
estimation results and compare them with our expectations in the “Discussion” section. Finally, we present our 
experimentation procedure and the utilized materials in the section “Materials and experimentation”.

Methods
In regards to cell detection, we have used an encoder-decoder Neural Network (NN) based cell detection routine 
which can omit large-scale contaminants without confusing them with actual cells, even in the case of superpo-
sition of cells with contaminants. Therefore, we were able to extract labeled segmentation masks tracking each 
cell through a set of temporally connected image frames. Our cell detection approach is summarized on the 
left-hand side of Fig. 2. The right-hand side illustrates the procedure to estimate cell activity presented in section 
“Estimation of cell morphology and migration”.

Cell segmentation. In our data, we have encountered three different types of image data depending on 
morphological sparsity (sparse, dense, over-dense images) as shown in Fig.  3. The sparsity categorization is 

Figure 1.  Implementation overview: schematic of the data processing procedure, producing scalar cell 
properties from a series of low-contrast cell images (pixel map stacks).
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made subjectively. Images with lower sparsity are easier to segment and require less training, since only few 
cells are in adhesive states. However, our image data exhibits the difficulty of obstructions such as contaminants 
such as debris and dead cell fragments. Those obstructions appear to be reduced in dense and over-dense cell 
images (likely due to spatial constraints) and are more likely to appear in sparse cell images. In this study, we 
differentiate between four annotation groups: image background, cells, contaminants and the superposition of 
cells and contaminants. Since the analyzed videos exhibit a high variety in features and brightness and contrast 
variations, traditional filters are not sufficient to properly detect cells and differentiate them from contaminants. 
This is expressed in Fig. 4, where the top row presents the detection results of a sobel filter based segmentation 
approach.

Attempting to measure cellular activity requires precise spatial and time-resolved localization of each cell 
within the observed field of view (FOV). Therefore, we have attempted to precisely detect each cell and all its com-
ponents such as protrusions, while omitting contaminants and taking into account cell-cell and cell-contaminant 
adhesion as well as superposition. In this research, we use cell segmentation based on edge-enhanced instance 
segmentation. This approach is based on a convolutional encoder-decoder NN (U-Net model). The U-Net 
model by itself produces semantic segmentation masks, which on its own, is not able to properly differentiate 
between cells inside cell groups. Ronneberger et. al. (2016) and Falk et. al. (2019) have introduced a training setup 
using a cell edge bias modification to nudge the optimizer with recurrent biases (in the position where cells are 
connected) to separate connected  cells20,21. Our method follows this general idea, while being implemented in 
python (using  pytorch29) instead of caffe. Further, we used the entire cell edge and not just the edge where cells 
connect or are in close proximity to nudge the optimizer in order to improve the separation between cell edges 
of neighboring cells. The architecture of our U-Net model is similar to previous reports with a few variations in 
depth as well as  implementation30–34 .

Compared to rule-based segmentation  approaches35, encoder-decoder NN such as corrected U-Net and Cell-
distance CCN have shown accurate results on specific data  sets24,36–41. From our point of view, disadvantages of 
supervised training approaches are the requirement of tedious manual annotation, expensive GPUs for extended 
training instances, the production of outputs that is incomprehensible as well as the generation of false positives 
when encountering conditions, which the NN has not experience during training.

Data preparation and training. We have created annotations for 21 high-resolution (1608 pixel ×1608 
pixel) microscopic images, containing 312 individual cells and 866 contaminants. The images were randomly 
chosen from within the 72 time-lapse observations of the experiment as well as separately produced sample of 
PC12 cells, which were not analyzed in this study but used for training. As presented in Fig. 3, we have created 
four distinct groups of annotations, which are contained inside a container file (background, contaminants, 
cells, cell-contaminant superpositions). While each group is annotated within its own layer, we also assigned a 
new layer to connecting or overlapping cells (different shades of violet in Fig. 3). Therefore, it is possible to store 
information of superpositions between the individual groups. It is very important to distinguish between cells, 
contaminants and their superposition to properly minimize the cross-entropy loss during training. This is due 
to the fact, that cells and contaminants exhibit similar features that are drastically different from the background. 
A detailed discussion on the component separation in cell image annotations will be elaborated in future work.

