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Application of an improved 
naive Bayesian analysis 
for the identification of air leaks 
in boreholes in coal mines
Hong‑yu Pan, Sui‑nan He*, Tian‑jun Zhang, Shuang Song & Kang Wang

Borehole extraction is the basic method used for control of gases in coal mines. The quality of borehole 
sealing determines the effectiveness of gas extraction, and many influential factors result in different 
types of borehole leaks. To accurately identify the types of leaks from boreholes, characteristic 
parameters, such as gas concentration, flow rate and negative pressure, were selected, and new 
indexes were established to identify leaks. A model based on an improved naive Bayes framework was 
constructed for the first time in this study, and it was applied to analyse and identify boreholes in the 
229 working face of the Xiashijie Coal Mine. Eight features related to single hole sealing sections were 
taken as parameters, and 144 training samples from 18 groups of real‑time monitoring time series 
data and 96 test samples from 12 groups were selected to verify the accuracy and speed of the model. 
The results showed that the model eliminated strong correlations between the original characteristic 
parameters, and it successfully identified the leakage conditions and categories of 12 boreholes. The 
identification rate of the new model was 98.9%, and its response time was 0.0020 s. Compared with 
the single naive Bayes algorithm model, the identification rate was 31.8% better, and performance 
was 55% faster. The model developed in this study fills a gap in the use of algorithms to identify types 
of leaks in boreholes, provides a theoretical basis and accurate guidance for the evaluation of the 
quality of the sealing of boreholes and borehole repairs, and supports the improved use of boreholes 
to extract gases from coal mines.

One of the most common and dangerous natural risks associated with coal mining is methane, which can mix 
with air and cause disasters. Extraction of gases from coal mines is a fundamental measure taken to prevent 
and control disasters and  accidents1,2. Drainage boreholes are used to extract gas from coal  seams3. However, 
the concentration of gas extracted from coal seams by boreholes in China is generally low because of leaks. Air 
flows through a channel into a borehole and reduces the negative pressure to enable gas extraction. As a result, 
low concentrations of gas are extracted by  boreholes4,5. The effective identification of the presence and types of 
gas leaks is vital to improve the efficiency of gas extraction.

Studies of the mechanism of borehole leakage have led to the development of physical models. Zhang  T6 
explained that air leakage was caused by a local change in the  strain7,8 around a borehole. Zhang  C9 studied 
the mechanism of air leakage in the cracks around a borehole and concluded that the leakage mechanisms of 
fractures around boreholes differed depending on the extraction stage. This insight provided a theoretical basis 
for the classification and identification of leaks in boreholes. To further analyse the flow state and characteristic 
changes of air leaks in boreholes, some scholars constructed a physical model to determine the mechanism of 
leakage. Zhang  J10,11 combined numerical simulations of the leakage mechanism around a borehole in coal with 
the rheological and viscoelastic–plastic characteristics of coal to build a dynamic leakage model of the borehole. 
Based on an analysis of flow coupling between methane and air in borehole fractures, Fan  J12 constructed a flow 
model of air leakage coupling components in boreholes by using the finite difference method (FDM). Zhang  Y13 
constructed a physical model of air leakage in boreholes and classified three types of leaks according to their 
source, i.e., roadway fissure zones, borehole fissure zones, and materials used in sealing sections of boreholes. 
Wang  Z14 analysed the mechanism of air leakage from boreholes by numerical simulation and established a 
dynamic leakage model of drainage boreholes. Wang  H15 and Zhang  Y16 discussed the influence of air leakage on 
gas concentration by studying the influence of factors around roadways and boreholes and constructed an air-gas 
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mixed-flow coupling model. Their physical model explained the mechanisms of gas extraction and air leakage 
in boreholes and provided a theoretical basis for the classification of air leaks from boreholes. However, the 
construction of a physical model of air leakage in a drilling hole is complicated and cannot be applied quickly to 
guide field practice. Therefore, there is still a need for an efficient mathematical model for identification of leaks.

Advances in computer science, applied mathematics and artificial intelligence have promoted in-depth 
research on identification models for use in coal  mining17–22. However, the algorithms used to construct these 
models are subject to limitations. The hierarchical cluster analysis method cannot redistribute existing data and 
has a small number of iterations. The chaotic immune particle swarm optimization-probabilistic neural network 
(CIPSO-PNN) optimizes the PNN, but the process of finding the best solution is long, and the model is complex. 
In Fisher’s discriminant analysis, the number, representativeness and correctness of the learned samples directly 
impact the recognition accuracy of the model. In addition, the algorithms of existing discrimination classifica-
tion models cannot adapt to differences in the relationships of various data characteristics with multiparameter 
nonlinearity, which is important for discrimination of leaks in extraction boreholes. naïve Bayes classification, a 
classification method based on the Bayes principle and independent assumption of feature conditions, has stable 
classification  efficiency23. Compared with the above classification algorithms, decision trees and artificial neural 
networks perform better on small amounts of sample data and have the minimum error rate, and they have been 
widely used in coal  mines24,25. Therefore, they have been applied to identify in air leaks in gas boreholes. However, 
because of low sensitivity to linear data, improvements are needed.

In summary, research is now relatively mature for the development of models for leaks in boreholes for gas 
extraction based on studies of the mechanism of air leakage, and models are widely used in the field of coal 
mining. However, research is limited on using machine learning methods to analyse multisource characteristic 
information about air leakage and establish a mathematical model for the recognition of leaks from boreholes. 
In this study, we collected data for leaks from boreholes and applied multisource data fusion theory (MDF) and 
principal component analysis (PCA). We also improved the traditional naive Bayesian classification (NBC) sys-
tem and established mathematical models to identify types of air leaks from boreholes. In this study, this model 
fills a gap by supporting an algorithm to identify types of leaks in boreholes used to extract gases from coal mines, 
provides a theoretical basis and accurate guidance for the evaluation of the quality of the sealing of boreholes and 
borehole repairs, and supports the improvement of the application of boreholes to extract gases from coal mines.

Construction of an improved naive Bayesian model for the identification of air leaks 
from gas drainage boreholes
Feature information selection. According to previous  studies4,15,26–31, air leaks from gas drainage bore-
holes can be divided into the three types shown in Table 1.

