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A lightweight convolutional neural 
network model with receptive 
field block for C‑shaped root canal 
detection in mandibular second 
molars
Lijuan Zhang1, Feng Xu2, Ying Li2, Huimin Zhang2, Ziyi Xi2, Jie Xiang2 & Bin Wang2*

Rapid and accurate detection of a C‑shaped root canal on mandibular second molars can assist 
dentists in diagnosis and treatment. Oral panoramic radiography is one of the most effective methods 
of determining the root canal of teeth. There are already some traditional methods based on deep 
learning to learn the characteristics of C‑shaped root canal tooth images. However, previous studies 
have shown that the accuracy of detecting the C‑shaped root canal still needs to be improved. And 
it is not suitable for implementing these network structures with limited hardware resources. In this 
paper, a new lightweight convolutional neural network is designed, which combined with receptive 
field block (RFB) for optimizing feature extraction. In order to optimize the hardware resource 
requirements of the model, a lightweight, multi‑branch, convolutional neural network model was 
developed in this study. To improve the feature extraction ability of the model for C‑shaped root canal 
tooth images, RFB has been merged with this model. RFB has achieved excellent results in target 
detection and classification. In the multiscale receptive field block, some small convolution kernels 
are used to replace the large convolution kernels, which allows the model to extract detailed features 
and reduce the computational complexity. Finally, the accuracy and area under receiver operating 
characteristics curve (AUC) values of C‑shaped root canals on the image data of our mandibular second 
molars were 0.9838 and 0.996, respectively. The results show that the deep learning model proposed 
in this paper is more accurate and has lower computational complexity than many other similar 
studies. In addition, score‑weighted class activation maps (Score‑CAM) were generated to localize the 
internal structure that contributed to the predictions.

Root canal systems have many anatomical variations, some of which can significantly increase the difficulty of 
endodontic  treatments1. Cooke et al.2 first explicitly proposed the existence of type C root canals in mandibular 
second  molars2. Walker et al. found a high incidence of type C root canals in mandibular second molars of 52% 
in  China3. The root canal orifice of type C was 180°. The C-shaped banded grooves with the reticular connec-
tion between the root canals form a structurally complex  isthmus4. The root cross-section of the C-shaped root 
canal is “C” type because the tooth germ on the buccal, lingual side of the root is not or only incompletely fused 
during development, resulting in the formation of crown roots with longitudinal groove and deformation of the 
extruded root  canal5. Therefore, it becomes a challenge for clinicians to treat C-shaped root canal teeth.

Panoramic radiography remains the standard imaging method during preoperative assessment of the tooth 
root  canal6. It displays each dentition and jaws on a single film through a fast and efficient  process7. Cone-beam 
CT (CBCT) is a common technique used by dentists to accurately assess root and root canal morphology. Nev-
ertheless, CBCT has a larger radiation volume for patients than panoramic radiography. It is not suitable to just 
make a simple diagnosis for  patients8,9. Therefore, direct identification of C-shaped tooth root and root canal 
morphology by panoramic images will be effective in helping clinical diagnosis.
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However, the correct identification of C-shaped root canals requires many years of experience. The same 
physician’s judgment of tooth root canals by CT can be limited by time and fatigue. Radiology awareness was 
shown to reduce the performance of root canal classification detection in the interpretation of CT of teeth due 
to long working  hours10. Accurate classification of the type of tooth root canal plays a crucial role in the clinical 
management of the patient as well as in the prognosis.

Deep  learning11,12, a hot research direction in the field of machine learning, has made breakthrough pro-
gress in computer vision and other artificial intelligences in recent years. CNNs are the most commonly used 
techniques when processing images because of their ability to extract rich details from the input  information13. 
They have been successfully for image-based automated diagnosis in various fields, including lesion detection 
or  classification14–19 and medical image  segmentation20–23. In the field of dentistry, studies are being conducted 
using CNNs on various topics: morphological classification of  teeth24, classification of dental implant  systems25,26, 
dental  caries27, mandibular canal  segmentation28, and segmentation of  teeth29. However, in pursuit of a higher 
precision effect, most of these studies often ignore the computational and parametric sizes of the CNN models 
used. Neural networks are typically over-parameterized and there is significant redundancy for convolutional 
neural network  models30. Such CNNs are not suitable for hardware resource-constrained  environments31.