We used the python package psd-tools42 and the morphology package of scikit-image43 and  scipy44 to correct 
inconsistencies from the annotation process and also read and convert the annotations into the necessary pytorch 
tensors containing training images and integer-labeled annotations. We pre-processed the raw images only for 

Figure 2.  Image processing summary: cell detection (left-hand side) and cell activity estimation (right-hand 
side). The cell detection routine computes an index map that highlights cell and contaminant locations on 
a pixel-by-pixel base (semantic segmentation) from a gray-scale image. The cell activity estimation routine 
computes the various cell activity properties from a set of index images.
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better visibility but used raw images for training and inference, since the images become oversaturated and 
textures within cells and contaminants become very similar or indistinguishable. Pre-processing was performed 
by applying Fourier filters (background removal - high frequency features) as well as histogram equalization 
(Clipping limit = 2% , kernel size = 1/8 image dimensions) as shown in the center of Fig. 3.

From the annotated samples, we produced a set of one thousand image-annotation pairs by applying random 
augmentation operations (crop, rotation, reflection, warp distortion and swirl distortion). In addition we compute 
the locations where cells and contaminants overlap and add those and the cell borders as new annotations groups.

We then trained the U-Net model using the augmented image dataset. The dataset has been equally split into 
training an evaluation data, before augmentation. The model has been trained for about 3400 epochs until the 
training session has reached convergence and a cross entropy loss < 0.06 for the validation loss for ten consecu-
tive epochs was maintained. The loss evolution for training and validation data is presented in Fig. 5.

The learning rate ( rlearn ) ranged between ( 10−6 ≤ rlearn ≤ 0.01 ) and was chosen based on our subjective 
impression. The learning rate was adjusted, when the loss minimization would slow down. Before training, we add 
two additional segmentation groups. One containing the overlap between cells and contaminants and the other 
containing the cell contours (two pixel width) through morphological operations such as erosion and dilation. 
From this we compute a penalty map, which is enforced between each training cycle through an exponential 
amplification of the cross entropy loss at the edge position (of the cell segmentation group mask). The weights 
w(x,y) are therefore adjusted as follows:

Figure 3.  Annotation examples annotations of microscopic images for varying object densities (from left to 
right). The different colors represent cells - shades of purple, contaminants - green and background - black.
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where w0 and σ are constants and D(x,y) describes the distance to the edge of the individual segmentation group. 
With this amplification of the edge loss, we attempt to resolve not only cell gaps but also cell borders precisely.

During inference, the probabilities for each segmentation group are computed by applying the pixel-wise 
soft-max function to the output of the trained model. The segmentation probabilities are presented in Fig. 6A. 
The segmentation map (Fig. 6B) is produced by applying the argmax function to the three dimensional prob-
ability distribution (mapping the indices of the corresponding segmentation group).

Segmentation refinement and cell tracking. Our image data is occasionally contaminated with dead 
cells, cell debris, and dust clumps which can in single images be confused (even by the trained eye) with cells. 
However, we have noticed that most of the contaminants move with significantly higher velocities than their cel-
lular counterparts. This makes it possible to eliminate a large fraction of false positives (contaminants) through 

(1)w(x, y) = w(x, y)+ w0 × exp(−D(x, y)2/σ 2)

Figure 4.  Overlapping objects. Left: raw image with object contours (green) produced though a sobel filter 
and morphological operations. Right: Annotations representing the individual annotation groups with the 
background in white.

Figure 5.  NN training: training and validation loss for each epoch of the training process.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16884  | https://doi.org/10.1038/s41598-022-20598-6

www.nature.com/scientificreports/

either object velocity evaluation and/or by only considering objects that are present in all frames of one observa-
tion as cells, and therefore be included in a statistical analysis. However, cell count and cell density estimations 
require the absolute number of cells in each frame, which we have mostly omitted in this study, also because of 
the mostly low number of cells in the FOV. In our study, the time resolution is sufficient in comparison to the 
average cell’s propagation velocity. Therefore, we are able to precisely track the individual cells by comparing 
overlapping islands in neighboring  frames23,45. Islands are denoted by values larger than zero, within the com-
puted segmentation mask (Background pixel have the value zero). We compare each island in one frame to each 
island in the next frame through superposition and numerical label the individual cells by pixel area (from large 
to small area starting with zero for the background). Superimposing islands in neighboring frames are assigned 
the same index number.

We only include cells present during the entire observation-period. These cells are automatically tracked and 
identified in every frame of the time-lapse sequence. This way we do not completely rely on the classification 
accuracy of the classification routine, embedded within U-Net (contour of Fig. 6B).