In Fig. 1, there are many cracks in the coal seam. Due to the poor sealing effect, air from the roadway enters 
the borehole through cracks in the coal seam, which leads to the leakage of the borehole. In addition, the con-
nections between the extraction pipes are not close, which results in low extraction concentrations. In this paper, 
according to the actual situation of the gas drainage borehole in the 229 working face of the Xiashijie Coal Mine, 
eight characteristics can reflect the gas drainage effect of the borehole, including  A1: extraction flow,  A2: gas 
concentration at 0 m,  A3: gas concentration at 2 m,  A4: gas concentration at 6 m,  A5: gas concentration at 9 m, 
 A6: gas concentration at 12 m,  A7: negative pressure at the orifice and  A8: negative pressure at the extraction, and 
they are used in the model for the identification of leaks in boreholes for gas extraction.

Identification model construction. A naive Bayes classifier (NBC) and the eight characteristics (above) 
were used as the main theory for model construction. Since the NBC could not accommodate the missing data 
for air leakage in gas extraction boreholes, and since the identification and classification accuracy of information 
with strong correlations is not high, some data easily have a greater impact on the overall  model32. As shown in 
Fig. 2, by using MDF and principal component analysis (PCA) to improve the traditional NBC, a model for the 
identification of air leaks from a borehole for gas extraction was established as follows:

Data preprocessing. The existing m-dimensional sample data of gas drainage borehole leakage x = (x1, x2 . . . xm) 
with n independent observations, 

(

x1, x1. . . x
T
n

)

 , is used as the observation sample to build the gas drainage bore-
hole leakage data matrix:

(1)X = [x1, x2. . . xn]
T =







x11 x12 . . . x1m
x21 . . . . . . . . .

. . . . . . xij . . .

xn1 . . . . . . xnm







Table 1.  Types of borehole leaks.

Type Distance Reason

I Air leakage from the orifice of the gas drainage borehole 0–2 m The pipe wall broke and leaks developed

II Air leakage from the mid-end seal section of the gas drainage borehole 2–9 m Cracks developed in the seal

III Air leakage from the deep coal of the gas drainage borehole 9–12 m The strength of the seal was insufficient
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xi = (xi1, xi2 . . . xim) represents the observation sample of group i, i = 1,2…,n, andxij represents the jth variable 
of the ith group of observation samples, where j = 1,2…,m.

Following MDF theory, the training samples for gas drainage borehole leaks are processed at the data  level33, 
and the processed data are standardized with Eqs. (2)–(4).

In Eqs. (2)–(4), x1ij represents the standardized single sample data, xj represents the sample mean for the same 
characteristic information, and sjj represents the covariance of single sample data. Equations (2)–(4) can eliminate 
the influence of the data dimension. The standardized gas drainage borehole leakage data are still expressed in X.

(2)x1ij =
xij − xj
√
sjj

i = 1, 2....n; j = 1, 2....m

(3)xj =
1

n

n
∑

i=1

xij

(4)sij =
1

m− 1

m
∑

j=1

(

xij − xj
)2
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Figure 1.  Air leakage characteristics of a borehole for extraction of gas.
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Figure 2.  Flow chart of building the model.
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Principal component selection. The correlation coefficient matrix of the gas drainage borehole leakage sample 
data after standardization is calculated as follows:

where

The characteristic equation of the sample correlation matrix R is obtained with k eigenvalues and the cor-
responding k unit eigenvectors:

In Eq. (7), � is the characteristic value of the characteristic equation corresponding to the characteristic infor-
mation, and the values are sorted according to the size of the characteristic value, from large to small.

The cumulative contribution rate and cumulative variance contribution rate are calculated as follows:

The principal component zi ≥ 85% is determined to reduce the dimensionality and eliminate information 
overlap.

Construction of new indexes. The unit eigenvector corresponding to the first k principal components is obtained:

Linear transformation with k unit eigenvectors as coefficients yields:

That is, after orthogonal transformation, potentially correlated variables or influencing factors in the gas 
drainage borehole leakage data are linearly combined to obtain a set of new linear irrelevant variables, simplify 
the data structure, extract the data characteristics, and construct a new improved naive Bayes identification index.

As shown in Fig. 3, for the characteristic information obtained in the lower section, the original eight-dimen-
sional sample characteristic information  (A1,  A2…,  A8) is converted into a new p-dimensional identification index 
 (Y1,  Y2…,  Yk) k < 8. The associated characteristic information is combined and retains most of the information 
of the original  variables34 while eliminating overlapping information.
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(10)ai = (a1i , a2i . . . ani)
T, i = 1, 2, 3 . . . k

(11)Yi = aTi x i = 1, 2, 3 . . . k

Figure 3.  Construction of the new indexes for air leakage from a gas drainage borehole.
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Modelling. The data matrix Y = [y1, y2...yk] is constructed according to the new leakage index of the drain-
age borehole. Among them,yi = [y1, y2...yn]T , y(j)i  is the jth feature of sample i, y(j)t ∈ {aj1, aj2, . . . ajsn} , and 
ajl is the possible value of the jth feature, i = 1, 2, 3… n; j = 1, 2, 3… k; l = 1, 2, 3…  sn. The sample category is 
G = {g1, g2 . . . gT } , yi ∈ {g1, g2 . . . gT }.

The prior probability and conditional probability of the air leakage category of the extraction borehole are 
calculated. Because the characteristic information data optimized by the principal component are normally 
distributed, the Gaussian function is used to determine the conditional probability, as shown in Eqs. (12)–(13).

In Eq. (13), uy=gt is the normalized expected value of the sample data of category gt ; σY=gt
 is the normalized 

variance of the sample data of category gt . The posterior probability is calculated for the given leakage sample 
data yi = [y1, y2...yn]T of the extraction borehole.

The category of an actual case is determined, and the probability model of gas leakage identification of the 
extraction borehole is built as shown in Eq. (15):

where Gyi is the maximum posterior probability value of the corresponding category of the leakage of the extrac-
tion borehole.

In the actual extraction process, there are gas drainage boreholes with good drainage effects. When the sealing 
effect is good, the difference in gas concentration at various positions is small. Combined with the air leakage 
characteristics of the drainage borehole, the gas concentration at different positions in the drainage borehole is 
defined as C(b)

yi  , i = 1, 2… n, for borehole gas concentration positions b = 0, 1, 2…,b.

The corresponding borehole is a borehole with a good gas drainage effect, and there is no need to evaluate 
the type of leakage. Incorporating Eq. (15), the gas drainage borehole leakage identification model can be con-
structed as follows:

This identification model can realize the identification of leakage and leakage type.

