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Omnidirectional flat bands in chiral 
magnonic crystals
J. Flores‑Farías1, R. A. Gallardo1, F. Brevis1, Alejandro Roldán‑Molina2, D. Cortés‑Ortuño3 & 
P. Landeros1*

The magnonic band structure of two-dimensional chiral magnonic crystals is theoretically 
investigated. The proposed metamaterial involves a three-dimensional architecture, where a thin 
ferromagnetic layer is in contact with a two-dimensional periodic array of heavy-metal square 
islands. When these two materials are in contact, an anti-symmetric exchange coupling known as 
the Dzyaloshinskii–Moriya interaction (DMI) arises, which generates nonreciprocal spin waves and 
chiral magnetic order. The Landau–Lifshitz equation and the plane-wave method are employed to 
study the dynamic magnetic behavior. A systematic variation of geometric parameters, the DMI 
constant, and the filling fraction allows the examination of spin-wave propagation features, such as 
the spatial profiles of the dynamic magnetization, the isofrequency contours, and group velocities. 
In this study, it is found that omnidirectional flat magnonic bands are induced by a sufficiently strong 
Dzyaloshinskii–Moriya interaction underneath the heavy-metal islands, where the spin excitations 
are active. The theoretical results were substantiated by micromagnetic simulations. These findings 
are relevant for envisioning applications associated with spin-wave-based logic devices, where the 
nonreciprocity and channeling of the spin waves are of fundamental and practical scientific interest.

Magnonic crystals (MCs) are magnetic materials fabricated in the laboratory with a repeated spatial distribu-
tion that creates periodic magnetic properties1–5. They are typically prepared in several forms, either from a thin 
film with regular features, as antidots lattices6–10 or surface-modulated MCs11–13, or by alternating two different 
ferromagnetic materials8,14,15, or by a periodic array of isolated magnetic nanostructures7,16. The main objective 
of creating and studying magnetic metamaterials is to be able to modify and control the propagation of spin 
waves17–21. Spin waves (SWs) are collective excitations in magnetic materials, which carry information across 
material regions and are suitable for communication technologies22,23. Therefore, it is essential to know the 
band structure of a magnonic crystal since vital information about the SW propagation can be inferred8. MCs 
can have frequency modes that behave reciprocally concerning the inversion of the wave vector. Nevertheless, 
under given conditions, SWs exhibit nonreciprocal propagation24, which refers to the case where the properties 
of waves (amplitude, phase, and frequency) change by reversing the direction of propagation5,25. Although cur-
rent research on particular combinations of magnetic materials has proven very useful, metamaterials with one-
dimensional chiral periodic features have been only recently explored26–30. The tunable properties of magnonic 
band structures make spin-wave technologies more advantageous than photonic and electronic devices5. Indeed, 
magnonic crystals can be easily controlled in the frequency domain by changing the magnitude and direction 
of an applied magnetic field or by incorporating anisotropies at the surfaces24. Another important property of a 
magnonic device is the geometry of the system which influences the magnetic energy contributions. In particular, 
the magneto-dipolar interaction is capable of inducing chiral properties31–34. A further ingredient that also adds 
chiral features is the Dzyaloshinskii–Moriya interaction (DMI)35–37, an antisymmetric exchange interaction that 
causes chiral magnetic order38–40, and breaks the symmetry of the spin waves41–45. This interaction arises in bulk 
form in non-centrosymmetric crystals45–47 and interfacial systems such as ultrathin magnetic films in contact 
with a heavy metal (HM) layer with strong spin-orbit coupling48–50.