In addition, we identified the individual components of a cell cluster if they separate at one or more instances 
during the observation through watershed-enhanced cell tracking at the instance of adhesion. Here the identi-
fied patches are separated based on additional possible nucleus location within each patch. Here, we compute 
generate the additional nucleus candidates by computing the local maxima within the distance map of each 
patch. Temporally disconnected nuclei are then matched to nucleus candidates in neighboring frames via near-
est neighbor search. Patch separation in both time directions is presented in Fig. 7. In general, this approach has 
previously been implemented and presented by Jia et. al.  202133. We have estimated the mean Average Precision 
of the reference data. sample to be mAP = 0.95 with an Intersection Over Union of IOU = 0.8.

Estimation of cell morphology and migration
The aim of our study was to formulate a reproducible measure for physical cell responses in microscopic images. 
We differentiated between two kinds of cell activity: translational and morphological activity and their various 
degrees of freedom, as presented in Fig. 8. Furthermore, we also compute the time derivatives of the presented 
cell properties. In this section we introduce the derivation and computational approach for the individual cell 
property parameter starting with the morphological properties.

Cell morphology and its dynamics. After successfully isolating individual cells from each other and the 
background by assigning index numbers to each pixel, it is possible to compute the area as sum of all pixels with 
the same index number. The projected surface area of each cell ( An ) is approximated by the sum of all pixels ( pn ) 
with index number n and the area to pixel ratio (px [ m

2

pixel ]) for each observation time t.

Its time derivative is thus approximated by:

(2)An(t) =
N
∑

pn(t) ∗ px

Figure 6.  Inference example of the U-Net segmentation approach. (A) the probability maps for the individual 
segmentation groups. (B) evaluated cells’ true positives (shades of blue and purple) and rejected objects - 
true negatives (black outline), which are either contaminants of cells that are not present during the entire 
observation period.
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Figure 7.  Cell tracking and segmentation refinement the upper sequence, shows the result from our primary 
segmentation and tracking approach via overlapping labels in neighboring frames. From local maxima within 
the distance map, we compute the distribution of additional cell vertices. While each frame within the sequence 
shows three cells, either only one or two are correctly labeled. The center sequence: additional cell vertices are 
computed by instances where cells (labels) disconnect. In the lower sequence: cells are differentiated through 
watershed segmentation based on the cell label and the cell vertices.

Figure 8.  Cell properties. Descriptive properties of morphological cell activity components including cell 
surface area, cell eccentricity ( ε = |�ε1|/|�ε2| ), the number of protrusions and the cell shape based on the cell area 
to perimeter ratio. Descriptive properties for cell migration are cell velocity derived from the cell vertex and 
directional persistence.
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Each cells perimeter ( Pn ) and its time derivative ( dPn/dt ) can be computed using the Crofton formula imple-
mented in scikit-image43,46, which is defined as the following double integrals :

where νn is the rectifiable plane curve (set of edge pixel) defined by φ , which is the direction (angle) in relation to 
the origin. In this regard r is the distance from the origin to the curve element for each cell with index n. In this 
regard, shape complexity can roughly be evaluated by comparing area and perimeter. However, In this study the 
cells are of the same species and are of very similar size, where cell shapes resembling very elongated ellipses are 
very much uncommon. Large Pn/An are always attributed to higher level of shape complexity. In future studies 
one could normalize Pn/An a cell encompassing rectangle to generalize the approach.

Distance mapping as the basis for unraveling morphological complexities. The distance map of 
object masks as previously presented  by47  and15 are useful tools to compute morphological cell properties such 
as cell vertex locations, protrusion properties and cell eccentricity vectors. The distance map is a representation 
of the input map, where each pixel value represents its shortest distance to the mask edge. Most of the morpho-
logical properties presented in this study rely on the corresponding distance map’s underlying properties. The 
euclidean distance map and the cell vertex position is computed from the global maximum position of each cell 
mask. To determine cell migrative properties, it is imperative to find a well-defined cell center. In this study we 
define the center ( �Cn ) of each cell n by the point with the largest distance to the cell border db instead of the center 
of gravity. �Cn appears to be less variant against angular expansion and contractions, such as the formation of cell 
protrusions when compared to the weighted center of mass as presented in Fig. 9. Another advantage over the 
weighted center of mass lies in the fact that for complex cell shapes like bows or rings, the weighted cell center 
can be located outside of the cell, whereas �Cn is always confined by the cell’s morphology. A systematic analysis 
of the weighted center of mass in comparison to prior approaches will be discussed in future research.