This study proposes a new lightweight CNN structure that is more suitable for C-shaped root canal detection. 
The proposed method contains a module that can simulate human visual perception, which improves accuracy 
while reducing the number of parameters and computational complexity. This design will greatly optimize the 
use of CNN models in resource-constrained environments.

Material and methods
Classification of the root canal of mandibular second molar teeth. There are different variants of 
mandibular second molars, which mainly have two canals, three canals and C-shaped root  canals32. In the clini-
cal practice of root canal therapy, dentists use radiographs to assess the patient’s teeth and root canals, obtain 
relevant clinical information and predict the treatment difficulties. Nevertheless, dentists usually take much 
time and energy to judge the root canal type based on radiological images. They have difficulty determining 
the root canal type directly from panoramic images. In order to gain the dentists’ accuracy when assessing the 
mandibular second molar using only panoramic images, two dentists on the team classified the datasets blind to 
the labels. This work uses the  Kappa33 test to calculate consistency with ground truth and its classification scores 
based on the classification scores of two dentists. Finally, these correlation values are constructed into a confu-
sion matrix and the results are presented in Fig. 1. The coefficient of agreement between the two dentists and 
the ground truth were 0.301 and 0.413 respectively, and the coefficient of agreement between the two dentists 
was 0.46. It can be seen that dentists cannot well judge the root canal type of mandibular second molars from 
panoramic images.

Dataset. This prospective work was conducted at the Department of Stomatology, Shanxi Provincial Peo-
ple’s Hospital. This research included panoramic image data from patients who received in-hospital dental care 

Figure 1.  Evaluation of panoramic image datasets by two dentists and the Kappa test coefficient of the ground 
truth.
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between August 2019 and November 2020 and obtained informed patient consent. Table 1 below describes the 
gender and age information of the patients included in this work.

The data set was marked by a radiologist with 5 years of professional experience and consisted of 384 pano-
ramic images. The first step is the cutting stage. The area related to the mandibular second molar is selected by 
the manual cutting method and its size is adjusted to 90 × 90. The non-square graph is filled with zero. The second 
step is the cleaning stage, without the tooth with structure damage, low resolution and other unsatisfactory tooth 
images. After that, two team dentists conducted a second review of the data set and confirmed the availability 
of the basic facts. The final number of images: 361 cases of C-shaped root canals and 364 cases of non-C-shaped 
root canals. Figure 2 shows the whole process of data set production.

The lightweight convolutional neural network with RFB. In this paper, a new neural network struc-
ture is proposed to classify root canal types, as shown in the flowchart in Fig. 3. The crucial task in this work is 
the classification of C-shaped root canals and non-C-shaped root canals.

Considering the hardware constraints of the equipment and the time constraints of actual operation, this 
paper proposes a network FARFB that has been repeatedly debugged and modified and the network structure 
gives the model the best test accuracy. The network structure is shown in Fig. 4. Various network architectures 
and methods such as LeNet, Vgg16 and Xception were also tried in this document. The results of different net-
work structures and methods on this data set are shown in Table 2. Experimental results show that the proposed 
method has better accuracy and lower resource consumption.

