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Deep language algorithms 
predict semantic comprehension 
from brain activity
Charlotte Caucheteux1,2*, Alexandre Gramfort2 & Jean‑Rémi King1,3

Deep language algorithms, like GPT‑2, have demonstrated remarkable abilities to process text, 
and now constitute the backbone of automatic translation, summarization and dialogue. However, 
whether these models encode information that relates to human comprehension still remains 
controversial. Here, we show that the representations of GPT‑2 not only map onto the brain responses 
to spoken stories, but they also predict the extent to which subjects understand the corresponding 
narratives. To this end, we analyze 101 subjects recorded with functional Magnetic Resonance Imaging 
while listening to 70 min of short stories. We then fit a linear mapping model to predict brain activity 
from GPT‑2’s activations. Finally, we show that this mapping reliably correlates ( R = 0.50, p < 10

−15 ) 
with subjects’ comprehension scores as assessed for each story. This effect peaks in the angular, 
medial temporal and supra‑marginal gyri, and is best accounted for by the long‑distance dependencies 
generated in the deep layers of GPT‑2. Overall, this study shows how deep language models help 
clarify the brain computations underlying language comprehension.

In less than two years, language transformers like GPT-2 have revolutionized the field of natural language process-
ing (NLP). These deep learning architectures are typically trained on very large corpora to complete partially-
masked texts, and provide a one-fit-all solution to translation, summarization, and question-answering  tasks1–3. 
These advances raise a major question: do these algorithms process language like the human brain? Recent 
studies suggest that they partially do: the hidden representations of various deep neural networks have shown 
to linearly predict single-sample  fMRI4–11,  MEG5,7, and intracranial responses to spoken and written  texts6,12.

However, whether these models encode, retrieve and pay attention to information that specifically relates to 
behavior in general, and to comprehension in particular remains  controversial13–19. This issue is all-the-more 
relevant that the behavior of deep language models remains challenged by complex questions, including subject-
verb  agreement14,15,17, causal  reasoning16,19, story generation, text summarization as well as dialogue and question 
answering 20–24.

To explore the relationship between comprehension and the representations of GPT-2, we compare GPT-2’s 
activations to the functional Magnetic Resonance Imaging of 101 subjects listening to 70min of seven short 
stories. We first quantify this similarity with a “brain score” (M)25,26. We then evaluate how brain scores system-
atically vary with – and thus predict – semantic comprehension, as individually assessed by a questionnaire at 
the end of each story. Finally, by decomposing and manipulating GPT-2’s processes, we identify (1) the brain 
regions, (2) the levels of representations (phonological, lexical, compositional), and (3) the attentional gating 
that specifically relates to this prediction.

The alignment identified between behavior, brain activations and the representations of GPT-2 suggest that 
comprehension relies on a specific computational hierarchy, whereby the auditory cortices integrate informa-
tion over short time windows, and the fronto-parietal areas combine supra-lexical information over long time 
windows.

Results
GPT‑2’s activations linearly map onto fMRI responses to spoken narratives. To assess whether 
GPT-2 generates similar representations to those of the brain, we analyze the Narratives dataset: 101 subjects 
listening to seven short stories while their brain activity is recorded with fMRI. Note that subjects do not neces-
sarily listen to the same stories (Fig. 3). First, we evaluate, for each voxel, subject and narrative independently, 
whether the fMRI responses can be predicted from a linear combination of GPT-2’s activations (Fig. 1A). We 
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summarize the precision of this mapping with a brain score M : i.e. the correlation between the true fMRI 
responses and the fMRI responses linearly predicted, with cross-validation, from GPT-2’s responses to the same 
narratives (cf. Methods).

To mitigate the spatial resolution of fMRI and the necessity to correct voxel analyses for multiple comparisons, 
we here report either 1) the average brain scores across voxels or 2) the average score within each region of inter-
est ( n = 314 , following an automatic subdivision of the Destrieux  atlas27, cf. Supplementary Information A), and 
correct statistical tests for multiple comparisons across the brain regions. Consistent with previous  findings5,7,29,30, 
these brain scores are significant over a distributed and bilateral cortical network, and peak in middle- and 
superior-temporal gyri and sulci, as well as in the supra-marginal and the infero-frontal  cortex5,7,29 (Fig. 1B).