Hence, we created distance maps ( Dn ) for each cell in each frame, by computing the Euclidean distance of 
each cell component to the edge of the cell (background), as described  by44 with

Furthermore, we can computed the representative center �Cn precisely by fitting the distance map around the 
Euclidean maximum position with a two-dimensional Gaussian function G(�Cn) using:

and computing its maximum position representing the more precise center F(�rn) , within a square defined by 
(x,y) with a radius of 5 pixel, through optimization as follows:

(3)dAn(t)

dt
= d(

∑N pn(t))

dt
∗ px

(4)Pn(t) =
1

4

∫ ∫

νn(φ, rn(t))dφ, dr ,
dPn(t)

dt
=

1
4

∫ ∫

νn(φ, rn(t))dφ, dr

dt

(5)Dn = min
i,...I

(

√

�r2n + �b2i
)

.

(6)G(�Cn, x, y) = Ae
(Cx−x)2+(Cy−y)2

2σ2

(7)�Fn = argmax
x,y

G(�Cn, x, y).

Figure 9.  Cell vertex oscillations a series of frames showing the morphological evolution of a randomly selected 
cell with �C indicated as black dot and the weighted center of mass as blue dot. While the direction-dependent 
morphology varies, the position of the weighted center of mass also varies. However, the center vertex position 
�C does not exhibit a strong position variations, based on the definition of the center as the point with the largest 
distance to the cell border.
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Angular cell morphology:. We investigated directional biases within the cell morphology by evaluating 
the polar transformation of each cell around �Fn computed by warp_polar (sci-kit image)43 by computing the set 
of polar transformed counter parts of every the rectifiable plane curve νn(x, y) around the cell vertex �Fn . There-
fore, we computed the distance to the cell edge dn and the corresponding angle φ between �Fn within a confined 
FOV with a radius larger than the furthest edge node of the cell mask from the center as follows:

We also defined the vector �ε1n(d1n,φ1
n) , which is spanned by the distance d1n and angle φ1

n of the center �Fn to the 
nearest edge point. Together, with its counterpart �ε2n(d2n,φ2

n) , which describes the maximum distance between �Fn 
and the cell edge, we computed the ratio of the vector components to retrieve information regarding symmetry 
εn and directionality (angle) of the cell morphology, similar to the eccentricity of an ellipse.

We estimated the number of cell protrusions by tracing the rectifiable plane curve nun(dn,φ) and by com-
puting the angular path distance by mapping this outline to its set of indices S instead of an angle ( φ ). All local 
maximum positions of the angular path distance above a predefined threshold �p are detected, as presented in 
Fig. 10, and which we define as 

√
2d0n using the find_peaks routine provided by  scipy44. For angular cell perim-

eter  measurements47  and15 use an erosion-based approach, which introduces additional parameters that require 
fine-tuning by hand. This is in return very accurate for finding complex substructures within protrusions and 
filopodia. However, the cells in our images only exhibit first order protrusions without multiple branching. 
Therefore, we used the cell vertex �Cn as a reference point for angular cell property evaluation.

Cell translational dynamics. In this section, we will briefly describe the translational properties, which 
we computed to determine the migrative cell activity components. We computed the path distance ( DL ) and its 
derivative traveled by each cell by tracking the cell vertices (�F(x, y, t) derived from the individual distance map 
(mentioned above) as follows

(8)dn(x, y, t) =
√

νxn(x, y)
2 + ν

y
n(x, y)2 , φ(x, y, t) = atan2(νxn(x, y), ν

y
n(x, y))

(9)�dn = d
1
n

d2n

, �φn = φ1
n

φ2
n

, εn = |�ε1n|/|�ε2n|

Figure 10.  Cell protrusion evaluation: (A) Cell mask with protrusion tips (blue) and eccentricity vectors 
( |�ε1n|, |�ε2n| ), which are computed through the polar representation (B) and the index based (unraveled) polar 
representation (C).
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From this point on, we were able to compute the vertex velocity for each time interval (frame to frame) as 
well as the average velocity for each individual cell. We defined the area enclosing all points which the cell vertex 
has occupied as propagation area as PA = ⋃t

i Ai . As a result, we evaluated the long-term directional persistence 
(DPL) by evaluating the shape that is spanned by a the set of vertex points which represents the path a cell has 
propagated during the observation period. Short-term Directional Persistence (DPS) can be estimated by statisti-
cally evaluating the angular component ζn of the differential cell vertices. The cartesian form of the DPS ( �Vn(x, y) ) 
can therefore be written as:

The polar form of the DPS ( �Vn(d, ζ ) ) can therefore be written as:

From this we can compute the angular histogram of distance d over vector ζn , where we defined the signal to 
noise ratio of ζn = |�ζn,2|/|�ζn,1| to be proportional to the directionality of the cell propagation, as shown in Fig. 11.

