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An optimizing method 
for performance and resource 
utilization in quantum machine 
learning circuits
Tahereh Salehi1, Mariam Zomorodi1,2*, Pawel Plawiak2,3, Mina Abbaszade4 & Vahid Salari5,6

Quantum computing is a new and advanced topic that refers to calculations based on the principles 
of quantum mechanics. It makes certain kinds of problems be solved easier compared to classical 
computers. This advantage of quantum computing can be used to implement many existing problems 
in different fields incredibly effectively. One important field that quantum computing has shown great 
results in machine learning. Until now, many different quantum algorithms have been presented to 
perform different machine learning approaches. In some special cases, the execution time of these 
quantum algorithms will be reduced exponentially compared to the classical ones. But at the same 
time, with increasing data volume and computation time, taking care of systems to prevent unwanted 
interactions with the environment can be a daunting task and since these algorithms work on machine 
learning problems, which usually includes big data, their implementation is very costly in terms of 
quantum resources. Here, in this paper, we have proposed an approach to reduce the cost of quantum 
circuits and to optimize quantum machine learning circuits in particular. To reduce the number of 
resources used, in this paper an approach including different optimization algorithms is considered. 
Our approach is used to optimize quantum machine learning algorithms for big data. In this case, the 
optimized circuits run quantum machine learning algorithms in less time than the original ones and by 
preserving the original functionality. Our approach improves the number of quantum gates by 10.7% 
and 14.9% in different circuits respectively. This is the amount of reduction for one iteration of a given 
sub-circuit U in the main circuit. For cases where this sub-circuit is repeated more times in the main 
circuit, the optimization rate is increased. Therefore, by applying the proposed method to circuits with 
big data, both cost and performance are improved.

In recent years, the phenomenon of quantum computing has received global  attention1. Quantum computational 
theory goes back to the works by Feynman and Deutsch in the  1980s2 and after that many new quantum comput-
ing algorithms have been proposed. Machine learning is the science and art of building computers to learn from 
data how to solve problems instead of explicitly programming. So, Machine learning and quantum computing 
are two very important research areas, and by combining these two areas, new solutions for today’s challenges 
are  proposed3. There are some challenges for implementing quantum machine learning algorithms due to the 
processing of large datasets. One usual way to meet these challenges is to arrange these algorithms in the cloud 
system. With the help of the computing power of the cloud system, the problems are partially solved. However, 
data storage and management in heterogeneous distributed networks had a number of other problems. Physicists 
take a different method of quantum computing by exploiting the “Superposition” and “Entanglement”  properties9. 
This solution has particularly increased the speed of solving certain problems compared to classical  algorithms4,5. 
Problem-solving is very different in quantum and classical systems. In fact, some problems that can be solved in the 
classical system in several years, it is known that can be solved in a quantum system in a few  hours6. On the other 
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hand, in recent years many types of research have been carried out on the subject of big data. The challenge is the 
inefficiency of the computations of classical machine learning algorithms and metaheuristics for processing such 
a large volume of  data7–9. The unit of quantum processing is the “quantum bit” or “qubit”. One of the capabilities 
of a quantum computer is that by increasing the number of qubits of a quantum computer, the processing power 
improves  exponentially10. Quantum algorithms usually express computations by primitive quantum gates. There 
are different approaches to implementing these algorithms. Therefore, it is useful to find an implementation using 
the least resource numbers, especially for large-scale quantum circuits with complex designs. To this end, we apply 
optimization methods which is a fundamental task in almost all areas of quantum computing science, including 
monolithic and distributed quantum circuits 10–13. This work has developed and implemented a framework for 
quantum circuit optimization algorithms to optimize the desired circuits which are designed particularly for 
machine learning tasks. We also show how to optimize the repetition of quantum circuits and reduce the required 
resources for large-scale quantum circuits. While the original functionality of the algorithm is preserved, the final 
quantum circuit has fewer time steps, execution time, and quantum cost compared to the original circuit. As input, 
we assumed that the quantum circuit (QC) consists of a set of quantum gates with a certain number of 2 qubits . 
The ultimate goal of optimizing the quantum circuit of a machine learning algorithm is to reduce the number of 
gates, time steps, and quantum cost. The quantum cost of a circuit is the number of 1 × 1 and 2 × 2 quantum gates 
in its  design14. For this purpose, this paper proposes a method to optimize the quantum cost of machine learning 
algorithms. In principle, it can be said that the operations involved in quantum machine learning circuits can be 
large and so it is worth reducing them. Quantum circuits typically use single-qubit and two-qubit gates such as 
NOT, Hadamard, and rotation, and also two-qubit CNOT gates. If there are three-qubit gates such as Bridge, and 
Swap, and multi-qubit gates, we decomposed them into single-qubit and two-qubit gates in a preprocessing step. 
In “Quantum gates and circuits”, we discussed related work in the field of the quantum computation systems for 
the machine learning algorithm, as well as optimization algorithms for the quantum circuits. Then, in “Quantum 
memory”, the proposed method is explained and at the end, in “Related work” and “Quantum circuits optimiza-
tion techniques”, our results and discussion are presented and we conclude the paper.