By separately analyzing the activations of each layer of GPT-2, we confirm that middle layers best map onto the 
brain (Fig. 1C), as previously  reported5,7,29. For clarity, the following analyses focus on the activations extracted 

Figure 1.  Brain scores and their correlation with comprehension. (A) 101 subjects listen to narratives (70 
min of unique audio stimulus in total) while their brain signal is recorded using functional MRI. At the end 
of each story, a questionnaire is submitted to each subject to assess their understanding, and the answers are 
summarized into a comprehension score specific to each (narrative, subject) pair (grey box). In parallel (blue 
box on the left), we measure the mapping between the subject’s brain activations and the activations of GPT-
2, a deep network trained to predict a word given its past context, both elicited by the same narrative. To this 
end, a linear spatio-temporal model ( f ◦ g ) is fitted to predict the brain activity of one voxel Y, given GPT-2 
activations X as input. The degree of mapping, called “brain score” is defined for each voxel as the Pearson 
correlation between predicted and actual brain activity on held-out data (blue equation, cf. Methods). Finally, 
we test the correlation between the comprehension scores of the subjects and their corresponding brain scores 
using Pearson’s correlation (red equation). A positive correlation means that the representations shared across 
the brain and GPT-2 are key for the subjects to understand a narrative. (B) Brain scores (fMRI predictability) 
of the activations of the eighth layer of GPT-2. Scores are averaged across subjects, narratives, and voxels within 
brain regions (142 regions in each hemisphere, following a subdivision of Destrieux  Atlas27, cf. Supplementary 
Information A). Only significant regions are displayed, as assessed with a two-sided Wilcoxon test across 
(subject, narrative) pairs, testing whether the brain score is significantly different from zero (threshold: 0.05). 
(C) Brain scores, averaged across fMRI voxels, for different activation spaces: phonological features (word 
rate, phoneme rate, phonemes, tone and stress, in green), the non-contextualized word embedding of GPT-2 
(“Word”, light blue) and the activations of the contextualized layers of GPT-2 (from layer one to layer twelve, 
in blue). The error bars refer to the standard error of the mean across (subject, narrative) pairs (n = 237). (D) 
Comprehension and GPT-2 brain scores, averaged across voxels, for each (subject, narrative) pair. In red, 
Pearson’s correlation between the two (denoted R ), the corresponding regression line and the 95% confidence 
interval of the regression coefficient. (E) Correlations ( R ) between comprehension and brain scores over 
regions of interest. Brain scores are first averaged across voxels within brain regions (similar to B), then 
correlated to the subjects’ comprehension scores. Only significant correlations are displayed (threshold: 0.05). 
(F) Correlation scores ( R ) between comprehension and the subjects’ brain mapping with phonological features 
(M(Phonemic) (i), the share of the word-embedding mapping that is not accounted by phonological features 
M(Word)−M(Phonemic) (ii) and the share of the GPT-2 eighth layer’s mapping not accounted by the 
word-embedding M(GPT2)−M(Word) (iii). (G) Relationship between the average GPT-2-to-brain mapping 
(eighth layer) per region of interest (similar to B), and the corresponding correlation with comprehension ( R , 
similar to D). Only regions of the left hemisphere, significant in both (B) and (E) are displayed. In black, the 
top ten regions in terms of brain and correlation scores (cf. Supplementary Information A for the acronyms). 
Significance in (D), (E) and (F) is assessed with Pearson’s p-value provided by  SciPy28. In (B), (E) and (F), 
p-values are corrected for multiple comparison using a False Discovery Rate (Benjamin/Hochberg) over the 2 × 
142 regions of interest.
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from the eighth layer, i.e. the layer with the highest brain score on average across voxels (Fig. 1C). However, the 
results generalize to other contextual layers of GPT-2 (Supplementary Information E, Supplementary Fig. S4).

The brain predictions of GPT‑2 correlate with semantic comprehension. Does the linear map-
ping between GPT-2 and the brain reflect a fortunate  correspondence7? Or, on the contrary, does it reflect simi-
lar representations of high-level  semantics8? To address this issue, we correlate these brain scores to the level 
of comprehension of the subjects, assessed for each subject-story pair with a questionnaire at the end of each 
story. On average across all voxels, the correlation between brain scores and comprehension reaches R = 0.50 
( p < 10−15 , Fig. 1D, as assessed across subject-story pairs with the Pearson’s test provided by  SciPy28). This cor-
relation is significant across a wide variety of the bilateral temporal, parietal and prefrontal cortices typically 
linked to language processing (Fig. 1E). Together, these results suggest that the shared representations between 
GPT-2 and the brain reliably vary with semantic comprehension.