Results
We present a semi-automated reduction pipeline to extract cells and their morphological as well as translational 
properties from two-dimensional, low-contrast gray-scale time-series observations (bright-field images). Our 
routine can detect individual SH-SY5Y cells and can differentiate them from contaminants. We have analyzed 
72 video files, each consisting of 360 frames each. In this section, we present the results of the above-mentioned 
measures for cell activity for three sets of SH-SY5Y cell cultures exposed to individual inhibitors of cytochalasin 
D, taxol as well as a combination of both and compare the results to the literature. All results are in comparison 
to SH-SY5Y cell cultures exposed to DSMO at a concentration of 1%. Graphical summaries in the form of radar 
charts for several concentrations of the above-mentioned inhibitors are presented in Fig. 12.

We now discuss the properties of selected cell responses in more detail. All cells where extracted and de-
rotated based on the direction of �ε2 and then sorted by the amplitude of |�ε| . This is essential to confirm the valid-
ity of our approach for computing the cell eccentricity. The per-cell eccentricity distributions for the individual 
inhibitors as well as the control samples are presented in Fig. 13C. For the protrusions in Fig. 13, we present an 
ensemble of randomly selected cells from all frames of each inhibitor at various concentrations to evaluate the 

(10)DL(x, y, t) =
∮ s(tN )

s(t0)

�F(x, y, t)dxdy and VL(x, y, t) =
dDL(x, y, t)

dt

(11)�Vn(x, y) =
d�Fn
dt

≈
[

(xn − xn−1)

(yn − yn−1)

]

�t

(12)�Vn(d, ζ ) =
[

dn
ζn

]

=
[ √

v2x,n + v2y,n

tan−1(vx,n/vy,n)

]

Figure 11.  Cell propagation morphology in cartesian coordinates (left) and polar coordinates (right). Time-
dependent cell vertices �C(x, y, t) (black dots) and their spatial density distribution (blue). The vectors ζ1 and 
ζ2 are the independent basis vectors used to characterize the eccentricity of the spatial density distribution of 
�C(x, y, t).
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validity of our protrusion detection and eccentricity estimation method. We present the distribution of per-cell 
average number of protrusions in Fig. 13F.

We plot the velocity distribution for each sample exposed to an inhibitor as well as the control sample in 
Fig. 13A. The plotted velocity distribution agrees with the fact that cytochalasin D is an actin polymerization 
inhibitor, which is used to inhibit cell motility through disruption of the F-actin network, which induces dys-
functional cell motility.

As shown in Fig. 13E (top panel), 2-20 µ g/ml cytochalasin D caused a decrease in average cell velocity, 
indicating that cell motility was strongly inhibited. It is well known that cytochalasin B and D inhibited the 
migration of epithelial cell  migration48. Verkhovsky et al. (1997) has previously reported that cytochalasin D 
treatment caused concentration-dependent cell body  retraction49. It was reported that cytochalasin D treatment 
inhibited the migration of smooth muscle cells through microchemotaxis and a wound healing assay showed 
that the addition of cytochalasin D dramatically inhibited the collective migration, similarly to single cell migra-
tion in A549 cancer  cells11. Thus, our results are consistent with select past reports. However, we were not able 
to detect the change in the number of protrusions reported by Forscher et al.50, even by manual confirmation. 
They reported that protrusive activity and filopodia formation were rapidly inhibited following the addition of 
0.1-10 µ M cytochalasin B. It is possible that initial neurite formation in SH-SY5Y cells was regulated by MT 
and not by actin. Actually, the number of protrusions increased with high concentrations of taxol, which is a 
well-known MT stabilizer (Fig. 13F, middle). Compared to cytochalasin D, taxol slightly inhibited cell area 
(Fig. 13A, middle), suggesting that growth of neurite was promoted. In general, higher taxol levels are resulting 
in the inhibition of cancer cell migration and  invasion51–53. Excessive MT stabilization has been shown to induce 
the inhibition of neurite  formation27. Although taxol is known to have negative effects on neurite growth in 
general, it was previously reported that a low-concentration (0.5-3 nM) of taxol can facilitate the axon growth 
in PC12  cells54. Furthermore, taxol treatment dramatically increased the eccentricity of some SH-SY5Y cells. Of 
note even though cell eccentricity increased with the concentration of administered taxol, cell eccentricity for a 
given population of cells became strongly polarized. This implies that within two groups of cells, their members 
exhibit similar amplitudes of cell eccentricity.