In magnonic crystals, spin waves are observed in bands of allowed magnon frequencies separated by forbid-
den bands known as bandgaps (BGs). The magnonic band structure depends on multiple factors, such as the 
intrinsic material parameters and the geometric design of the magnonic crystal. External conditions, such as the 
magnitude and direction of both the external magnetic field H0 and the wave vector k provided by the excitation 
source, also influence the magnonic band structure. A relevant aspect is the nature of the periodic magnetic field 
within the MC. For instance, in antidot lattices or surface-modulated MCs, the magneto-dipolar contribution 
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produces a periodic magnetic field. On the other hand, it has been shown that dispersionless modes can appear 
in the spectrum of different forms of MCs, as arrays of coupled ferromagnetic wires51,52, bicomponent MCs53,54, 
surface-modulated magnonic crystals12, as well as MCs with defects55, or magnonic superlattices56. Magnonic flat 
bands have been reported in several types of crystalline spin architectures, including spin-ice compounds57,58, 
honeycomb ferromagnets59,60, Kagome-lattice antiferromagnets61,62 and ferromagnets63,64, Gadolinium Gallium 
Garnet65, and helimagnets hosting periodic magnetic textures47,66,67. When a band becomes flat the group veloc-
ity is considerably reduced and the associated quasiparticle loses its kinetic energy, allowing the emergence of 
strongly interacting phases of matter64,68,69. In this context, the experimental observation of superconductivity 
in twisted bilayer graphene70–72 is based on the electronic excitations in a flat band73–75.

The periodic antisymmetric exchange is a key factor in the development of chiral magnonic crystals, which 
offers prospects to control the band structure of the spin waves28,29. The presence of the DMI as the physical 
source of the periodic magnetic field causes two physical effects in one-dimensional MCS. First, magnonic Bragg 
reflections do not balance at the Brillouin zone edges because of the SW nonreciprocity, leading to indirect 
bandgaps26,28. Second, for a strong enough DMI coupling, flat bands are predicted28, and further measured76, 
together with a nontrivial SW evolution. This paper is focused on a ferromagnetic ultrathin film covered with 
two-dimensional periodic arrays of heavy-metal islands (see Fig. 1), where a 2D periodic interfacial DMI is 
induced. The analysis of the band structure, group velocities, SW localization, and the isofrequency curves of the 
magnonic crystal suggest the existence of omnidirectional flat bands, where spin waves present almost zero group 
velocity in all directions. Micromagnetic simulations are employed to confirm the validity of our calculations.

Theoretical description
Equation of motion.  This section theoretically studies the spin-wave spectrum in two-dimensional chiral 
magnonic crystals (see Fig. 1a) using the Landau–Lifshitz equation of motion, which describes the temporal 
evolution of magnetization vector M(r, t):

Here, γ is the absolute value of the gyromagnetic ratio, µ0 the permeability of vacuum, r the position vector, t the 
time, and Heff (r, t) denotes the effective magnetic field. In the case of a small disturbances, the magnetization 
vector can be written as M(r, t) = Meq(r)x̂ +m(r, t) , where Meq ≫ |m(r, t)| . Here, the equilibrium magnetiza-
tion Meq(r) corresponds to the static component, and m(r, t) is the dynamic term that oscillate in the y-z plane. 
Similarly, Heff (r, t) = H

eff
0 (r, t)+ h

eff (r, t) , where heff (r, t) is linear with the dynamic magnetization m(r, t) . By 
assuming a harmonic time dependence, m(r, t) = m(r)e−iω t , with ω = 2π f  , the LL equation reduces to two 
coupled equations,

The effective field can be written as Heff (r, t) = H0(r, t)+H
ex(r, t)+H

dip(r, t)+H
DM(r, t) , where the terms 

at the right are associated with the Zeeman, exchange, dipolar, and interfacial DM interactions, respectively. 
The plane wave method (PWM) is used to examine the periodic properties of the magnetic structure, which is 

(1)
∂M(r, t)

∂t
= −γµ0M(r, t)×H

eff (r, t).

(2)i
ω

γµ0
my(r) = Meq(r)h

eff
z (r)−Heff

0,x(r)mz(r),

(3)i
ω

γµ0
mz(r) = −Meq(r)h

eff
y (r)−Heff

0,x(r)my(r).