Low‑level processing only partially accounts for the correlation between comprehension and 
GPT‑2’s mapping. Low-level speech representations typically vary with  attention31,32, and could thus, in 
turn, influence down-stream comprehension processes. Consequently, one can legitimately wonder whether 
the correlation between comprehension and GPT-2’s brain mapping is simply driven by variations in low-level 
auditory processing. To address this issue, we evaluate the predictability of fMRI given low-level phonological 
features: the word rate, phoneme rate, phonemes, stress and tone of the narrative (cf. Methods). The correspond-
ing brain scores correlate with the subjects’ understanding ( R = 0.17, p < 10−2 ) but considerably less than the 
brain scores of GPT-2 ( �R = 0.32 ). These low-level correlations with comprehension peak in the left superior 
temporal cortex (Fig. 1F). Overall, this result suggests that the link between comprehension and GPT-2’s brain 
mapping may be partially explained by – but not reduced to – the variations of low-level auditory processing.

High‑level representations best predict comprehension. Is the correlation between comprehension 
and GPT-2’s mapping driven by a lexical process and/or by an ability to meaningfully combine words? To tackle 
this issue, we compare the correlations obtained from GPT-2’s word embedding (i.e. layer 0) to those obtained 
from GPT-2’s eighth layer, i.e. a contextual embedding. On average across voxels, the correlation with compre-
hension is 0.12 lower with GPT-2’s word embedding than with its contextual embedding. An analogous analysis, 
comparing word embedding to phonological features is displayed in Fig. 1F. Strictly lexical effects (word-embed-
ding versus phonological) peak in the superior-temporal lobe and in pars triangularis. By contrast, higher-level 
effects (GPT-2 eighth layer versus word-embedding) peak in the superior-frontal, posterior superior-temporal 
gyrus, in the precuneus and in both the triangular and opercular parts of the inferior frontal gyrus – a network 
typically associated with high-level language  comprehension7,33–37. Together, these model comparisons suggest 
that GPT-2 best predicts how brain responses to speech vary with comprehension.

Comprehension effects are mainly driven by individuals’ variability. The variability in compre-
hension scores could result from exogeneous factors (e.g. some stories may be harder to comprehend than others 
for GPT-2) and/or from endogeneous factors (e.g. some subjects may better understand specific texts because 
of prior knowledge). To address this issue, we fit a linear mixed model to predict comprehension scores given 
brain scores, specifying the narrative as a random effect (cf. Supplementary Information B). The fixed effect of 
brain score (shared across narratives) is highly significant: β = 0.04, p < 10−29 , cf. Supplementary Information 
B). However, the random effect (slope specific to each single narrative) is not ( β < 10−2 , p > 0.11 ). We also 
replicate the main analysis (Fig. 1D) within each single narrative: the correlation with comprehension reaches 
0.76 for the ‘Sherlock’ story and is above 0.40 for every story (cf. Supplementary Information C). Overall, these 
analyses confirm that the link between GPT-2 and semantic comprehension is best accounted for by an endoge-
neous factor: i.e. individual differences in comprehension scores.

Decomposing the brain regions, levels of representation and attention distances underlying 
comprehension. Can GPT-2 be further decomposed to identify the mechanisms responsible for generating 
representations that both (i) map with the human brain and (ii) predict subjects’ comprehension? To address 
this issue, we investigate the links between (1) short- and long-range attentional gating, (2) the depth of the 
representation and (3) brain and comprehension scores. Specifically, we compute both of these scores for dif-
ferent GPT-2 layer k, when restricting their attention span to different distances d (i.e. layers k′ ≤ k only access 
the d previous words). By systematically and independently varying k and d, we can compute βdistance and βlayer : 
the two coefficients that indicate how brain scores and comprehension scores vary across layers and attentional 
spans, respectively. Precisely, a positive βdistance indicates that scores are sensitive to long-range dependencies. 
On the contrary, a null βdistance indicates that scores are not sensitive to long-range-dependencies. Similarly, a 
positive βlayer indicates that deep layers have better scores than shallow layers, while a negative βlayer indicates 
that shallow layers have better scores than deep layers.