Model application
Data acquisition and preprocessing. The model was applied to the gas drainage borehole of the 229 
working face in the Xiashijie Coal Mine of Tongchuan, as shown in Fig. 4. Mainly No. 4 coal is mined in the 
working face, the thickness of the coal seam is 0 ~ 34.28 m, the original gas content of the coal seam is 3.48  m3/t, 
and the gas pressure is 0.4 MPa, which classifies the mine as a high-gas mine. The gas in the coal seam is extracted 
by a parallel borehole arrangement.

For the purpose of this study, the characteristic information of gas concentration, flow rate and negative pres-
sure at different depths of the borehole were effectively measured. We designed a detection device to connect 
each borehole and collect data; the device is shown in Fig. 5. By changing the length of the probe, we monitored 
the gas concentration and extraction flow at different positions in the borehole. The collected data were used to 
establish the model discussed in this paper.

According to the actual layout of the test boreholes, 30 groups of 240 monitoring data of gas flow, concentra-
tion and negative pressure sensors were selected, and they were divided into 18 groups of training samples and 
12 groups of test samples according to the ratio of 6:4. The 18 groups of training samples were preprocessed.

Gas drainage borehole leakage data are multidimensional and  multivariate35,36, with complex correlations. 
MDF theory was used to preprocess the  data37. The Newton interpolation method was used to eliminate abnormal 
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values and fill the missing values of the training sample data of the gas leakage  borehole38 according to Eqs. (18) 
and (19):

The missing value corresponding to the x-sequence value was substituted into the calculated value f (x) to 
eliminate some abnormal values affecting the overall analysis, fill missing values caused by sensor problems, 
human operation and other factors, and provide perfect and accurate data for the identification air leaks in 
boreholes. The complete sample data are shown in Table 2.

Table 2 shows 18 groups of drilling test sample data, of which 15 groups correspond to boreholes with leaks 
and 3 groups correspond to boreholes without leaks. Because the gas concentrations in boreholes 16, 17, and 
18 show little change at 0 m, 2 m, 6 m, 9 m, and 12 m, and the proportion is more than 90% according to model 
Eq. (16), the drainage effect was good, and there is no need to identify the type of leak. In addition, Table 2 shows 
that due to the air leakage of boreholes, the concentration decreased greatly from the bottom to the orifice in 
the boreholes in groups 1–15.

The leakage data of the first 15 groups of gas extraction boreholes were standardized by Eqs. (2)–(4), as shown 
in Table 3. The original data were compared with the box diagram of the standardized data. (Box plots can also 
be used to detect outliers.) Table 2 and Fig. 6a show that the extraction flow rates in the 15 groups of training 
samples were very similar, approximately 2.0  m3/min, which was relatively low. From the negative pressure of 
extraction to the negative pressure of the orifice, the pressure loss was obvious. Due to the air leakage in the gas 
drainage borehole, the differences in gas concentrations between samples in each group at 0 m, 2 m, 6 m, 9 m 
and 12 m were large, and the distribution of gas concentration in the borehole was not uniform. The specific 
positions of the different types of air leaks in the gas drainage borehole differed. Figure 6b shows that the range 

(18)
f (xn, xn−1, . . . , x1, x)

=
f [xn−1, . . . , x1, x]− f [xn, xn−1, . . . , x1, x]

x − xn

(19)
f (x) = f (x1)+ (x − x1)f [x2, x1]

+ (x − x1)(x − x2)f [x3, x2, x1]

+ (x − x1)(x − x2) . . . (x − xn)f [xn, xn−1, . . . , x1]

China Shaanxi 
provice

Test hole

6.5m

Coal Seam

Pipe

Selection for test hole area

Figure 4.  Study area.

Coal seam
Extraction 

pipe

Detection 
pipe Plug Injecting paste 

material
Connect the extraction 

pipeline
Filter

Three-way 
connection

Plug

Detector

Connection Pipe

sampling port

Air pressure system 
connection

Figure 5.  Gas extraction and detection device.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16081  | https://doi.org/10.1038/s41598-022-20504-0

www.nature.com/scientificreports/

and distribution trend of the standardized data were consistent with the original data. After data standardization, 
the range of the original data was reduced to [0, 1], and the influence of each data dimension was eliminated, 
thereby optimizing the data for subsequent PCA to determine the new index for the identification of leaks.

New indexes of the model for the identification of leaks. In this study, PCA was used to linearly 
combine several representative new indexes for identification of leaks. The correlation between the original 
feature information should be considered to determine whether the PCA is  applicable39,40. The Kaiser–Meyer–
Olkin (KMO) and Butterley sphericity tests were applied in SPSS, as shown in Table 4.

As shown in Table 4, the value of Bartlett’s test statistic was 65.343, and the significance level was approxi-
mately 0, which was less than the statistical significance level (a = 0.05) specified by SPSS. Thus, the original 
hypothesis was rejected. That is, the variables in the original data had a statistically significant influence, and 
the KMO test value was greater than 0.5, which indicated that the air leakage data of the gas drainage borehole 
were suitable for PCA.

According to the standardized data for air leakage of the gas drainage borehole in Table 3, the correlation 
coefficient matrix of air leakage characteristics was calculated, as shown in Table 5. The closer the correlation 

Table 2.  Multisource data table for gas drainage boreholes.

Borehole 
number

A1: Extraction 
flow  m3/min

A2: Gas 
concentration 
at 0 m %

A3: Gas 
concentration 
at 2 m %

A4: Gas 
concentration 
at 6 m %

A5: Gas 
concentration 
at 9 m %

A6: Gas 
concentration 
at 12 m %

A7: Orifice 
negative 
pressure/kPa

A8: Extraction 
negative 
pressure/kPa

Type of air 
leak

1 2.06 5.56 15.40 15.40 15.80 16.42 1.50 20.60 I

2 2.19 5.98 14.56 15.24 15.74 16.08 1.60 20.40 I

3 1.85 6.65 15.24 15.65 15.67 16.22 1.90 21.30 I

4 2.03 5.84 9.84 10.97 11.56 13.25 1.50 21.40 I

5 1.92 2.45 6.85 7.54 7.68 7.93 0.60 20.60 I

6 1.88 6.11 8.66 11.14 13.25 16.40 1.80 20.90 II

7 2.12 7.56 9.25 10.56 16.58 17.65 2.50 22.40 II

8 1.85 4.54 4.56 11.68 11.98 12.38 1.40 19.60 II

9 2.06 6.85 6.84 6.94 15.28 16.34 1.80 20.70 II

10 1.94 5.98 5.84 14.67 15.06 16.57 1.80 21.60 II

11 1.69 8.65 9.64 10.21 10.28 17.68 2.10 19.50 III

12 2.64 7.79 7.81 7.85 7.92 23.21 1.90 20.70 III

13 1.68 8.19 8.21 8.23 8.31 25.80 2.00 20.10 III

14 1.96 6.15 6.15 6.25 6.40 18.21 1.60 19.30 III

15 1.68 5.85 5.88 5.92 8.94 16.01 1.50 21.60 III

16 4.56 10.35 10.56 10.60 10.97 11.35 9.60 21.40 No leakage

17 6.58 19.68 19.89 19.96 20.65 21.14 9.10 20.80 No leakage

18 5.43 13.95 14.00 14.19 14.21 14.37 9.40 21.20 No leakage

Table 3.  Standardized data for gas extraction boreholes.