Figure 14 (bottom, right) and 13 F (middle) indicate that active protrusions were formed as taxol concentra-
tion increased, confirming, that the evaluation methods we developed were able to detect very slight changes in 
cell motility with high sensitivity and show them quantitatively and comprehensively. Simultaneous treatment of 
cytochalasin D and taxol provides a glimps of different effects on cell motility in terms of velocity, and cell shape, 
and eccentricity compared to the case of each inhibitor alone. Interestingly, eccentricity increased dramatically 

Figure 12.  Summary of cell activity. Radar charts summarizing the cellular response of SH-SY5Y cells to the 
exposure of various concentrations of cytochalasin D and taxol. All values presented here are relative values, 
referring to the exposure of SH-SY5Y to DMSO 1%.
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in the mid-concentration range of inhibitor, e.g. 0.2 µ g/ml for cytochalasin D and 0.04 µ M for taxol (Figs. 12, 
13C, bottom, 15). Most of SH-SY5Y cells did not form thin and long neurites and exhibited rounded-shapes 
accompanied by small vibrations of the cell surface membrane (Fig. 15). This suggests the possibility, that inhi-
bition of actin polymerization increases the actin polymerization nuclei to push the cell membrane, and that 
excess stabilization of MT polymerization inhibited MT elongation required for neurite formation, resulting in 
a significant increase in cell eccentricity without developing neurites. In future research, it might be necessary 
to develop a method to separate the cell body from its protrusions and filaments and to discuss cell eccentricity 
independently for the entire cell but also for the cell body only. We also observed that when the cell eccentricity 
changes depending on the concentration of the inhibitor, the protrusion count did not necessarily follow the same 
trend, as shown in Fig. 15 and indicated by the orange outlines in Figs. 14 and 13 by the orange outline. However, 
we have visually confirmed that average protrusion length has changed, which was also reflected by the amplitude 
of cell eccentricity. Therefore, in future studies, it will be necessary to measure the protrusion length of each cell.

Figure 13.  Cell property distribution per cell and per frame for six cell properties. For each cell property, we 
present the corresponding distribution for all cells within the FOV for the control samples, cytochalasin D (top) 
as well as taxol (middle) and cytochalasin D combined with taxol (bottom). The black dots within figure D 
represent the individual average velocity for each cell with in the corresponding FOV. The horizontal blue lines 
correspond to the mean velocity of each sample. The purple arrows indicate the abundance of polarization.
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Discussion
While we were mostly able to confirm the expected cell response of SH-SY5Y cells to various concentrations of 
the inhibitors cytochalasin D and taxol, not every individual cell exhibited the same response to each inhibitor. 
We found that for some properties, e.g. area, eccentricity and velocity, only a fraction of cells responded with a 
strong reaction to an inhibitor, leading to the development of response polarization for various cell parameters. 
The occurrence of polarization is indicated by purple arrows in Fig. 13. This might be caused by a number of 
underlying direct causes and experimentation biases. For example, we observed a strong polarization in cell veloc-
ity for samples associated with cytochalasin D (0.2 µ g/ml). In general, when discussing the cellular response in 
terms of amplitude (meaning higher or lower activity), it might not be sufficient to understand the mechanisms 
involved and is very likely an oversimplification.

Generally, one must mention that the statistical evaluation of a cell populations response to an inhibitor 
requires a very precise segmentation and tracking routine, which accurately represents the morphology and 
mobility of each cell. We were able to achieve high segmentation accuracy using a deep U-Net model based on 
the fact that the image data is very homogenous and because the model could be well trained using geometric 
distortion-based augmentations, thereby expending the training and validation data set. While our validation 
accuracy based on images containing at least 30 cells exceeded 95% ( IOU = 0.8 ), the accuracy is based on the 
standard AP. We have not applied the approach presented in this manuscript to other data except the data pre-
sented here. However, the 72 time-lapse observations are strongly varying in brightness and contrast. We believe 

Figure 14.  Random ensemble of cell morphologies with cell vertex (red) and cell protrusions (blue) for a 
variety of concentrations of cytochalasin D and taxol as well as the control samples.
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it is unavoidable to retrain the network, if the image data (and its contained features) varies drastically from 
the data used in this study. Future studies should elaborate on accuracy metrics better suited to discriminate 
morphological variations between training and validation data.