Quantum gates and circuits
Quantum circuit is made up of a combination of Von Neumann and classical  architecture15, which is executed in 
the quantum processor. Quantum circuits are shown in such a way that the desired gates are on vertical lines, each 
of which represents a basic operation. The running time is calculated in these circuits from left to  right16 using time 
steps of the quantum circuit. Quantum gates can be represented as 2n dimensional matrices that contain the ampli-
tude of the fundamental states 2n of an n-dimensional quantum system. Figure 1 shows some examples of quantum 
circuits and their corresponding gates in matrix representation. Figure 1a shows a sample quantum circuit, and 
Fig. 1b represents the unitary two-qubit gates with their corresponding  matrices17. Time advances from left to right.

Quantum memory
The memory of a classic computer can be easily built by writing an arbitrary bit string in any position. Classi-
cal memory performance is not optimal for processing big data. In order to solve the problem of normal and 
associative memory capacity, quantum memory has been used successfully. In many applications of quantum 
computers, a quantum register is used instead of classical memory to simulate a physical system. This quantum 
memory consists of a qubit state tensor in multidimensional Hilbert space that is first prepared in a simple state. 
For a quantum memory consisting of two qubits |q0� and |q1� , its state |qR� is given by Eq. (1). The symbol ⊗ is 
the tensor operation. For example, for a 4-qubit quantum register, its state is represented as Eq. (2), where the 
probability of measuring each of its base states is as different four terms illustrated in Eq. (3)18,19. Giovannetti 
et al.20 have demonstrated that how classical data is presented in the language of quantum mechanics through 
the study of quantum random access memory (QRAM).

Figure 1.  (a) An example for a quantum circuit: each line represents a qubit, and operations (gates) are applied 
on them. (b) Representation of unitary two-qubit gates in the quantum circuit with matrix  formalism17.
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Implementing machine learning algorithms in quantum computing has two advantages: storage scale and 
high execution speed of  algorithm9. By exploiting the superposition property, it is possible that quantum storage 
be reduced exponentially. According to Eqs. (4) and (5), all binary numbers from the set {0, 1, . . . , i, . . . , 2n − 1} 
are placed in n qubit quantum memory with probability |ci|2 for state |i�.

where

In the classical system for Eq. (6), the operation must be repeated 2n times. But in the quantum system, the 
system can examine all computational states for the variables simultaneously, assuming that the Uf  operator 
understands the function f(x)9.

Related work
In this section, we first present some works done in implementing a quantum circuit for quantum machine 
learning algorithms and then methods for quantum circuit optimization are presented.