Borehole number
A1: Drainage 
flow

A2: Gas 
concentration 
at 0 m

A3: Gas 
concentration 
at 2 m

A4: Gas 
concentration 
at 6 m

A5: Gas 
concentration 
at 9 m

A6: Gas 
concentration at 
12 m

A7: Orifice 
negative pressure

A8: Extraction 
negative 
pressure

1 0.39583 0.50161 1 0.97431 0.92338 0.4751 0.47368 0.41935

2 0.53125 0.56935 0.92251 0.95786 0.91749 0.45607 0.52632 0.35484

3 0.17708 0.67742 0.98524 1 0.91061 0.46391 0.68421 0.64516

4 0.36458 0.54677 0.48708 0.51901 0.50688 0.29771 0.47368 0.67742

5 0.25 0 0.21125 0.1665 0.12574 0 0 0.41935

6 0.20833 0.59032 0.37823 0.53649 0.67289 0.47398 0.63158 0.51613

7 0.45833 0.82419 0.43266 0.47688 1 0.54393 1 1

8 0.17708 0.3371 0 0.59198 0.54813 0.24902 0.42105 0.09677

9 0.39583 0.70968 0.21033 0.10483 0.8723 0.47062 0.63158 0.45161

10 0.27083 0.56935 0.11808 0.89928 0.85069 0.48349 0.63158 0.74194

11 0.01042 1 0.46863 0.4409 0.38114 0.54561 0.78947 0.06452

12 1 0.86129 0.29982 0.19836 0.14931 0.85506 0.68421 0.45161

13 0 0.92581 0.33672 0.23741 0.18762 1 0.73684 0.25806

14 0.29167 0.59677 0.14668 0.03392 0 0.57527 0.52632 0

15 0 0.54839 0.12177 0 0.24951 0.45215 0.47368 0.74194
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coefficient is to 1, the greater the degree of correlation of the corresponding two groups of characteristics; e.g., 
the correlation coefficient of gas concentrations at 6 m and 9 m is 0.7447, which indicates a strong correlation. 
The closer the correlation coefficient is to 0, the smaller the degree of correlation of the corresponding two 
groups of characteristics; e.g., the correlation coefficient of the gas concentrations at 2 m and 12 m is 0.0593, 
which indicates a weak correlation. A negative correlation coefficient indicates that the two groups are inversely 
correlated. For example, the correlation coefficient between the gas concentrations at 9 m and 12 m is − 0.1529.

(a) Box and whisker plots of the original data

(b) Box and whisker plots of the standardized data

2

3

4

5

6

7

8

9

Gas concentration at 0m Gas concentration at 2m

ga
sc

on
ce

nt
ra

tio
n%

4

6

8

10

12

14

16

ga
sc

on
ce

nt
ra

tio
n%

6.0

7.5

9.0

10.5

12.0

13.5

15.0

16.5

Gas concentration at 6m

ga
sc

on
ce

nt
ra

tio
n%

6

8

10

12

14

16

18

noitartnecnocsag
%

Gas concentration at 9m

25%~75%
Median
average value

6

8

10

12

14

16

18

20

22

24

26

Gas concentration at 12m

ga
sc

on
ce

nt
ra

tio
n%

19

20

21

22

23

drainage negative pressure

ne
ga

tiv
e

pr
es

su
re

/k
pa

0.5

1.0

1.5

2.0

2.5

3.0

orifice negative pressure

ne
ga

tiv
e

pr
es

su
re

/k
pa

1.4

1.6

1.8

2.0

2.2

2.4

2.6

drainage flow

flo
w

 m
3 /

m
in

0.0

0.2

0.4

0.6

0.8

1.0

ga
sc

on
ce

nt
ra

tio
n

gas concentration at 0m

0.0

0.2

0.4

0.6

0.8

1.0

ga
sc

on
ce

nt
ra

tio
n

gas concentration at 2m

ga
sc

on
ce

nt
ra

tio
n

gas concentration at 6m

25%~75%
 Median
 average value

0.0

0.2

0.4

0.6

0.8

1.0

noitartnecnocsag

gas concentration at 9m

0.0

0.2

0.4

0.6

0.8

1.0

gas concentration at 12m

ga
sc

on
ce

nt
ra

tio
n

0.0

0.2

0.4

0.6

0.8

1.0

drainage negative pressure

ne
ga

tiv
e

pr
es

su
re

0.0

0.2

0.4

0.6

0.8

1.0

drainage flow

flo
w

0.0

0.2

0.4

0.6

0.8

1.0

orifice negative pressure

ne
ga

tiv
e

pr
es

su
re

Figure 6.  Data comparison.
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As shown in Table 5, some of the 8 selected gas drainage borehole leakage characteristics are strongly corre-
lated. Using these 8 kinds of characteristic data to identify gas drainage borehole leakage will lead to an incorrect 
decision, thus affecting the accuracy of the identification model. Therefore, it is necessary to analyse the training 
sample data via PCA to obtain the eigenvalue and contribution of each feature and select the appropriate principal 
component to eliminate the strong correlations from the feature data.

The eigenvalues and cumulative contribution rates of the eight types of feature information were obtained 
through calculations and analysis, as shown in Table 6. The characteristic value of  A1: extraction flow was 
the largest, and the contribution of its variance contribution was also the largest. The characteristic value and 
contributions of  A2–A8 decreased in turn, and the contributions were small; the 6th–8th principal component, 
A6–A8, were ignored. The cumulative contribution rate of extraction flow and gas concentrations at 0 m, 2 m, 
6 m and 9 m reached 95.54%. According to Eq. (9), the contributions of these variables were more than 85%, and 
they were preliminarily considered as the main identification indexes of the improved naive Bayesian extraction 
leakage identification model. In a practical sense, the flow rate and concentration are the main variables of gas 
extraction in the borehole. The concentrations at 0 m, 2 m, 6 m and 9 m can reflect concentration changes in the 
borehole. The negative pressure has a linear relationship with the concentration and flow rate, and a change in 
negative pressure affects the concentration and flow rate; thus, it is advisable to select 5 principal components.