Our results are three-fold. First, both the brain score ( M ) and the comprehension scores ( R ) increase with 
the attention span ( βdistance > 0 , pM < 10−14 for brain scores, pR = 0.01 for comprehension scores) as well as 
with the depth of the representation ( βlayer > 0 , pM < 10−4 , pR = 0.001 ). The gain in scores obtained with 
attention to distant context is observed even up to the most distant items (e.g. between distance ≈ 1000 and 300 
words: �R > 0 , pM < 10−4 , pR = 0.02 , Fig. 2A).

Second, the attention span primarily impacts the brain scores and the comprehension scores of the middle 
layers (difference between layer 8 and layer 12: �βdistance = 0.001 , pM < 10−8 for brain scores, �βdistance = 0.03 , 
pR = 0.005 for comprehension scores, Fig. 2AD). Interestingly, and to our surprise, restricting the attention 
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span of the first layers improved their ability to predict comprehension (e.g. for the first layer, difference between 
scores with an attention of 10 words and full attention �R = 0.06 , p = 0.004 , Fig. 2D). This unexpected result 
suggests that language transformers could be made more similar to the brain by increasing the attention span 
as a function of depth.

Finally, brain regions commonly associated with high-level comprehension are better predicted by the 
deep and contextual representations of the network, and their corresponding brain scores and comprehension 
scores are relatively strongly modulated by long-distance attention (e.g. in angular gyrus: βlayer = 0.14 > 0 , 
p = 0.002 , βdistance = 0.03 > 0 , p = 0.016 for comprehension scores). On the contrary, low-level acoustic 
regions are best predicted by the shallow layers of the network, and are, in comparison, little altered by long-
distance dependencies (e.g. for the comprehension scores in Heschl gyrus, βlayer = −0.076 < 0 , p = 0.004 , 
βdistance = −0.014 < 0 , p = 0.012).

Overall, our analysis suggests that comprehension depends on a hierarchy of neural representations, whereby 
the first areas of the language network deploys shallow and short-span attention processes, while the fronto–pari-
etal network relies on compositional and long-span attention processes. Interestingly, our analysis also highlights 

Figure 2.  Impact of GPT-2’s attention span on brain scores and comprehension scores. (A) The heatmap 
displays the average (across subjects, stories and voxels) brain scores as a function of attention span (“distance”) 
and layers. The top line displays the layer coefficients for each attention span (averaged across subjects, stories 
and voxels). The right line displays the distance coefficient for each layer (averaged across subjects, stories 
and voxels). The error bars correspond to the Standard Errors of the Mean (SEM) across subject-story pairs. 
(B) Distance coefficients for each brain region (averaged across subjects and stories). Statistical significance is 
assessed with a Wilcoxon test across subject-story pairs. (C) Layer coefficients for each brain region (averaged 
across subjects and stories). (D)–(F) Similar as (A)–(C), but the layer (and distance, respectively) coefficients 
now assess the relationship between layer (or distance, respectively) and comprehension scores. Statistical 
significance is assessed using a bootstrapping procedure with 1000 subsamples of subject-story pairs. Error bars 
are standard deviation across subsamples. For all brain maps, only significant values are displayed ( p < 0.05 
after FDR correction across brain regions).
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that shortening the attention span of lower layers makes them more brain-like, and could perhaps thus provide 
a useful inductive bias to these algorithms.

Discussion
Our analyses reveal a reliable correlation between story comprehension and the degree to which language trans-
formers like GPT-2 maps onto brain responses to the corresponding story. Furthermore, the systematic com-
parison, decomposition and manipulation of such language models allow us to decompose (1) the brain regions 
(2) the level of representation (sub-lexical, lexical, supra-lexical) and (3) the attentional gating (i.e. the short- or 
long-range retrieval of past stimuli) that relate to the comprehension of complex narratives.