Quantum circuits of machine learning algorithms. Recently, quantum machine learning is consid-
ered as a suitable solution to increase the speed of execution of algorithms. This method has led to the introduc-
tion of various quantum algorithms for machine learning using quantum features. In this paper, we first examine 
the K nearest neighbor algorithm. In this regard, Lioyd et al.21 and Wiebe et al.22 use similar approaches such 
as quantum amplitude estimation or Grover  algorithm23 to obtain the quantum state of the nearest neighbor 
algorithm. In the next method for implementing the nearest neighbor algorithm, Buhrman et al.24 use quantum 
parallelism and the test circuit to calculate the distance between two vectors and provide a quantum solution. 
The Euclidean distance can be calculated as Euclidean distance=

√

((2− 2|�x|y�|)) . The next method in K near-
est neighbor by Ruan et al.25 is used in document classification, image classification, etc. It works based on the 
size of the Hamming distance. A natural vector is defined as a bit vector with a hash function and then converted 
to an equivalent quantum state, after that, then the input vector bits are compared with the training vector. The 
number of different properties is counted by the Kaye  circuit25 and the distance between the two vectors is esti-
mated. The next algorithm, the support vector machine (SVM), is a supervised algorithm developed by Arodz 
and  Saeedi26 and also by Rebentrost et al.27, which classifies vectors in a specific space based on training data. 
In comparison with the classical support vector machine for binary classification, they achieved a logarithmic 
acceleration. These methods use Grover algorithm and adiabatic algorithm. The next algorithm is the neural net-
work algorithm. Transfer learning is an interesting technique in neural networks in which a pre-trained model 
is reused as an input model for a new task. One of the works in quantum neural networks presented in this field 
was developed by Acar et al28 and uses the quantum transfer learning method. This method is a hybrid machine 
learning method consisting of a classical network feature extractors and a diverse quantum classification circuit. 
There are other works by Zen et  al.29 that have used transmission learning toward scalable quantum neural 
network states using transmission learning. A protocol was proposed  in47 for machine translation based on 
quantum long short term memory for translating a sentence from English to Persian. In another work, Mishra 
et al.30 used the design and operation of a classical neural network and they designed a quantum neural network 
capable of working on a 10 qubit system. By demonstrating network performance, they have tried to use the 
basic principles of machine learning to manage data that can be used in cancer detection.

Quantum circuits optimization techniques
There are many different optimization methods for quantum circuits that aim to reduce the number of time steps, 
gates, depth, and more. For this purpose, quantum circuits can be improved using different approaches in circuit 
diagram models, or using circuit simplification rules. For example, the quantum circuit can be improved by the 
quantum Karnaugh map  method31, the exclusive sum of product  method32 and etc. Using circuit simplification 
rules, there are many different methods that improve circuits by specific rules. The following is a review of the 
works in this area. Fan et al.33 proposed a quantum approximate optimization algorithm, which is a standard 
method for combinatorial optimization with a gate-based quantum computer. The paper introduced a new Gibbs 
objective function and demonstrated its superiority, and used the architecture of an Ansatz search algorithm 

(1)|qR� = |q0� ⊗ |q1� = |q0�|q1� = |q0q1�

(2)|qR� = c0|00� + c1|01� + c2|10� + c3|11�

(3)|c0|2 + |c1|2 + |c2|2 + |c3|2 = 1
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to search for the discrete space of a quantum circuit. These changes led to the improvement of various circuits. 
Using this method, the median has been increased to 244.7% and 44.4% for the grid and complete graph models 
of quantum computation. Median reduction in the number of two-qubit gates is 33.3% and 20.8%, respectively. In 
another paper, Alam et al.34 proposed a method to accelerate the implementation of the quantum approximation 
optimization algorithm (QAOA). First, a connection is made between the classical optimizer and the quantum 
computer, and then two parameters named δ and β , with initial values of zero, are inserted into the loop. The 
classical optimizer for randomly defined variables initially set to some random values. If the values are not ideal, 
it establishes a connection to the quantum computer. increases the depth of the circuit, which is not good and 
should be reduced. For this reason, to determine the appropriate distance for the parameters, artificial intelligence 
techniques are used to achieve the desired result with the acceleration in the process. This method shows that 
the number of optimization iterations can be reduced 44.9% on average for 264 graphs. Haner et al.15 optimized 
the circuit using the Hoare  triples35. This method checks the accuracy of the execution of specific programs. 
For each circuit level, a pre-condition defines conditions and post-conditions, and based on the previous level 
condition, the authors can decide on the operating conditions for the next level operation. When using a Hoare-
based optimization strategy, the circuit depth decreases for n ≥ 2 , according to relation (4(n− 2)+ n)/n . In the 
next method of Childs and  Maslov16, the automatic optimization of large circuits is accomplished using iterative 
parameters. This method also preserves the main structure of the algorithm and performs better optimizations 
than state-of-the-art approaches. In fact, it uses a set of exploratory laws that reduces the number of gates. This 
technique first displays the quantum circuit as a netlist and then preprocesses and simplifies the circuit. Then, it 
divides the circuit into sub-circuits and optimizes the sub-circuits according to the rules 1-4.  In36, Abdessaied 
et al. used several algorithms to synthesize reversible functions to quantum circuits and to reduce the number of 
Hadamard gates. This reduction of the Hadamard gate, reduces the number and depth of T gates, which improves 
the combined gates. By applying this method, the authors improved the number and depth of T gate by 88% more 
than other optimization methods. One other approach for quantum circuit optimization is based on ZX-calculus 
which is a graphical language for expressing quantum  computation49. The optimization approach uses the rules 
of the ZX-calculus for simplifying ZX-  diagrams50. The authors show that their simplification procedure works 
well when there are few non-clifford gates in the original circuit. Using different quantum circuit optimization 
techniques, the aim of this paper is to improve the performance of quantum machine learning circuits and to 
reduce their cost. To this end we optimized the quantum machine learning circuits in terms of quantum gates 
and time steps.