To further confirm the rationality of this selection, a scree plot was used. A scree plot is a trend map that 
reflects changes in data characteristics. The steepness of the decrease in eigenvalues shows whether the selected 

Table 4.  KMO and Bartlett tests.

KMO test values for sampling adequacy 0.664

Bartlett sphericity test

Test value 65.343

Degrees of freedom 28

Significance level 0

Table 5.  Correlation coefficient matrix for air leakage characteristics of gas drainage boreholes.

Index Extraction flow

Gas 
concentration 
at 0 m

Gas 
concentration 
at 2 m

Gas 
concentration 
at 6 m

Gas 
concentration 
at 9 m

Gas 
concentration at 
12 m

Orifice negative 
pressure

Extraction 
of negative 
pressure

Extraction flow 1

Gas concentration 
at 0 m 0.0746 1

Gas concentration 
at 2 m 0.1594 0.1562 1

Gas concentration 
at 6 m 0.0634 − 0.0516 0.6955 1

Gas concentration 
at 9 m 0.1202 0.0743 0.5351 0.7447 1

Gas concentration 
at 12 m 0.1725 0.8366 0.0593 − 0.1431 − 0.1529 1

Orifice negative 
pressure 0.0887 0.9019 0.1599 0.1281 0.3572 0.6947 1

Extraction of 
negative pressure 0.1716 0.0028 0.1306 0.1927 0.4870 − 0.0959 0.2453 1

Table 6.  Eigenvalues of correlation coefficients.

Principal component number Index Eigenvalue Variance proportion Cumulative contribution rate

A1 Extraction flow 2.85632 35.70% 35.70%

A2 Gas concentration at 0 m 2.38875 29.86% 65.56%

A3 Gas concentration at 2 m 1.05432 13.18% 78.74%

A4 Gas concentration at 6 m 0.95071 11.88% 90.63%

A5 Gas concentration at 9 m 0.39309 4.91% 95.54%

A6 Gas concentration at 12 m 0.21658 2.71% 98.25%

A7 Orifice negative pressure 0.10898 1.36% 99.61%

A8 Extraction of negative pressure 0.03125 0.39% 100.00%
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features are correct and reasonable. The scree plot in Fig. 7 shows that the slope k1 of principal components 
 A1–A5 is − 0.63645, and the trend is steep. The slope  k2 of principal components A5–A8 is − 0.11931, and the 
trend is relatively flat. Principal component A5 is an inflection point, and thus, it is reasonable to select these 
five variables as the principal components.

The original A1–A8 feature information with strong correlations was reconstructed into the selected principal 
component features Y1–Y5, and the component analysis matrix table of Y1–Y5 was established according to the 
PCA (Table 7) to establish the new feature information index of gas drainage borehole leakage.

Among the new indexes  Y1–Y5, the higher the load coefficient corresponding to the original feature is, the 
closer the relationship between the feature information and the new indicator, which is the main influence 
quantity in the new index. According to the component analysis matrix in Table 7, the new index coefficient 
expression of gas drainage borehole leakage is:

According to the expression for the characteristic information and the PCA matrix (Table 7), the gas con-
centrations  A2–A6 in the first principal component  Y1 at different depths and the load coefficient of negative 
pressure at orifice  A7 were greater than those of the other indexes, and this was the main characteristic influence 
of the first principal component index  Y1. Therefore, the principal component index of  Y1 was interpreted as the 
influencing factor of negative pressure-concentration hole leakage. The load coefficient of  A3–A5 in the second 
principal component index  Y2 was higher, so the second principal component index  Y2 was interpreted as the 
influencing factor of hole depth-concentration borehole leakage. By analogy,  Y3 was the influencing factor of 
negative pressure-flow borehole leakage,  Y4 is the influencing factor of single flow borehole leakage, and  Y5 was 
the negative pressure-hole gas concentration borehole leakage factor.

Analysis of test sample results. Y1,  Y2,  Y3,  Y4 and  Y5 were used as the new identification indexes of the 
improved naive Bayesian extraction borehole leakage model, and the prior probability under the new index 

Y1 = 0.15881A1 + 0.44685A2 + 0.34194A3 + 0.30134A4 + 0.37329A5 + 0.35162A6 + 0.50706A7 + 0.21746A8

Y2 = 0.03039A1 − 0.39790A2 + 0.33001A3 + 0.46679A4 + 0.42654A5 − 0.46037A6 − 0.25446A7 + 0.23521A8

Y3 = 0.57660A1 − 0.10068A2 − 0.34096A3 − 0.30251A4 + 0.04862A5 − 0.06492A6 − 0.04217A7 + 0.66429A8

Y4 = 0.76498A1 − 0.06039A2 − 0.32301A3 − 0.08075A4 − 0.19592A5 − 0.15732A6 − 0.23946A7 − 0.42281A8

Y5 = −0.20849A1 + 0.00492A2 + 0.62830A3 − 0.21162A4 − 0.43937A5 + 0.19106A6 − 0.24950A7 + 0.47451A8

Y= -0.63645+3.43799
R2=0.93098

Y= -0.11931+0.963
R2=0.9658
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Figure 7.  Principal component scree plot.

Table 7.  Component analysis matrix.

Index Y1 Y2 Y3 Y4 Y5

A1 0.15881 0.03039 0.57660 0.76498 − 0.20849

A2 0.44685 − 0.39790 − 0.10068 − 0.06039 0.00492

A3 0.34194 0.33001 − 0.34096 0.32301 0.62830

A4 0.30134 0.46679 − 0.30251 0.08705 − 0.21162

A5 0.37329 0.42654 0.04862 − 0.19592 − 0.43937

A6 0.35162 − 0.46037 − 0.06492 0.15732 0.19106

A7 0.50706 − 0.25446 0.04217 − 0.23946 − 0.24950

A8 0.21746 0.23521 0.66429 − 0.42281 0.47451
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identification was calculated by Eqs. (12)–(13). According to the numerical relationship between the score of 
the new index and the leakage type of the above 15 groups of samples, the training was performed by MATLAB 
platform programming, as shown in Table 8. The final score of each index was taken as the training sample of 
the improved NBC.