Figure 1.   (a) Illustration of a ferromagnetic ultrathin film of thickness d = 3 nm in contact with a periodic 
array of heavy-metal islands, which induce an interfacial Dzyaloshinskii–Moriya interaction only below the 
HM. In this 2D chiral magnonic crystal, the spin waves propagate with a wave vector k in the x-z plane with a 
given angle ϕk . The equilibrium magnetization points along x due to an external magnetic field applied in the 
same direction. (b) The scheme depicts the notation used to describe the interfacial Dzyaloshinskii–Moriya 
interaction, where two atomic spins interact through a third Pt atom (gray sphere) at position ri concerning spin 
i and the corresponding DM vector between them.
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commonly used to describe photonic, phononic, plasmonic, and magnonic crystals28,77. It is a spectral resolu-
tion strategy in which the LL equation is transformed into an eigenproblem, which can be solved numerically. 
According to Bloch’s theorem, the dynamic components of the magnetization vector in a periodic potential are 
written as m(r) =

∑

G
mGe

i(G+k)·r . In a bidimensional MC, G = (2π/ax)q x̂ + (2π/az)p ẑ denotes a recipro-
cal lattice vector of the periodic structure, where q and p are integers, and aη represents the lattice parameter 
along the η-axis, while k is the in-plane wave vector. According to this, Eq. (1) becomes i ω

γµ0
mG = ÃmG , where 

m
T
G
=

[

mz(G1) . . .mz(GN ),my(G1) . . .my(GN )
]

 are the eigenvectors associated with the dynamical magnetiza-
tion, and Ã is the dynamic matrix that contains information about the effective fields. To calculate the eigenvalues 
and find the eigenfrequencies f of the system, the matrix

must be diagonalized. The matrix elements are obtained from the effective fields and derived in the following 
sections.

Effective fields.  The field of the exchange interaction is given by Hex(r, t) =
[

∇ ·
(

�
2
ex∇

)]

M(r, t) with 
�ex =

√

2A/(µ0M2
s ) being the exchange length, Ms the saturation magnetization, and A the exchange constant. 

Thus, the exchange field components are

The dipolar field writes as Hdip(r, t) = −∇U(r, t) , where U(r, t) = − 1
4π

∫

ν

∇·m(r′ ,t)
|r−r′|

dν′ + 1
4π

∫

s
n̂
′·M(r′ ,t)
|r−r′|

ds′ is 
the magnetostatic potential. Here n̂ is a unitary vector normal to the plane (parallel to ŷ ). A sufficiently strong 
external field H0 is applied in the x-direction in order to saturate the magnetization (see Fig. 1a). The effective 
dipolar fields are

To calculate the DM field, HDM(r, t) , the theory described in Ref.28 (for a 1D periodic DMI) is extended to 
the two-dimensional case. The DM Hamiltonian is described as HDM =

∑

i Di−1,i · (Si−1 × Si) , where 
Di−1,i = −Di,i+1 is the DM vector between sites i − 1 and i. This vector related to the coupling between two 
neighboring FM atomic spins, Si−1 and Si , with a third nonmagnetic HM site, as illustrated in Fig. 1b. By 
using vectorial identities, the DM Hamiltonian associated with site i becomes HDM = −

∑

i Si · h
DM
i  , where 

h
DM
i = −Di−1,i × Si−1 +Di,i+1 × Si+1 . In the case of a two-dimensional periodic DMI, the spin vectors 

are expanded in the x-z plane as Si±1 ≃ Si ± ∂zSiδz ± ∂xSiδx , with the same expansion for the DM vector, 
Di,i+1 ≃ Di−1,i + ẑ ∂x Di−1,iδx + x̂∂zDi−1,iδz. When the wave propagation is along z, the DM vector between spins 
at i and i + z is Di,i+z = Dxx̂ . In the same way, when waves propagate along x, the DM vector between spins at i 
and i + x is Di,i+x = −Dzẑ , since Di−1,i ⊥ (ri − ri−1) , which must be fulfilled for all propagation directions. Thus, 
the DM field at site i is hDMi =

(

−2Di−1,i × ∂xSi − ∂xDi−1,i × Si

)

δx +
(

−2Di−1,i × ∂zSi − ∂zDi−1,i × Si

)

δz. In 
the continuous approach, and using |Dx| = |Dz | , the DM effective field components are

where D(G) is the DM constant that is periodic and thus relies on the lattice vectors. Taking into account all field 
contributions, including the external field H0 = H0x̂ , the matrix elements depicted in Eq. (4) are

(4)Ã =

(

Azz Azy

Ayz Ayy

)

,
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∑
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(6)h
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G
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(G+ k) · ẑ
]2

|G+ k|2
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(
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)

.
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(

G
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These matrix elements allow calculating the SW spectra for the two-dimensional magnonic crystal system. 
Eigenvalues of Eq. 4 are associated with the frequencies, while the eigenvectors allow obtaining the correspond-
ing dynamic magnetization components.