These findings complement prior work on the brain bases of comprehension in three major ways. First, a 
number of qualitative theories describe how words may be combined into meaningful  representations36–43. For 
example, the Memory, Unification and Control model (MUC) distinguishes three types of computations and links 
them to the temporal lobe, Broca area and the rest of the prefrontal lobe, respectively. Similarly, the extended 
Argument Dependency Model (eADM) proposes that the ventral and the dorsal streams of the auditory pathway 
compute time-independent and time-dependent unifications, respectively. Our results support an analogous divi-
sion of acoustics, lexical and compositional representations in the language areas. However, we reveal a slightly 
different functional anatomy: the early areas of the language network, located around the auditory cortices, deploy 
sub-lexical and shallow representations thanks to short attention spans. By contrast, the fronto–parietal network 
tracks and unifies very distant contexts to current words (Fig. 1F). How these cortical areas communicate with 
the hippocampus and retrieve words from long-term memory remains an exciting direction for future  studies44.

Second, several quantitative approaches have been proposed to investigate comprehension, either with 
“model-free” methods based on inter-subject correlation (e.g.33,35,45) or “model-based” methods based on word 
 vectors46. For example, Lerner et al. analyzed the fMRI activity of subjects listening to either normal texts or 
texts scrambled at the word, sentence or paragraph  level33. While brain activity correlated across subjects in the 
primary and secondary auditory areas even when the input was heavily scrambled (and thus poorly comprehen-
sible), the bilateral infero-frontal and temporo-parietal cortex only correlated across subjects when sentences 
and/or paragraphs were not scrambled (and thus comprehensible). Broderick et al. used a similar design to 
investigate electro-encephalography (EEG) responses to variably scrambled versions of the same  story46, as well 
as the EEG responses to speech played in reverse and in  noise47. Consistently with our results, they showed that 
the mapping between word embeddings’ and the EEG activity varies with comprehension as manipulated by 
these various protocols. Our results thus complement these findings by showing (1) the brain regions where 
GPT-2’s predictions vary with subject’s comprehension, and (2) what type of representations these features relate 
to: comprehension appears here to depend on a hierarchy of neural representations, whereby the first areas of 
the language network deploys shallow and short-span-attention processes, while the fronto–parietal network 
relies on compositional and long-span-attention processes.

Finally, previous analyses have investigated the role of attention in the  brain5,48,49. We complement these stud-
ies by (1) showing that very-long term attention affects brain scores (even above 1,000 words), (2) identifying the 
brain regions that are sensitive to long vs. short attention spans, and(3) investigating the interactions between 
attention span, the ability to generate brain-like representations, and one behavioral metric: comprehension.

Interestingly, some regions, like the angular and supramarginal gyri, present a modest brain score and nev-
ertheless strongly predict comprehension. How can one interpret such dissociation? We propose that deep 
neural networks encode a variety of features, ranging from low- to high-level representations. While some of 
these features may relate to general language processing (e.g. short-range information about words), others may 
specifically relate to and thus predict comprehension (e.g. long-range dependencies). In this view, the regions 
that are best predicted by GPT-2’s representations (e.g. Heschel’s gyrus) need not be identical to those that best 
predict comprehension (e.g. Angular gyrus). Our ablation studies fit this hypothesis: the auditory cortices are 
marked by high brain scores but low comprehension scores (Fig. 1G) and indeed appear to encode short-range 
and shallow representations – i.e. features that presumably only indirectly relate to the comprehension of a nar-
rative (Fig. 2). By contrast, the angular gyrus demonstrates a high comprehension score (Fig. 1G) and indeed 
appears to encode long-range dependencies and deep representations – i.e. features that presumably relate to the 
latent structures of narratives, and from which comprehension should depend (Fig. 2).

Overall, the present study suggests that GPT-2 retrieves information that relates to human comprehension, 
thus strengthening previous works that study the similarities between deep language models and the  brain4–12. 
For instance, several studies showed that deep nets’ encoding accuracy correlated with the level of semantic and 
syntactic information of their  activations11, as well as their ability to predict a word from  context6,7. We comple-
ment these results and show that the encoding accuracy of GPT-2 correlates with the level of understanding 
of the subjects, as assessed with comprehension questionnaires. Interestingly, our analysis also highlights that 
shortening the attention span of the lower layers would make them more brain-like. Thus, these results contribute 
to revealing remaining functional differences between brains and language models, and could thus help guide 
the development of modern  algorithms5,50.