To verify the accuracy and reliability of the model, 12 sets of gas drainage borehole data corresponding to 
three different types of leaks in the Xiashijie Coal Mine were collected as test samples, as shown in Table 9. A total 
of 240 data points from 30 groups of training samples and test samples were divided into a verification set and a 
test set according to a ratio of 0.6, which prevented a poor model identification rate and overfitting caused by a 
verification set that was too large as well as inaccurate model verification caused by a test set sample that was too 
small. In this study, we adopted the hold-out verification method, namely, the twofold cross-validation method. 
The schematic diagram of k-fold cross-validation is shown in Fig. 841,42. The data set was divided into a training 
set and a test set for verification, and the average and accuracy of the final verification results were calculated.

We classified the 12 test sample data using single NBC identification and an improved naive Bayes extraction 
borehole identification model. The results of the analysis are shown in Table 10. Single NBC identification identi-
fied 3 boreholes with type I leaks, 5 boreholes with type II leaks, and 2 boreholes with type III leaks, but it could 
not identify boreholes without leaks. Improved naive Bayesian identification successfully identified 2 boreholes 
without leaks, 3 boreholes with type I leaks, 4 boreholes with type II leaks, and 3 boreholes with type III leaks.

Table 10 indicates that the single NBC identified the leakage of the No. 8 gas drainage borehole factors, which 
resulted in errors; this approach could not identify whether the gas drainage borehole was leaking. The recall 
rate was 75%, and the training time of the identification was 0.0045 s. The identification and analysis recall 
rate of the improved model was type II, and its real type was type III. This was because the mutual influence 
between the original eight characteristic Bayesian air leakage identification models of gas extraction boreholes 

Table 8.  Improved naive Bayesian training samples.

Borehole number Y1 Y2 Y3 Y4 Y5 Type of air leak

1 1.78760 0.75049 − 0.18532 − 0.52607 0.10793 I

2 1.78703 0.67208 − 0.12678 − 0.38738 − 0.00997 I

3 1.93963 0.68025 − 0.19066 − 0.84648 0.19778 I

4 1.29884 0.31448 0.26743 − 0.40568 0.16031 I

5 0.34467 0.30730 0.30644 − 0.09238 0.18911 I

6 1.39628 0.17619 0.08761 − 0.46850 − 0.03418 II

7 1.91326 0.20825 0.52494 − 0.65004 − 0.03102 II

8 0.83946 0.18236 − 0.05390 − 0.14265 − 0.41292 II

9 1.30982 − 0.05108 0.33858 − 0.25551 − 0.20570 II

10 1.57869 0.39450 0.26274 − 0.49350 − 0.25669 II

11 1.37513 − 0.31145 − 0.39515 − 0.44456 − 0.02569 III

12 1.49119 − 0.51862 0.55055 0.35058 0.08350 III

13 1.42849 − 0.65358 − 0.19528 − 0.34884 0.21311 III

14 0.78195 − 0.56312 − 0.01172 0.10143 0.00570 III

15 0.93027 − 0.22577 0.35894 − 0.47733 0.28984 III

Table 9.  Test sample data.

Borehole 
number

A1: Extraction 
flow

A2: Gas 
concentration 
at 0 m

A3: Gas 
concentration 
at 2 m

A4: Gas 
concentration 
at 6 m

A5: Gas 
concentration 
at 9 m

A6: Gas 
concentration 
at 12 m

A7: Orifice 
negative 
pressure

A8: Extraction 
negative 
pressure

Type of air 
leak

1 1.98 6.52 15.10 15.20 15.90 16.12 1.70 20.80 I

2 2.05 5.26 13.58 14.27 14.85 15.56 1.70 20.60 I

3 1.89 6.23 14.88 14.94 15.64 15.76 1.80 20.90 I

4 1.95 6.34 6.95 14.56 14.72 15.24 1.90 20.90 II

5 2.04 7.79 8.68 8.75 15.31 16.05 1.80 21.20 II

6 2.12 5.46 5.65 12.05 12.34 12.79 1.50 19.70 II

7 2.05 6.26 6.33 6.52 14.72 15.29 1.80 20.80 II

8 1.78 9.59 10.81 10.93 11.94 17.25 2.20 21.50 III

9 1.87 5.24 5.26 5.34 5.64 16.52 1.70 19.70 III

10 1.79 5.73 6.18 6.27 9.46 15.26 1.60 19.60 III

11 5.67 24.68 24.89 25.35 25.48 25.64 9.70 20.10 No leakage

12 5.14 17.98 18.12 18.34 18.42 18.56 9.80 19.80 No leakage
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was 98.9%, the identification accuracy improved by 31.8%, and the training time decreased to 0.0020 s, which 
was an improvement of 55%. To further analyse the error rate, a confusion matrix comparison diagram was 
 drawn43. It showed that the improved naive Bayesian gas extraction borehole leakage identification model could 
fully identify the type of borehole leakage in the Xiashijie coal mine, the identification accuracy was high, and 
the identification rate was fast.

As shown in Fig. 9, the single naive Bayesian identification failed to identify boreholes without leaks due to 
the inability to calculate eigenvalues. This resulted in the effective identification of only 10 out of 12 groups, and 
type II boreholes were mistakenly identified as type III boreholes. The improved naive Bayes model accurately 
identified 12 groups of boreholes, and the true value of the improved naive Bayesian model was consistent with 
the predicted value. Thus, the identification analysis showed that the improved naive Bayesian gas drainage 
borehole leakage identification model was superior to the single NBC identification analysis. Depending on 
its superiority, it could more accurately identify the type of air leak and provide further guidance for borehole 
sealing and repair to improve the efficiency of gas extraction and prevent gas disasters.

Conclusions

1) Through multisource data fusion theory (MDF) and principal component analysis (PCA), the traditional 
naive Bayes method was improved, and an enhanced naive Bayes air leakage identification model of gas 
drainage boreholes was constructed. The new model overcame the shortcomings of the naive Bayes method 
that could not accommodate missing and nonstandard data and eliminated the misevaluation caused by the 
superposition of a large amount of feature information in the process of identification of leaks in gas drainage 
boreholes.

2) The model was applied to the 229 working face of the Xiashijie Coal Mine. Combined with 8 types of charac-
teristic information of gas drainage boreholes. Thirty groups of 240 gas drainage borehole data were divided 

...

validation set testing set

1st iteration

2nd iteration

3rd iteration

Kth iteration

T1

T2

T3

Tk

Figure 8.  k-fold cross-validation schematic diagram.

Table 10.  Improved naive Bayesian identification results.