Micromagnetic simulations
Micromagnetic simulations, based on the GPU-accelerated code MuMax378, are performed to validate 
the theoretical model. For this purpose, it is considered an ultrathin magnetic stripe with dimensions of 
10 µm× 300 nm× 3 nm along the (z, x, y) components respectively, and discretized into 212 × 27 × 1 cells. 
Then, periodic boundary conditions are used along both the x and z directions to simulate an extended film. 
Periodic DMI was implemented as follows: MuMax3 allows defining regions with particular magnetic properties 
but interacting with each other. In this case, two periodic regions were defined: one in which the DM constant is 
zero and the other in which it has a finite value D. For the Damon-Eshbach (DE) configuration (i.e., wave vector 
along the z-direction), the system was initialized with the magnetization along the x-direction, parallel to the 
applied magnetic field of 250 mT . In order to generate SWs, the since pulse h = h0sinc(2π fct)ẑ was applied at 
the center of the film over a width of 40 nm in ẑ with h0 = 25 mT, and a cut-off frequency of fc = 50 GHz. The 
system evolved for 25 ns, and the magnetization was stored every 0.5 ps. The same material parameters has been 
used for micromagnetic simulations and PWM calculations. The dispersion relation was obtained by calculating 
the two-dimensional fast Fourier transform in time and space, of the stored data. For the backward volume (BV) 
configuration, the procedure was the same as before, the magnetization was initialized and saturated along the 
x-direction, but in this case, the applied pulse was in the form of h = h0sinc(2π fct)x̂.

Results and discussion
For the calculations, a permalloy (Ni80Fe20)79,80 film with thickness d = 3 nm is chosen, so that the satura-
tion magnetization is Ms = 658 kA/m81, the exchange length is �ex = 6.39 nm82 and the exchange constant is 
A = 11.1 pJ/m2 (Ref.82 uses an exchange constant A = 11 pJ/m2 and gives an exchange length �ex = 6.36 nm). 
The gyromagnetic ratio γ = 175.866 GHz/T. In all calculations, a bias field µ0H = 250 mT is applied along 
x, while the SWs propagate in the x-z plane. It is worth mentioning that at small fields there is a formation of 
magnetic textures as D increases47. Therefore, we have chosen a strong magnitude of the external magnetic field 
to keep the saturated state stable.

According to Fig. 1, ϕk = 90◦ for spin waves propagating in Damon–Eshbach configuration, that is Meq ⊥ k . 
For the spin waves propagating in the backward-volume configuration, ϕk = 0◦ so that Meq ‖ k . Although the 
DE and BV configurations are typical experimental setups, the band structure, group velocity, isofrequency 
contours, and dynamic profiles are calculated for any value of the SW angle ϕk . It is worth mentioning that DE 
and BV configurations are different in terms of the SW propagations because the effects of the DMI are distinct 
for both cases.