The cell activity evaluation system we developed has the potential to be applied to a wide range of research 
fields. Especially, its application to neuron model cells could have a great impact on Alzheimer’s disease (AD) 
therapy. A β is believed to be the main cause for the AD development. We have recently reported that A β , pref-
erentially aggregates at the peripheral region where neurite formation frequently occurs. Further, aggregated A β 
suppresses cell motility including neurite  formation55. It is possible to obtain quantitatively analyzed data exhibit-
ing the adverse effects of A β aggregates on cell activity in neuron model cells by using system presented in this 
paper. In particular, the elongation of neuron cell protrusions is an extremely important process for maintaining 
long-term memory and the ability to learn. Evaluating the effects of various A β aggregation inhibitors, which 
we have  reported56–58) on the recovery of cell activity impaired by A β aggregation might provide an important 
insight for developing new treatments for AD.

Image segmentation ,segmentation refinement and cell tracking present a minor contribution of this manu-
script. Therefore, and for the fact that the segmentation accuracy is sufficiently high ( mAP = 0.95 ), directly 
comparing the individual data processing steps (NN segmentation, tracking, data processing, etc.) with previ-
ous research will be presented in future studies. Further, the segmentation accuracy is sufficient Therefore we 
refrain Although our system allowed edge extraction of independent cells and elimination of contaminants to be 
performed with very high accuracy, occasionally it was difficult to separate adhering cells that did not exhibit a 
separation edge as well as binding between protrusions were omitted (by omitting cells not present throughout 
the entire observation period). The future development of spatiotemporal quantitative analysis of dense cell-
cell adhesion and neurite connection holds the potential to evaluate the efficiency of biological neural networks 
(BNNs), and can dramatically develop the field of neuroscience including AD pathology. However, within micro-
scopic images containing dense cell populations with numerous connections, it is difficult to produce accurate 
segmentation maps. This is caused especially by the high structural complexity leaving many structural details 
unresolved or concealed, which causes a high uncertainty of the manual annotations. Unsupervised and self-
supervised machine learning procedures such as spatiotemporal vision  transformers59 or liquid neural  networks60 
are promising tools to trace and identify individual cells in heavily cluttered images of BNNs.

In this study, we also focused on the cell migration evolution (velocity, directional persistence). Unfortu-
nately, SH-SY5Y cells have a low motility potential and therefore no significant effect on the migration speed 
and direction was displayed during the exposure to high concentrations of cytochalasin D and taxol. This, we 

Figure 15.  Schematic model describing the effects of double inhibition by cytochalasin D and taxol in 
SH-SY5Y cells. Cell eccentricity behavior for various concentrations of cytochalasin D and taxol combined. Note 
that the protrusion length was decreased (indicated by high cell eccentricity and high cell shape factor in Fig. 13) 
and that cells exhibited a rounded-shape at the middle-range concentrations e.g., 0.2 µ g/ml cytochalasin 
D and 0.04 µ M taxol. The illustration depicts the transitional changes in cell shape in which, at the highest 
concentration, cells did not show active movement although they exhibited several protrusions. On the other 
hand, at lower concentrations, cell activity in terms of shape and eccentricity recovered.
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have confirmed manually. E.g., non-motile cells exhibited low directional persistence as well as low velocities, 
suggesting that our system accurately captures changes in cell position. In future works, we will confirm the 
accuracy of the motility evaluation using cells that exhibit high migration ability and high directional persistence, 
such as  fibroblasts17 or  neutrophils61. Modulations in the cytoskeletal structure such as stress fibers consist of 
myosin II and  actin62 is important factor to regulation of migration ability. Using many cytoskeletal inhibitor, 
blebbistatin (myosin II ATPase inhibitor), Y-27632 (Rhok inhibitor), latrunculin (actin polymerization inhibi-
tor), nocodazole (MT polymerization inhibitor), etc. might enable more accurate cell activity evaluation through 
the assessment of the relationship between cytoskeletal structure and cell mobility. Further, this system could be 
applied to characterize invading and metastasizing cancer cells. In addition to investigating the morphological 
and dynamic properties of cancer cells, the system holds the potential to evaluate the potency of anticancer drugs 
that suppress infiltration and metastasis.