Borehole number Y1 Y2 Y3 Y4 Y5 Actual type of air leakage Single NBC identification type
Improved naive Bayesian 
identification type

1 1.92280 0.85626 0.07374 − 0.38545 0.22717 I I I

2 1.60666 0.87215 0.23606 − 0.10815 0.07676 I I I

3 1.83057 0.85743 − 0.02364 − 0.63877 0.25861 I I I

4 1.52035 0.54786 0.35919 − 0.27686 − 0.29476 II II II

5 1.68033 0.22065 0.69849 − 0.11895 0.00684 II II II

6 0.69447 0.63193 0.41884 0.54398 − 0.58930 II II II

7 1.19167 0.18151 0.76912 0.09367 − 0.21040 II II II

8 2.09311 − 0.16483 0.12256 − 0.91361 0.38560 III II III

9 0.54409 − 0.43729 0.12125 0.24340 0.05829 III III III

10 0.56498 − 0.10154 − 0.07867 − 0.04215 − 0.06021 III III III

11 0 0 0 0 0 No leakage 0 No leakage

12 0 0 0 0 0 No leakage 0 No leakage
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into training samples and test samples for analysis, and 12 groups of gas drainage borehole test sample data 
were successfully identified, including 2 boreholes without leaks, 3 boreholes with type I leaks, 4 boreholes 
with type II leaks, and 3 boreholes with type III leaks, which were consistent with the conditions of the actual 
gas drainage boreholes. Thus, this study provides a basis for improving gas drainage efficiency and ensuring 
safe mining in the Xiashijie Coal Mine.

3) The feasibility of the model was verified by the hold-out method. The recall rate of model identification 
analysis was 98.9%, and the running time was 0.0020 s. Compared with the single naive Bayes method, the 
operation rate increased by 55%, and the identification accuracy increased by 31.8%. The improved model 
filled the gap related to the determination and identification of leaks in boreholes and provides a theoretical 
basis for the evaluation of the quality of sealing and borehole repairs.

Data availability
All data generated or analysed during this study are included in this published article.

Received: 11 May 2022; Accepted: 14 September 2022

References
 1. Cheng, L. et al. A sequential approach for integrated coal and gas mining of closely-spaced outburst coal seams: Results from a 

case study including mine safety improvements and greenhouse gas reductions. J. Energies. 11(11), 3023 (2018).
 2. Niu, Y. et al. Experimental study and field verification of stability monitoring of gas drainage borehole in mining coal seam. J. Pet. 

Sci. Eng. 189, 106985 (2020).
 3. Lin, B. et al. Significance of gas flow in anisotropic coal seams to underground gas drainage. J. Pet. Sci. Eng. 180, 808–819 (2019).
 4. Liu, P., Jiang, Y. & Fu, B. A novel approach to characterize gas flow behaviors and air leakage mechanisms in fracture-matrix coal 

around in-seam drainage borehole. J. Nat. Gas Sci. Eng. 77, 103243 (2020).
 5. Liu, P. et al. Evaluation of underground coal gas drainage performance: Mine site measurements and parametric sensitivity analysis. 

J. Process Saf. Environ. Prot. 148, 711–723 (2021).
 6. Zhang, T. et al. Strain localization characteristics of perforation failure of perforated specimens. J. China Coal Soc. 45(12), 4087–

4094. https:// doi. org/ 10. 13225/j. cnkj. jccs. 2019. 143 (2020) ((in Chinese)).
 7. Wang, K., Pan, H. & Zhang, T. Experimental study of prefabricated crack propagation in coal briquettes under the action of a  CO2 

gas explosion. J. ACS omega. 6(38), 24462–24472 (2021).
 8. Wang, K. et al. Experimental study on the radial vibration characteristics of a coal briquette in each stage of its life cycle under the 

action of  CO2 gas explosion. J. Fuel. 320, 123922 (2022).
 9. Zhang, C. et al. Experimental research and field application of anti-sloughing support material in gas extraction borehole sealing 

section. J. Min. Saf. Eng. 38(1), 199–205. https:// doi. org/ 10. 13545/j. cnki. jmse. 2020. 0029 (2021) ((in Chinese)).
 10. Junxiang, Z., Bo, L. & Yuning, S. Dynamic leakage mechanism of gas drainage borehole and engineering application. Int. J. Min. 

Sci. Technol. 28(3), 505–512 (2018).
 11. Zhang, J. et al. A fully multifield coupling model of gas extraction and air leakage for in-seam borehole. J. Energy Rep. 7, 1293–1305 

(2021).
 12. Fan, J. et al. A coupled methane/air flow model for coal gas drainage: Model development and finite-difference solution. J. Process 

Saf. Environ. Prot. 141, 288–304 (2020).
 13. Zhang, Y., Zou, Q. & Guo, L. Air-leakage Model and sealing technique with sealing–isolation integration for gas-drainage boreholes 

in coal mines. J. Process Saf. Environ. Prot. 140, 258–272 (2020).
 14. Wang, Z. et al. A coupled model of air leakage in gas drainage and an active support sealing method for improving drainage 

performance. J. Fuel. 237, 1217–1227 (2019).
 15. Wang, H. et al. Study on sealing effect of pre-drainage gas borehole in coal seam based on air-gas mixed flow coupling model. J. 

Process Saf. Environ. Prot. 136, 15–27 (2020).

T
ur

e 
la

be
l

Predict label

0%

100%

100%

66.6%

33.3%

Accuracy 66.6%

T
ur

e 
la

be
l

Predict label

100%

100%

100%

100%

Accuracy 100%

(a) NBC                                    (b) Improved naive Bayesian 

Figure 9.  Comparison diagram of the confusion matrix.

https://doi.org/10.13225/j.cnkj.jccs.2019.143
https://doi.org/10.13545/j.cnki.jmse.2020.0029


14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16081  | https://doi.org/10.1038/s41598-022-20504-0

www.nature.com/scientificreports/

 16. Zhang, Y. et al. A novel failure control technology of cross-measure borehole for gas drainage: A case study. J. Process Saf. Environ. 
Prot. 135, 144–156 (2020).

 17. Liu, Q. et al. Application of the comprehensive identification model in analyzing the source of water inrush. Arabian J. Geosci. 
11(9), 1–10 (2018).

 18. Hui, L. & Xiaojun, Z. Predictive analysis of impact hazard level of coal rock mass based on fuzzy inference network. J. Intell. Fuzzy 
Syst. 38(2), 1509–1518 (2020).