The relationship between GPT-2’s representations and human comprehension remains to be qualified, how-
ever. First, we restrict the challenging and composite notion of semantic comprehension to an empirical defini-
tion: i.e. the extent to which subjects understand a narrative, as assessed by a questionnaire presented at the end 
of each story. We acknowledge that comprehension spans a very diverse set of conditions, ranging from scientific 
writing to newspapers, which are not presently tested.

Second, our results remain solely based on correlations. Supplementary analyses suggest that GPT-2’s brain 
scores may be partially explained by – but not reduced to – attentional processes (Supplementary Informa-
tion H). Yet, the factors that causally influence comprehension, such as attention, prior knowledge, working 
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memory capacity, and language complexity are not controlled here and should thus be explicitly examined and 
manipulated in future work. In particular, it would be interesting to evaluate how working memory capacity, 
cognitive control, vocabulary, as well as an continuous-monitoring of subjects’ attention separately contribute to 
the fluctuation of comprehension and specifically account for the link between GPT-2 and the brain. Similarly, 
the study of inter-individual differences could further help modeling specific cognitive deficits associated with 
comprehension such as dyspraxia, dyslexia or autistic syndrome. However, such investigation would likely require 
large amounts of data, and thus a dedicated  effort51.

Third, we find that the long-distance representations of GPT-2 middle layers specifically account for com-
prehension in associative cortices, while the short-distance information encoded in the shallow layers account 
for comprehension in lower-level brain regions. However, what these features actually represent remains largely 
unknown. Previous studies have shown that language transformers explicitly represent  syntactic14,52 and semantic 
 features14. Similarly, Manning et al. showed that syntactic trees appear to be encoded by the distances between 
contextualized word  embedding52. Clarifying the nature of word embeddings remains an important direction 
to explore (e.g. syntactic vs.  semantic8,11,53,54.

Finally, although highly significant, and significantly better than alternative models (Supplementary Fig. S3), 
the brain-scores of GPT-2 are relatively  low5,26,35. This phenomenon is largely expected: we fit and evaluate the 
brain mapping at the single-TR single-voxel level and across all brain voxels to avoid selection biases. None-
theless, these brain scores reach up to 32% of the noise ceiling (Supplementary Information D, Supplemen-
tary Fig. S2). This indicates that while GPT-2 may be our best model of language representations in the brain, it 
remains far from fully capturing those of complex narratives.

The comparison between brains, behavior and deep nets was originally introduced in vision  research55. The 
present study strengthens this approach and clarifies the links between GPT-2 and the brain. Specifically, we 
show that GPT-2’s mapping correlates with comprehension up to R = 0.50 . This result is both promising and 
limited: on the one hand, we reveal that the similarity between deep nets and the brain non-trivially relates to 
a high-level cognitive process. On the other hand, half of the comprehension variability remains unexplained 
by this algorithm.

This limit is expected: several studies demonstrate that current deep language models fail to capture several 
aspects critical to  comprehension16,19: they (i) often fail to generalize beyond the training  distribution56, (ii) do not 
perfectly capture deep syntactic  structures14,52 and (iii) remain relatively poor at summarizing texts, generating 
stories and answering  questions20–22. Furthermore, GPT-2 is only trained with textual data and does not situate 
objects in a grounded environment that would capture their real-world  interactions18,57. These limits may be 
temporary, however: the latest models appear to be more robust to out-of-distribution  sampling58 and trained 
on multimodal  data59,60.

Together, these elements suggest that modern language algorithms like GPT-2 offer a promising basis to 
unravel the brain and computational signatures of comprehension. Vice versa, by highlighting the similarities and 
remaining differences between deep language models and the brain, our study reinforces the mutual relevance 
of neuroscience and AI.

Materials and methods
Our analyses rely on the “Narratives”  dataset61, composed of the brain signals, recorded using fMRI, of 345 sub-
jects listening to 27 narratives. The dataset is publicly available and the methods were performed in accordance 
with relevant guidelines and regulations.

Narratives and comprehension score. Among the 27 stories of the dataset, we selected the seven stories 
for which subjects were asked to answer a comprehension questionnaire at the end, and for which the answers 
varied across subjects (more than ten different comprehension scores across subjects), resulting in 70 min of 
audio stimuli in total, from four to 19 minutes per story (Fig. 3). Questionnaires were either multiple-choice, fill-
in-the blank, or open questions (answered with free text) rated by  humans61. Here, we used the comprehension 
score computed in the original dataset which was either a proportion of correct answers or the sum of the human 
ratings, scaled between 0 and  161. It summarizes the comprehension of one subject for one narrative (specific to 
each (narrative, subject) pair).