The spin-wave dispersion for squared heavy-metal islands is shown in Fig. 2 for az = ax = 100 nm, and 
heavy-metal widths wz = wx = 50 nm, while the DMI strength takes values of D = 0 , 1, 2 and 3 mJ/m2 , which 
are in concordance with values measured experimentally29,83. The standard antisymmetric character of the inter-
facial DMI can be observed for the Damon-Eshbach configuration. Bandgaps are observed for both DE and BV 
configurations. In the DE configuration, Fig. 2b–d show that as D increases, the effects of nonreciprocity caused 
by the periodic DMI are more pronounced. Indirect bandgaps for DE modes are observed, where the minimum 
of the second band and the maximum of the first band occurs at different wave vectors. In Fig. 2c, indirect 
gaps appear even for small D because of the SW nonreciprocity, which shifts the minimum and maximum of 
the bands from the Brillouin zones (vertical lines) distinctively. This behavior has been reported previously in 
a one-dimensional chiral MC28. In the case of the BV configuration (Fig. 2e–h), a symmetric character of the 
SWs is observed since the DMI contribution and the frequency nonreciprocity vanishes for ϕk = 043. Overall, 
we observe a general behavior for both configurations DE and BV, wherein under the increase of the constant D, 
the bands move to lower frequencies, and at the same time, the low-frequency bands are flattened. A reasonable 
agreement is observed between the calculations and the micromagnetic simulations, where both methods show 
the flattening of the low-frequency bands and the indirect character of the bandgaps.

The band structure in the reduced Brillouin zone is studied as a function of D, allowing us to explore the SW 
propagation in all in-plane directions. It is observed from Fig. 3 that, as the DM strength increases, the bandgap 
widths become more significant, while the low-frequency bands become flat. The essential point is that the 
dispersionless bands are a global feature of the system, in such a way that in all propagation directions, there 
are flat bands for a large value of D, so that the low-frequency modes have an omnidirectional flat character. To 
systematically analyze the flattening of the bands, the points Bn

max and Bn
min are defined (see Fig. 3c), where n is 

the number of a specific band ( n = I, II, III and IV , being I the lowest frequency band).
Figure 4 illustrates the points Bn

max and Bn
min as a function of D for az = ax = 100 nm and wz = wx = 50 nm. 

The results consider the first four low-frequency bands. By analyzing the difference between the points Bn
max and 

B
n
min , we can explicitly see the formation of flat bands. For instance, the first band becomes flat at D ≈ 2 mJ/m2 , 

while the high-frequency modes require a significant value of D (more than 3 mJ/m2 ) to reach the dispersionless 
character. In what follows, if the difference between the maximum Bn

max and the minimum Bn
min of the n-th band 

is less or equal to 0.1 GHz ( Bn
max −B

n
min ≤ 0.1 GHz) the band will be referred as a flat band. The formation 

of flat bands is linked to the group velocity, which can be calculated from its definition vg = ∇kω(k) . Thus, if 

(12)A
yz
G,G′ =�

2
exMsδG,G′

(

G
′ + k

)2
+MsδG,G′e−|G

′+k| d2 +H0δG,G′ .
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the slope (in the f vs. k plot) is large, then the group velocity’s magnitude will also be large, while its direction is 
given by the sign on the slope. As an example, Fig. 4b shows the z-direction of the group velocity, vzg , of the first 
four low-frequency bands at point Z, ( π/az , 0 ), of the reduced Brillouin zone.

Different values of D are considered, where one can see that vzg of the first band BI tends to zero as the constant 
D increases. Similar behavior is noted on the band BIII , but a different magnitude of D is required to reach the 
flat property. We can note that for some specific values of the DM constant, the group velocity becomes abruptly 
zero, which is related to the states where a maximum or minimum matches with the point ( π/az , 0 ). Moreover, 
the color change in some parts of Fig. 4b is correlated with the crossing between modes, which can happen at 

Figure 2.   Magnonic band structure for an ultrathin film in contact with an array of square heavy-metal islands 
with period az = ax = 100 nm and wz = wx = 50 nm. (a–d) Shows the Damon–Eshbach case and (e–h) the 
backward volume configuration, for D = 0, 1, 2 and 3 mJ/m2 . The inset in (e) depicts the typical SW dispersion 
of the backward volume geometry, wherein the mode exhibits two minima at finite wave vectors. The dashed 
lines correspond to the calculations and the gray code to the micromagnetic simulation.