This research shows that a reproducible and qualitative evaluation of the activity of a cell population is 
generally possible but highly dependent on the quality of the object segmentation and cell tracking procedure. 
We based our evaluation on the time-dependent calculation of six basic cell properties (area, shape, number 
of protrusions, cell eccentricity, velocity, and directional persistence). Due to the high variation in each of the 
properties’ temporal derivatives it was not possible to properly evaluate the first-order time variations for each 
parameter such as area, shape, or protrusion oscillations. Evaluating cell property oscillations will require a 
higher sampling rate and will be the subject to future research. Establishing an objective and reproducible data 
analysis procedure, can hinder and prevent unintended fabrication. Accurate and quick analysis of large amounts 
of data is essential in recent scientific research, where the crisis of reproducibility has become a major issue. 
In addition, by making the system open source, we will continue to verify its accuracy and rigor, also after the 
publication of this work.

Materials and experimentation
In this section we describe the observed cell cultures, the introduced reagents as well as the time-lapse setup. We 
used SH-SY5Y human neuroblastoma cells throughout this study. They were exposed to various concentrations of 
cytochalasin D and taxol. Cell cultures exposed to dimethyl sulfoxide (DMSO) were used as the control sample.

Reagents. Poly-D-Lysine was purchased from Sigma-Aldrich (St. Louis, MO, USA). Cytochalasin D and 
taxol were purchased from Wako (Osaka, Japan), and human amyloid β (Aβ)42 (4349-v) from the Peptide Insti-
tute (Osaka, Japan).

Cell culture. Human neuroblastoma, SH-SY5Y cells were purchased from KAC Co., Ltd (Kyoto, Japan). Rat 
adrenal pheochromocytoma, PC12 cells, were obtained from the JCRB Cell Bank (Osaka, Japan). Cells were 
maintained in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum (FBS) (Gibco/
Life Technologies, Carlsbad, CA, USA), 100 U/mL penicillin and 100 µ g/mL streptomycin (Wako). Cells were 
cultured at 37 ◦ C in humidified air containing 5% CO2.

Time‑lapse observation. SH-SY5Y cells ( 0.1−0.2× 104 cells) were re-plated onto 0.1 mg/ml poly-D-
lysine coated glass-bottomed 96-well micro-plate (IWAKI, Haibara, Japan). Cells were incubated overnight at 37 
◦ C in humidified air containing 5% CO2 . To inhibit actin polymerization and/or microtubule depolymerization, 
cells were treated with cytochalasin D and/or taxol at various concentrations. After incubation with inhibitors 
at 37 ◦ C in humidified air containing 5% CO2 for one hour, cells were observed under, and time-lapse images 
were captured with, an inverted microscope (Ti-E; Nikon, Tokto, Japan) equipped with a color CMOS camera 
(DS-Ri2; Nikon), and an objective lens (PlanApo � 20×/0.75 NA; Nikon) resulting in a Field Of View (FOV) 
with the physical size of 640µm× 640µm and an image resolution of 1608 pixel × 1608 pixel. During observa-
tion, cells were maintained in DMEM/F12 (1:1) (Gibco/ Life Technologies, Waltham, MA, USA) supplemented 
with 10% FBS and 100 U/mL penicillin and 100 µ g/m Lstreptomycin and warmed in a chamber set to 37 ◦ C 
chamber (INUBTF-WSKM-B13I; Tokai Hit, Fujinomiya, Japan). The bright-field images were captured every 
minute for six to seven hours and exported using NIS-Elements AR software (Nikon). The images are captured 
by the camera in 8bit RGB and exported (internally processed) in 8bit gray scale, through internal conversion. 
For the entire period of the observation, we have continuously tracked 670 cells in four repeated experiments 
containing 72 video files, each consisting of 360 frames each. During each experiment, 18 samples (DMSO(1%) 
and various concentrations and combinations of Taxol and Cytochalasin D) where observed. Tracked cells are 
only the ones present within each frame of the observation. Cells entering or leaving the FOV were identified 
as false positives. To obtain living cell images for varying object densities (to aid NN training), we performed 
live cell imaging of PC12 cells, which cells were differentiated by 4.5 ng/ml nerve growth factor (Alomone Labs, 
Jerusalem, Israel), similarly to SH-SY5Y cells. During the time-lapse observations, PC12 cells were treated with 
0.5 µ g/ml cytochalasin D and 20 µ M A β.

Data availability
Supplementary materials, including the data analysis procedure, sample annotations as well as a raw data sample 
are publicly available on github (http:// www. github. com/ stefa nbaar/ cell_ activ ity). There, we also describe the 
NN, as well as the segmentation procedure in more detail.
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