The network’s last layer is replaced by the SoftMax layer, which is used to classify several categories. After 
trying different configurations, this paper used 32 batches and an SGD optimizer with a momentum of 0.9 and a 
learning rate of 0.001. The function used to calculate the loss was the NLLLoss. This paper also used a 30-degree 
rotation range, horizontal flips and parallel shifts from height or width for data augmentation in the training set. 
This paper uses LeNet, Vgg16 and Xception to do the same calculations and keep the same parameters (except 
that the input image is 224 × 224 and 299 × 299 pixels). Finally, this paper chooses a combination of a lightweight 
convolutional neural network and RFB module as the best architecture for the current problem. Finally, to better 
understand the effect of the network, this paper can visually explain it and make better decisions on the model. 
This paper uses score-weighted class activation mapping (Score-CAM)34 to look at the areas where the network 
focuses when making decisions.

Multi‑scale receptive fields block. FARFB proposes to extract multi-scale receptive domain features to 
preserve the details of tooth images and better detect C-shaped root canals. Therefore, this work has to design 

Table 1.  Baseline characteristics.

Total (n = 384)

Age (year)
Median 27 (11–59)

F 254

Sex
M 130

%F 66.1%

Figure 2.  The image data flow chart defines how to decompose the data set.
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a network with kernels of different sizes, such as 3 × 3, 5 × 5. To lightweight this method, this paper uses a small 
convolution kernel instead of a large one, which usually significantly increases the temporal complexity of the 
model. In this work, Receptive Field Block (RFB)35 was introduced into this network structure for the sake 
of lightweight and better classification. RFB is combined with a lightweight CNN model for extracting deep 
semantic features from the images. In particular, RFB uses a multi-branch convolution structure and different 
size convolution kernels correspond to different receptive fields, applies extended convolution  layers36 to control 
their eccentricities and reshapes them to produce the final representation. In the proposed method, RFB is used 
to find the deep and rich details of tooth root canal images.

In FARFB, an RFB module is added to the backbone network, and a branch with an RFB module is added 
to obtain different levels of features and feature fusion is performed at the end of the network structure. The 
composition structure of RFB is shown in Fig. 4B. In RFB, in addition to using 3 × 3 convolution layer to replace 
the 5 × 5 convolution layer, 1 × 3 and 3 × 1 convolution layers are also used to replace the 3 × 3 convolution layer. 
The main purpose of this is to effectively reduce the amount of computation and parameters. In addition, replac-
ing this structure enables RFB to have a richer semantic information learning ability. A corresponding dilated 
pooling layer follows each branch’s specific kernel-size convolution layer. Kernel size and dilated manipulation 
have similar positive correlations with RF size and eccentricity in the human visual cortex. Finally, the feature 
mappings of all branches are connected. This makes RFB precisely what this paper needs to extract multi-scale 
features and minimize time complexity simultaneously. The most important reason for using RFB is that it can 
extract very detailed features required for medical image classification.

Training and evaluation. From the initial data set, 30% of images of each category are tested separately. 
A data set composed of 114 images of non-C-shaped root canals and 108 C-shaped root canals was generated. 
Then, the remaining images (250 images of non-C-shaped root canals and 253 images of C-shaped root canals) 
were used for training. The partitioning of the data set is done using open-source random algorithms. This pro-
cess is shown in Fig. 5.

This paper ran the model with 150 iterations and used a premature stop strategy with ten iterations. This paper 
used Pytorch, a well-regarded open-source framework for building deep learning networks, running on Ubuntu 
18.04.2 LTS with NVIDIA GeForce GTX 2070. This paper calculated the accuracy of each network in judging 
C-shaped and non-C-shaped root canals and measured the performance of the CNN model using area under the 
receiver operating curve (AUC), precision, recall and F1-score37. Every value was averaged among the fivefolds. 
Finally, this paper compares the diagnostic performance of the proposed method with the diagnosis of dentists, 

Figure 3.  The workflow chart for classification of the tooth root canal. Cut out the mandibular second molar 
tooth image from the panoramic image produced from the original image data. The tooth image data obtained 
in the previous step was inputted into different network systems to classify and compare the results. The tooth 
image data gained in the last step was inputted to the proposed network combining increasing receptive field 
modules and classical network structure method. Finally, Score-CAM is used to visualize where the network 
focuses when making classification decisions.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17373  | https://doi.org/10.1038/s41598-022-20411-4

www.nature.com/scientificreports/

where one dentist (experience > 5 years) and another dentist (experience > 8 years) predicted C-shaped canals 
from panoramic images. Dentists evaluated panoramic images of the mandibular second molars corresponding 
to all test sets. The accuracy, precision, recall and AUC were calculated and compared with the proposed method.