Figure 3.  For each of the seven narratives: number of subjects (n), distribution of comprehension scores across 
subjects and length of the narrative.
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Brain activations. The brain activations of the 101 subjects who listened to the seven selected narratives 
were recorded using fMRI. As suggested in the original  paper61, pairs of (subject, narrative) were excluded 
because of noisy recordings, resulting in 237 pairs in total.

All seven studies used a repetition time (TR) of 1.5 seconds. As stated in the orginal  paper61, the “Merlin”, 
“Sherlock”, “Slumlord” and “Reach for the Stars” datasets were collected on a 3T Siemens Magnetom Skyra (Erlan-
gen, Germany) with a 20-channel phased-array head coil using the following acquisition parameters. “Functional 
BOLD images were acquired in an interleaved fashion using gradient-echo echo-planar imaging (EPI) with an 
in-plane acceleration factor of 2 using GRAPPA. The full acquisition details are summarized here for simplic-
ity: TR/TE = 1500/28 ms, flip angle = 64 degrees, bandwidth = 1445 Hz/Px, in-plane resolution = 3x3mm, slice 
thickness = 4 mm, matrix size = 64× 64 , FoV = 192× 192 mm, 27 axial slices with roughly full brain coverage 
and no gap, anterior–posterior phase encoding, prescan normalization, fat suppression. At the beginning of each 
run, three dummy scans were acquired and discarded by the scanner to allow for signal stabilization.

The “Pie Man (PNI)” (pieman-pni) “Running from the Bronx”(bronx), “I Knew You Were Black” (black) 
and “The Man Who Forgot Ray Bradbury”(forgot) datasets were collected on the same 3T Siemens Magnetom 
Prisma with a 64-channel head coil using different acquisition parameters. Functional images were acquired in 
an interleaved fashion using gradient-echo EPI with a multiband acceleration factor of 3 using blipped CAIP-
IRINHA and no in-plane acceleration: TR/TE 1500/31 ms, flip angle = 67 degrees, bandwidth = 2480 Hz/Px, 
in-plane resolution = 2.5× 2.5 mm, slice thickness 2.5 mm, matrix size = 96× 96 , FoV = 240× 240 mm, 48 
axial slices with full brain coverage and no gap, anterior–posterior phase encoding, prescan normalization, fat 
suppression, three dummy scans.”

GPT‑2 activations. GPT-21 is a high-performing neural language model trained to predict a word given its 
previous context (it does not have access to succeeding words), given millions of examples (e.g Wikipedia texts). 
It consists of multiple Transformer modules (twelve, each of them called “layer”) stacked on a non-contextual 
word embedding (a look-up table that outputs a single vector per vocabulary word)1. Each layer k can be seen 
as a nonlinear system that takes a sequence of w words as input, and outputs a contextual vector of dimension 
(w, d), called the “activations” of layer k ( d = 768 ). Intermediate layers were shown to better encode syntactic 
and semantic information than input and output  layers62, and to better map onto brain  activity5,7. Here, we show 
that the eighth layer of GPT-2 best predicts brain activity Fig. 1C. We thus select the eighth layer of GPT-2 for 
our analyses. Our conclusions remain unchanged with other intermediate-to-deep layers of GPT-2 (from 6th to 
12th layers).

In practice, the narratives’ transcripts were formatted (replacing special punctuation marks such as “–” and 
duplicated marks “?.” by dots), tokenized using GPT-2 tokenizer and input to the GPT-2 pretrained model pro-
vided by  Huggingface63. The representation of each token is computed separately using a sliding context window 
of 1024 tokens. For instance, to compute the representation of the third token of the story, we input GPT-2 with 
the third, second and first token, and then extract the activations corresponding to the third token. Similarly, to 
compute the activations of the 1500 th token, we input the model with the word 1500 and the 1023 words before. 
Overall, the activations of every word wk are computed by inputting the model with the word wk and the 1023 
previous tokens (at most), and then extracting the activations corresponding to wk . The procedure results in a 
vector of activations of size (w, d) with w the number of tokens in the story and d the dimensionality of the model. 
There are fewer fMRI scans than words. Thus, the activation vectors between successive fMRI measurements 
are summed to obtain one vector of size d per measurement. To match the fMRI measurements and the GPT-2 
vectors over time, we used the speech-to-text correspondences provided in the fMRI  dataset61.