Methods
Implementing machine learning algorithms with big data in quantum systems is a major challenge due to the 
excessive increase in the number of gates, the depth of the circuit, and the execution time of the algorithm. 
Optimizing quantum circuits is an effective way to overcome these problems. In this section, the details of 
the optimization algorithm for quantum machine learning circuits are explained. This method is then used to 
optimize the quantum circuits of two machine learning algorithms, transmission learning and neural networks. 
Initially, in the preprocessing step, the quantum circuit represented as a list of gates that are applied sequentially. 
The following transformation rules are then applied to optimize the quantum machine learning circuits.

Rule 1: First, if there is a NOT gate in the circuit, the next gate is checked. In this case, there are three differ-
ent possibilities for the next  gates16:

• If the next gate is a TOFFOLI gate: in this case the control qubit of the TOFFOLI is reversed and the NOT 
gate is removed.

• If the next gate is a NOT gate: in this case the two NOT gates are removed.
• If the next gate is a CNOT gate: in this case the control qubit is reversed and the NOT gate is removed.

Rule 2: Remove gates that are directly adjacent to their inverse. In a two-qubit gate, it is usually possible to 
simplify or eliminate the gate in the form of quantum circuits by moving it between the gates. In fact, for each U 
gate in the circuit, the optimizer searches for an instance of U† . If present, U is successfully canceled with some 
instances of U†.

Rule 3: For two rotation gates RZ(θi) and RZ(θj) that have a shared control line, According to Eq. (7), we can 
merge two  rotations37. For example, in Fig. 2 two rotation gates RZ(θ1) and RZ(θ4) can be  combined16:

Rule 4: Because many quantum algorithms can be described using Swap and Bridge  gates38, we transform 
them into the equivalent circuits consisting of CNOT gates on two consecutive qubits. Figure 3a is the equivalent 
circuit of Swap gate and Fig. 3b is the equivalent circuit of Bridge gate. By breaking down multi-qubit gates into 
simpler gates, the resulting circuit performs better when using other  rules38.

In some cases, the gates that can be merged or removed are not placed side by side. By moving the gates 
according to Figs. 4 and 5, the gates are placed side by side and so they can be merged and removed by the above 
rules. . For this purpose, the Sympy  library39 is used. Sympy is an open source Python library for symbolic 
mathematics. With the help of this library, complex quantum circuits can be transformed into simple ones. One 
of the interesting features of this library is producing equivalent circuits. In fact, using library different gates in 

(7)R(θ1) · R(θ2) = R(θ1 + θ2)

(8)R(θ1) · R(θ2) = R(θ2) · R(θ1)
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Figure 2.  Integration of two rotation  gates16.

Figure 3.  (a) Equivalent circuits of Swap gates. (b) Equivalent circuits of Bridge  gates38.