Figure 3.   (a–f) Show the band structures of a two-dimensional chiral magnonic crystal on the reduced 
Brillouin zone, where the path followed by the wave vector is shown in (g). Heavy-metal islands are considered 
for inducing a periodic Dzyaloshinskii–Moriya coupling, where az = ax = 100 nm and wz = wx = 50 nm. The 
states Bn

max and Bn
min are defined in (c), which describe the maximum and minimum of the band n, respectively.
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( π/az , 0 ) for given values of D. In the case of the BV configuration, the group velocity vxg is about 3 orders of 
magnitude smaller than vzg (not shown), and vxg tends to reach magnitudes close to zero for lower values of the 
constant D as compared with DE modes.

The SW propagation for the DE and BV configurations is studied in the reduced Brillouin zone, where 
the magnitude of the DMI constant D is first varied while keeping the geometric parameters of the MC fixed. 
Another phenomenon worth analyzing is observing how the band structure is modified while altering the geo-
metric parameters. In Fig. 5, the DM constant is kept fixed ( D = 3 mJ/m2 ), while the lateral dimensions of the 
heavy-metal square islands are varied. Figure 5a depicts square islands with wx = wz in the range 10 − 95 nm, 
where the period is kept fixed at ax = az = 100 nm. In Fig. 5a, the minimum and maximum frequencies of the 
bands ( Bn

min and Bn
max ) are calculated, for the first four bands, as a function of the filling fraction ( wxwz/axaz ), 

which represents the portion of the ferromagnetic film covered with the heavy metal. The filling fraction plays 
an essential role in creating flat bands and bandgap widths. For the first band BI , from wz,x = 30 nm to 80 nm 
(or filling fraction from 0.09 to 0.64) the bands become flat. The third band B III become flat from approximately 
wz,x = 50 nm to 80 nm (filling fraction between 0.25 and 0.64). For the bands BII and BIV , there is no flat band 
observed for D = 3 mJ/m2 . On the other side, the bandgap widths (defined by the difference Bn+1

min −B
n
max ) 

are shown in Fig. 5b as function of the filling fraction and the square width (upper red scale). One can also note 
that the first and third bandgap widths reach a significant maximum compared to the second BG width. This 
behavior also occurs for low values of D but with reduced bandgap widths. In addition, the maximum of the first 
and second BG widths is reached at similar values of the island widths ( wz,x ), while the third BG width occurs 
at a slightly larger wz,x.

Figure 4.   (a) Minimum and maximum values of the magnonic bands ( Bn
min and Bn

max ) as a function of the 
DM constant D. (b) z-direction component of the group velocity for the first 6 low-frequency bands at the Z 
point of the reduced Brillouin zone (DE configuration).