Linear mapping between GPT‑2 and the brain. For each (subject, narrative) pair, we measure the 
mapping between (i) the fMRI activations elicited by the narrative and (ii) the activations of GPT-2 (layer eight) 
elicited by the same narrative. To this end, a linear spatiotemporal model is fitted on a train set to predict the 
fMRI scans given the GPT-2 activations as input. Then, the mapping is evaluated by computing the Pearson cor-
relation between predicted and actual fMRI scans on a held out set I:

With f ◦ g the fitted estimator (g: temporal and f: spatial mappings), L Pearson’s correlation, X(w) the activa-
tions of GPT-2 and Y (s,w) the fMRI scans of subjects s, both elicited by the narrative w.

In practice, f is a ℓ2-penalized linear regression, following scikit-learn  implementation64. The regulariza-
tion parameter is chosen for each voxel separately using nested cross validation on the train set. Specifically, 
we use scikit-learn’s RidgeCV estimator with built-in leave-one-sample-out cross-validation, with ten possible 
regularization parameters log-spaced between 10−1 and 108 , one hyper-parameter being selected for each voxel 
independently. g is a finite impulse response (FIR) model with 5 delays, where each delay sums the activations 
of GPT-2 input with the words presented between two TRs. For each (subject, narrative) pair, we split the cor-
responding fMRI time series into five contiguous chunks using scikit-learn cross-validation. The procedure is 
repeated across the five train (80% of the fMRI scans) and disjoint test folds (20% of the fMRI scans). Pearson 
correlations are averaged across test folds to obtain a single score per (subject, narrative) pair. This score, denoted 
M(X) in Fig. 1A, measures the mapping between the activations space X and the brain of one subject, elicited 
by one narrative.

(1)M
(s,w)

: I �→ L

(

f ◦ g(X(w))i∈I , (Y
(s,w)
i )i∈I

)
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Phonological features. To account for low-level speech processing, we computed the alignment (Eq. (1)) 
between the fMRI brain recordings Y and phonological features X: the word rate (of dimension d = 1 , the 
number of words per fMRI scan), the phoneme rate ( d = 1 , the number of phonemes per fMRI scan) and the 
concatenation of phonemes, stresses and tones of the words in the stimuli (categorical feature, d = 117 ). The lat-
ter phonological features are provided in the original dataset and computed using  Gentle65. The 117 dimensions 
are the combination of phonetic categories, stresses and tones. We use 40 English phonemes in the corpus, and 
4 possible tones, which results in 40 x 4 = 160 possible categories. Some categories are never pronounced here. 
If we ignore these categories, this results in 117 categories, and thus 117 dimensions after one-hot encoding.

Voxel‑level and ROI‑level analyses. All of the first-level analyses are performed at the voxel level (com-
putation of the mapping scores M in Eq. (1), in blue in Fig. 1). We then average these effects either (1) within 
each brain region (Fig. 1B, E, F and G) or (2) across the whole brain (Fig. 1C and D). From these average values, 
we compute the correlation with comprehension (in red in Fig. 1). This approach mitigates the localization of the 
effect and the statistical correction for multiple comparisons.

Significance. Significance was either assessed by using either (i) a second-level Wilcoxon test (two-sided) 
across subject-narrative pairs, testing whether the mapping (one value per pair) was significantly different from 
zero (Fig. 1B), or (ii) by using the first-level Pearson p-value provided by  SciPy28 (Fig. 1D–G). In Fig. 1B, E, F, 
p-values were corrected for multiple comparison (2 × 142 ROIs) using False Discovery Rate (Benjamin/Hoch-
berg)66.

Data availibility
The Narratives  dataset61 is publicly available on the OpenNeuro (https:// openn euro. org/ datas ets/ ds002 345/ versi 
ons/1. 1.4) and Datalad platforms (http:// datas ets. datal ad. org/? dir=/ labs/ hasson/ narra tives).
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