 19. Jiang, C. et al. Identification model and indicator of outburst-prone coal seams. Rock Mech. Rock Eng. 48(1), 409–415 (2015).
 20. Wang, H. & Zhang, Q. Dynamic identification of coal-rock interface based on adaptive weight optimization and multi-sensor 

information fusion. Inf. Fusion. 51, 114–128 (2019).
 21. Li, N., Feng, X. & Jimenez, R. Predicting rock burst hazard with incomplete data using Bayesian networks. Tunn. Undergr. Space 

Technol. 61, 61–70 (2017).
 22. Li B., Wu Q., Liu Z. Identification of mine water inrush source based on PCA-FDA: Xiandewang coal mine case. J. Geofluids. 2020, 

(2020).
 23. Caruana R, Niculescu-Mizil A. An empirical comparison of supervised learning algorithms. C. Proceedings of the 23rd international 

conference on Machine learning. 161–168(2006).
 24. Dimitrios, P. & Andreas, B. Enhancing machine learning algorithms to assess rock burst phenomena. Geotech. Geol. Eng. 39(8), 

5787–5809 (2021).
 25. Huang, P. et al. Research on piper-PCA-bayes-LOOCV discrimination model of water inrush source in mines. Arabian J. Geosci. 

12(11), 1–14 (2019).
 26. Ba Q. Research on gas leakage mechanism and detection technology of coal mine gas drainage. C. IOP Conference Series: Earth 

and Environmental Science. IOP Publishing. 446(5), 052018 (2020).
 27. Zhang, X. et al. Study on the influence mechanism of air leakage on gas extraction in extraction boreholes. J. Energy Explor. Exploit. 

40(5), 1344–1359 (2022).
 28. Zheng, C. et al. Effects of coal properties on ventilation air leakage into methane gas drainage boreholes: Application of the 

orthogonal design. J. Nat. Gas Sci. Eng. 45, 88–95 (2017).
 29. Hao, J. et al. Analysis of gas leakage field and location determination of gas leakage in surrounding rock of gas extraction borehole. 

J. Coal Eng. 51(5), 143–147. https:// doi. org/ 10. 11799/ ce201 905033 (2019) ((in chinese)).
 30. Zhou, H., Shen, K. & Chen, B. Classification of leakage types and application of efficient holesealing technology for gas drainage 

drilling. J. Min. Saf. Prot. 46(01), 33–3642. https:// doi. org/ 10. 3969/j. issn. 1008- 4495. 2019. 01. 008 (2019) ((in chinese)).
 31. Ping, G. Study on leakage model of gas extraction borehole and optimization of sealing process. J. Coal Technol. 39(06), 82–85. 

https:// doi. org/ 10. 13301/j. cnki. ct. 2020. 06. 025 (2020) ((in chinese)).
 32. Zhao, Y. & Tian, S. Identification of hidden disaster causing factors in coal mine based on Naive Bayes algorithm. J. Intell. Fuzzy 

Syst. 41(2), 2823–2831 (2021).
 33. He, Y. et al. Rock hardness identification based on optimized PNN and multi-source data fusion. J. Proc. Inst. Mech. Eng., Part. 

C-J. Mech. Eng. Sci. 236(7), 3701–3716 (2022).
 34. Uddin, M. P., Mamun, M. A. & Hossain, M. A. Effective feature extraction through segmentation-based folded-PCA for hyper-

spectral image classification. Int. J. Remote Sens. 40(18), 7190–7220 (2019).
 35. Ju, Q. & Hu, Y. Source identification of mine water inrush based on principal component analysis and grey situation decision. J. 

Environ. Earth Sci. 80(4), 1–14 (2021).
 36. Zhou, F., Wang, X. & Liu, Y. Gas drainage efficiency: An input–output model for evaluating gas drainage projects. J. Nat. Hazard. 

74(2), 989–1005 (2014).
 37. Cai, J. et al. Numerical analysis of multi-factors effects on the leakage and gas diffusion of gas drainage pipeline in underground 

coal mines. J. Process Saf. Environ. Prot. 151, 166–181 (2021).
 38. Pérez-Ortiz, J. A. et al. Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets. 

J. Neural Netw. 16(2), 241–250 (2003).
 39. Öcal, M. E. et al. Industry financial ratios—application of factor analysis in Turkish construction industry. J. Build. Environ. 42(1), 

385–392 (2007).
 40. Zhang, J. et al. Investigation of carbon dioxide emission in China by primary component analysis. J. Sci. Total Environ. 472, 239–247 

(2014).
 41. Ji, J. et al. Application of GSK-XGBOOST Model in prediction of bottom hole air temperature. J. China Saf. Sci. Technol. 18(03), 

131–136. https:// doi. org/ 10. 11731/j. issn. 1673- 193x. 2022. 03. 020 (2022) ((in chinese)).
 42. Liu, Y. & Wang, Y. Review of various cross-validation estimation methods of generalization error. J. Appl. Res. Comput. 32(5), 

1287–1290, 1297. https:// doi. org/ 10. 3969/j. issn. 1001- 3695. 2015. 05. 002 (2015) ((in chinese)).
 43. Yang, X. Survey for performance measure index of classification learning algorithm. J. Compu. Sci. 48(8), 209–219. https:// doi. 

org/ 10. 11896/ jsjkx. 20090 0216 (2021) ((in chinese)).

Acknowledgements
This research was financially supported by The National Natural Science Foundation of China (51874234, 
52104215). The authors are also grateful to the anonymous reviewers for their constructive comments.

Author contributions
The main research idea and manuscript preparation were congtributed by H.P.; S.H. drafted the manuscript 
and verified the research; S.S. and T.Z. gave several suggestions from a professional point and supervised the 
manuscript; K.W. assisted on finalizing research work and manuscript.All authors have read and agree to the 
published version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.11799/ce201905033
https://doi.org/10.3969/j.issn.1008-4495.2019.01.008
https://doi.org/10.13301/j.cnki.ct.2020.06.025
https://doi.org/10.11731/j.issn.1673-193x.2022.03.020
https://doi.org/10.3969/j.issn.1001-3695.2015.05.002
https://doi.org/10.11896/jsjkx.200900216
https://doi.org/10.11896/jsjkx.200900216
www.nature.com/reprints


15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16081  | https://doi.org/10.1038/s41598-022-20504-0

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Application of an improved naive Bayesian analysis for the identification of air leaks in boreholes in coal mines
	Construction of an improved naive Bayesian model for the identification of air leaks from gas drainage boreholes
	Feature information selection. 
	Identification model construction. 
	Data preprocessing. 
	Principal component selection. 
	Construction of new indexes. 
	Modelling. 


	Model application
	Data acquisition and preprocessing. 
	New indexes of the model for the identification of leaks. 
	Analysis of test sample results. 

	Conclusions
	References
	Acknowledgements