Figure 5.   (a) Minimum and maximum values for the first four low-frequency bands as a function of the filling 
fraction. When the difference between the maximum and the minimum becomes negligible, tha band becomes 
nearly flat. The case wz = wx = 50 nm, a z = ax = 100 nm and D = 3 mJ/m2 is considered. (b) Bandgap 
widths of the first three bandgaps, calculated in the reduced Brillouin zone, are depicted as a function of the 
filling fraction.
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The isofrequency contours of the magnonic dispersion are explored to understand the SW propagation 
in the two-dimensional chiral magnonic crystal. Such contours, also named slowness surfaces, are curves of 
constant frequency drawn in wave vector space that provides information concerning the wave’s energy flux24. 
Thus, the isofrequency contours indicate the relative direction of the energy flow concerning the wave vector. 
For instance, a circular contour is obtained under the only presence of exchange interaction, which means that 
the wave propagates isotropically in preferred directions84. In contrast, the BV and DE behave differently under 
the dipolar interaction, channeling the wave’s energy in privileged directions85. In the case of a chiral interaction 
like an anisotropic exchange (DMI), or interlayer dynamic dipolar coupling, the wave’s energy can be channeled 
in only one direction due to the nonreciprocity induced by the chirality84,85. In Fig. 6a–f, the slowness surfaces 
are calculated as a function of the wave vector components for different values of D, where the color scale gives 
the constant frequency of each contour. In these graphs, it is again evident that the increased interfacial DMI 
induces the phenomenon of nonreciprocity of the SW propagation. Overall, as shown by Fig. 6a–c, nonrecipro-
cal interference patterns can be designed (see details in Refs.84,85). In the particular case shown in Fig. 6c, the 
pronounced bump formed at low frequencies moves toward a larger kz as D . Besides, there are some directions 
where the curvature change in sign, which means there will be a zero curvature point so that caustic spin waves 
will arise. Note that the frequency difference between the maximum and the minimum of the band is less or 
equal to 0.1 GHz in the cases depicted in Fig. 6e,f. Hence, in such cases, the bands can be considered flat. The 
temporal evolution of the spin waves in real space is also studied. Figure 7a illustrates the isofrequency curves 
and Fig. 7b the in-plane dynamic magnetization component mz evaluated at different times, both for small DMI 
( D = 0.5 mJ/m2 ). By considering that the direction of the group velocity will be in the direction perpendicular 
to the tangent plane that is formed at a specific point of the isofrequency curve (see red arrow in Fig. 7a), we 
compare this direction with the time evolution of the in-plane component mz . We can note that the direction 
of the wavefront propagation is along the wave vector k , which is parallel to the phase velocity vp = ω/k , while 
in the zone with active DMI, the temporal evolution of the wave seems to be different. When the magnitude of 
the constant D increases, it is evident that there is a particular temporal evolution of the SW underneath the 
heavy metals, as shown in Fig. 8, where a constant D = 3 mJ/m2 was used. In other words, the magnon popula-
tion is strongly localized in the active zones with DMI, while there are practically no excitations in the outer 
regions and the wavefront parallel to the phase velocity is not visible. Such a temporal behavior of the flat bands 
is consistent with the case of a one-dimensional chiral magnonic crystal, where the dispersionless modes are 
strongly localized in the zones in contact with heavy metal stripes28,29. Therefore, a two-dimensional periodic 
DM coupling can also reach a nontrivial time dependence of the magnetization for the flat bands in the proposed 
2D magnonic architecture.

Figure 6.   (a–f) Shows the isofrequency contours of band BI projected in the plane of the wave-vector space 
for different values of D. In (a), the directions of the group velocity vector are illustrated along a given slowness 
surface.
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Conclusion
The spin-wave spectra of two-dimensional chiral magnonic crystals are studied, consisting of a configuration 
of heavy-metal square islands in contact with an ultrathin ferromagnetic film. As the interfacial Dzyaloshin-
skii–Moriya constant increases, the frequency of the modes reduces, and indirect bandgaps are observed, which 
are caused by the nonreciprocity induced by the coupling. As the modes decrease in frequency, they are more 
prone to forming flat bands. For the two-dimensional magnonic crystal, an omnidirectional flattening of the 
modes is obtained so that in all directions, the low-frequency bands are dispersionless for significant values of 
the DM constant. In the first and third bands, the group velocity is considerably reduced when increasing the DM 
constant, which correlates with the flat character of the modes. The role of the filling fraction is also discussed, 
finding specific ranges for which the flat bands are likely to be observed. The examination of the isofrequency 
curves and the localization for the flat modes encountered a nontrivial temporal evolution of the magnetization 
and predicted a channelized propagation of the SWs. Part of the results has been compared with micromagnetic 
simulations, where a good agreement was reached between both methods. The two-dimensional chiral magnonic 
crystals harbor more interesting physical properties than other metamaterials since they exhibit a more control-
lable way of tuning omnidirectional flat bands and nonreciprocal magnonic propagation. These results open up 
new possibilities for realizing spin-wave-based logic devices.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.

Figure 7.   (a) Shows the isofrequency contour for the first band BI evaluated at D = 0.5 mJ/m2 . In (b), the 
spatio-temporal dependence of the z-component of the magnetization, mz , is depicted. Here, mz is evaluated in 
arbitrary units and T is the period of the magnetization oscillations. The directions of the vectors k and vg are 
also shown in (b).

Figure 8.   In (a), the isofrequency contour for the first band BI , evaluated at D = 3 mJ/m2 , is depicted. In (b), 
the spatio-temporal profiles of the magnetization component mz are illustrated. Such a component is evaluated 
at point M of the reduced Brillouin zone and calculated in arbitrary units.
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