Figure 4.  The network structure of FARFB (A). The capital letters A, C, F, P, S and S denote the Global Average 
Pooling, Convolutional, Full Connection, Pooling and SoftMax respectively. The values represent the number of 
channels, width and height of the feature maps. The composition structure of receptive field block (RFB) (B).
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Ethical approval. Research on human participants has been ethically reviewed and approved according to 
the requirements of the ethics committee of Taiyuan University of technology. According to national legislation 
and institutional requirements, this study has obtained written informed consent from the investigators.

Result
Performance of FARFB. Using the above FARFB model, this work achieved an average accuracy of 0.9838 
for the C-shaped root canal classification of mandibular second molars (Table 2). At the same time, this paper 
also received other performance indices of the model, such as specificity, sensitivity and AUC of 0.9772, 0.9888 
and 0.9960, respectively (Fig. 7). For the training results of the proposed method, this paper uses the fivefold 
cross-validation to get the average as this final result. With fivefold cross-validation, the accuracy of each fold of 
the model was 0.9775, 0.9865, 0.9820, 0.9820 and 0.9910, respectively. From the results, it can be seen that the 
proposed method has very excellent performance on each fold.

Ablation study. In this work, the method was developed in combination with the RFB module. Therefore, 
in this ablation study, the RFB module was removed from the proposed method as the baseline method and 
named it FANet. This paper compares the FARFB, which only adds the RFB module to the network structure. In 
this work, the same dataset and hyperparameter settings were used for both methods. The results and network 
model indicators of the two methods on this dataset are shown in Table 2.

The results show that the FARFB method performs better. Although FANet has fewer parameters and fewer 
computation than FARFB, the results of FANet are not satisfactory. FARFB achieves more than 3% higher accu-
racy with slightly increased parameters and calculations than FANet. This result verifies the effectiveness of the 
proposed FARFB method.

Comparison with traditional methods. In Fig. 6 and Table 3, this paper compares the proposed method 
with traditional methods in terms of accuracy, sensitivity, specificity and AUC. The accuracy, sensitivity, specific-
ity and AUC of LeNet were 0.9117, 0.8893, 0.9298 and 0.9680, respectively. The accuracy, specificity, sensitivity 
and AUC of Vgg16 were 0.9712, 0.9880, 0.9704 and 0.9888, respectively. The accuracy, sensitivity, specificity, 
sensitivity and AUC of ResNet18 were 0.9784, 0.9737, 0.9834 and 0.9890, respectively. The accuracy, specificity, 
sensitivity and AUC of Xception were 0.9649, 0.9561, 0.9703 and 0.9860, respectively. From the above, it emerges 
from this paper that the proposed method shows a specific improvement in each performance index compared 
to the traditional methods.

In addition, as shown in Fig. 7, the proposed method has a minimum number of parameters and a relatively 
small amount of calculation. The parameters of FARFB, LeNet, vgg16, resnet18 and Xception are 0.18, 1.41, 
70.30, 11.20 and 20.80, respectively (Million). Their amount of calculation are 139.50, 29.91, 15,440.00, 324.79 
and 8410.00, respectively (Million Floating-point Operations per Second, MFlops). The results show that the 

Table 2.  Comparison of results and model indicators of fivefold cross-validation of FARFB and FANet.

Model Accuracy The number of parameters The amount of calculation

FANet 0.9460 0.13 M 103.4 MFlops

FARFB 0.9838 0.18 M 139.5 MFlops

Figure 5.  The details of the train set, validation set and test set composition.
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FARFB network has minimal parameters and amount of calculation, but extremely high accuracy. This is also 
the ideal result of the initial design of this network structure in this paper.

Comparison with dentists and other studies. It is usually a challenge for dentists to find C-shaped root 
canals directly through panoramic images. Table 4 and Fig. 8 show the performance indicators of the proposed 

Figure 6.  Comparison of the proposed method with traditional methods in accuracy, sensitivity, specificity (A). 
Receiver operating characteristic (ROC) curves for the proposed method and traditional methods (B).

Table 3.  Accuracy comparison of LeNet, FARFB, Vgg16, ResNet18 and Xception in fivefold cross-validation 
training. The best performance is shown in bold.

K-Fold FARFB LeNet Vgg16 ResNet18 Xception

Fold1 0.9775 0.8964 0.9730 0.9730 0.9595

Fold2 0.9865 0.9234 0.9775 0.9820 0.9730

Fold3 0.9820 0.9144 0.9640 0.9775 0.9640

Fold4 0.9820 0.9054 0.9685 0.9730 0.9685

Fold5 0.9910 0.9189 0.9730 0.9865 0.9595

Average 0.9838 0.9117 0.9712 0.9784 0.9649

Standard deviation  ± 0.0001  ± 0.0001  ± 0.0001  ± 0.0001  ± 0.0001

Figure 7.  The graphical performance of each network model, the number of its parameters and calculations 
in C-shaped and non-C-shaped root canal classification tasks (the input image size of Vgg16 is 224 × 224. The 
input image size of Xception is 299 × 299). The gray circles are the standard display of the number of parameters 
or calculations at each level.
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method and two dentists in this C-shaped root canal classification task. It can be seen that the accuracy of the 
two dentists is 0.6352 and 0.5770, respectively, and the AUC are 0.635 and 0.577. This shows that the proposed 
method has better performance than two dentists.

Table 4 also shows that the proposed method performs much better than dentists and is also better than 
previous methods. Compared with the method of Jeon et al., the proposed method has a 3% higher accuracy on 
the test set and other performance metrics are also higher.

Feature visualization of tooth images. Figure 3 shows images of C-shaped canals and non-C-shaped 
canals predicted using the proposed method and visualized using Score-CAM. The proposed method focuses on 
the feature of the intersection area of the root canal with the crown in the image and uses this feature to predict 
C-shaped root canals (Fig. 9a) correctly. The method focuses on the features of the area of the root canal bifurca-
tion in the image and uses this feature to predict non-C-shaped root canals (Fig. 9b) correctly.

Discussion
In this paper, a lightweight convolutional neural network model was proposed to predict C-shaped root canals 
in mandibular second molars by analyzing panoramic images. This paper selects several commonly used and 
highly representative methods in tooth image research for an experimental comparison and hopes to compare 
them to evaluate the effectiveness of the proposed model. Through several cross experiments, the network model 
proposed in this paper has the advantages of low resource consumption and high accuracy (Fig. 7). The accuracy 
of the proposed model in the classification of C-shaped root canals and non-C-shaped root canals is 0.9838 (CI 
0.9775–0.9910), which is improved compared with the previous  studies38. This paper found that adding an RFB 
module to a lightweight CNN can better learn and find tooth images’ depth features and details through multi-
model training and ablation study. Experimental results prove that the effect of the RFB module simulating 
the human visual system to extract multi-scale features is very well. It helps significantly to reduce the number 
of parameters and time complexity. Initial efforts to identify and classify root canals were dominated by time-
consuming and labor-intensive annotation by experienced dentists. Recently, breakthroughs have been made 
in the field of medical imaging using deep learning  methods39–44. Most of the existing work on the classification 
of dental root canals mainly focuses on single canals, multiple canals, the binary of C-shaped root canals and 
multiple canals. According to the research investigation, two previous articles used deep learning to classify the 
root canals of mandibular first and second  molars38,45. However, the results are not optimal, especially in clas-
sifying complex root canal types and a generalized approach does not exist. Meanwhile, previous studies did 
not consider the impact of model parameters and calculation size when classifying root canals. In most cases, 

Table 4.  Comparison of diagnostic performance between the CNN model and the dentists. The best 
performance is shown in bold.

Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC 

FARFB 98.38 97.81 98.88 98.34 0.996

Dentist1 63.52 77.25 45.28 57.09 0.635

Dentist2 57.70 82.10 21.67 34.29 0.577

Jeon et al.38 95.10 95.90 92.70 94.27 0.982

Figure 8.  Receiver operating characteristic (ROC) curves for the proposed method and dentists.
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limitations of hardware devices and usage environment will reduce the scope of their use scenarios. The proposed 
lightweight CNN model fills this deficiency and improves classification accuracy (Table 3).

In addition, to demonstrate the effectiveness of the network for learning C-shaped root canals, this paper 
implemented Score-CAM, an adaptive improvement of  CAM46 that allows us to visualize the network’s concerns 
for different classifications. As shown in Fig. 9, the correct root canal region was focused by the decision-making 
network. Unfortunately, there are still many useless areas in the focus area of the visual map displayed by this 
network, which shows that the proposed network still needs improvement. This may also indicate that the 
lightweight shallow network is slightly lacking in the ability to extract more detailed features from tooth images.

Deep neural networks have become the most popular advanced technology in computer vision and medi-
cal  imaging47–49. Neural networks are both computationally and memory intensive, making them difficult to 
deploy on embedded systems with limited hardware  resources50,51. Previous studies on medical images have not 
considered this part, making it difficult to translate their results into actual clinical application. This will lead to 
wasted computing power and memory consumption of related devices. Therefore, when using the deep neural 
network method for medical image processing, it is necessary to consider the lightweight neural network model 
with the same accuracy. This reduces device resources and improves the conversion rate of research results to 
actual clinical applications.

This paper has several limitations. First, the training images are created by manual segmentation, which takes 
a lot of time. Therefore, an accurate automatic segmentation algorithm may be a further and valuable techni-
cal direction in tooth image. Second, the manually segmented tooth images have a complex background. The 
distance between teeth is very small, which inevitably blends with other tooth structures and the environment 
when segmenting the image, which to some extent prevents the model from learning the texture features of the 
area of interest. Third, translating the study results into practical clinical applications may still require a more 
significant data set to complete validation of the model’s generalization ability.

Conclusion
In this work, a lightweight CNN model is proposed to detect the presence of C-shaped root canals in mandibular 
second molars. Compared with the methods of previous related studies, the proposed model has higher accuracy 
detecting C-shaped root canals and lower resource consumption. The proposed model improves feature extrac-
tion capability by incorporating an RFB module to enhance receptive fields. The RFB module which mimics the 
human eye’s receptive field, provides excellent help for feature extraction from lightweight CNN models and 
reduces the number of model parameters. The experimental results show that the proposed FARFB is better 
than that of dentists in detecting root canal types of mandibular second molars and better than other traditional 
methods in this work.

In future studies, we will use more clinical data for feedback training to improve the comprehensive effi-
ciency of the model. Furthermore, we will implement the segmentation algorithm of the C-shaped root canal 
tooth image in the panorama based on the features extracted by the proposed method in this paper. Through 
rapid automated detection to replace cumbersome manual operations and then assist dentists in rapid clinical 
diagnosis.

Figure 9.  Score-CAM output for C-shaped and non-C-shaped type fractures classification. C-shaped root canal 
tooth images (a) and non-C-shaped root canal tooth images (b). Original images (top) and overlapped on the 
original image (bottom). The visualization certifies that the network is focusing on the correct area of the tooth.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17373  | https://doi.org/10.1038/s41598-022-20411-4

www.nature.com/scientificreports/

Data availability
The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms 
part of an ongoing study. Further inquiries can be directed to the corresponding author.
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