Figure 5.  (a) Commuting of the rotation gates and the CNOT gate. (b) Commuting of two CNOT gates in two 
different  circumstances38.

Figure 4.  A quantum circuit and its equivalent.
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the circuit are moved around and all locations where the gates can be placed are examined. Then, the rules 1-4 
are re-examined by the algorithm and the circuit is simplified if conditions pass.

These defined rules are applied in a loop until no further improvement is obtained. Algorithm 1 and Fig. 6 
present the steps of our optimization approach using the above rules. Using this framework, we optimized the 
quantum machine learning circuit of a classification task for medical diagnosis using quantum transfer  learning28. 
This circuit has been tested in several real quantum processors as well as various simulators. This quantum 
circuit aims at distinguishing a sick person from a healthy person based on computed tomography images. The 
circuit consists of four steps: The Hadamard gate is first applied to all qubits and then with the help of U operator 
defined  in28, the classical data is encoded and then entanglement is created. The dotted box of Fig. 7 shows one 
application of this operator. Finally, the qubits are measured. Figure 7 demonstrates the quantum circuit of this 
quantum machine learning algorithm with only one repetition of the sub-circuit.

Figure 6.  The flowchart of the steps of the optimization approach using rules 1–4.
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Results and discussion
In this section, the experimental results for different quantum circuits and quantum machine learning circuits 
are presented. The file of these circuits are mostly in QASM format, received as input by Python language and 
then converted into a matrix by the Qiskit library of  Python46. Then the proposed optimization techniques are 
applied to them. The main criterion in evaluating the proposed method is the comparison of the number of gates 
before and after optimization. Also, another criterion we considered in this work is the execution time of the 
quantum circuits and the amount of time step reduction. Qiskit library was used in IBM Q quantum computers 
for output verification. The optimization is then performed and the circuit resulting from the optimization was 
given to the simulator and the number of gates is calculated after the simulation. Obviously, in order to obtain 
the simulation results, the pre-optimization and post-optimization simulations must be the same. As the number 
of gates decreases from the initial value after applying the optimization model, the speed of the algorithm and 

Figure 7.  A quantum circuit with a quantum transfer learning  method28.
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its implementation cost improve. In this case, the proposed model will be a more efficient model. In order to 
verify our approach, we first tested our approach on different general quantum circuits and the results are shown 
in Table 1. In this table, each column is the corresponding quantum circuit and for each circuit we showed the 
improvement caused by our optimization approach.

Also, in Table 2 the comparison between our proposed approach and other works in the literature ZX-
calculus50,  AQCEL51,  tket52, and  Quilc53 are presented. It can be seen from this table that our approach works 
better in terms of circuit depth compared to other approaches and also in many circuits it is better in terms of 
the number of 2-qubit gates, while the execution time of our method is better than all other approaches.

In the proposed method, assuming that the number of time steps is N and the number of qubits is Q, the 
time complexity of the algorithm is obtained as O(NQ). As shown in Tables 1 and 2 applying our method to a 
variety of quantum circuits reduces the number of gates, time steps, and execution time of the quantum circuits 
significantly. At the second part of the experiments, our optimization approach was applied on the quantum 
machine learning circuits. One of these circuits uses transmission learning method for a potential application 
in medical diagnosis. By applying the proposed method to the above quantum circuit, only the U-shaped part of 
the circuit improves as shown in Fig. 8. In Fig. 8a it can be seen that the original circuit  from28 has 28 quantum 
gates. Figure 8b shows the improved circuit diagram with 10.7% reduction in the number of gates. This is the 
amount of quantum cost reduction for one repetition below the U-circuit in the main circuit. For cases where 
this sub-circuit is repeated many times in the main circuit, the rate of improvement increases. In this case, by 
applying the proposed method on circuits with big data, desirable results will be obtained. The results of the 
implementation of the proposed method on the quantum circuit of transfer learning are shown in Fig. 9 before 
and after optimization.

We verified the outputs in IBM Q and the results are demonstrated in Fig. 10. Figure 10a is the output of the 
original circuit and Fig. 10b is the output after we applied our optimization algorithm. Since the output is the 
same in both cases, the transformation has done correctly.

The next quantum machine learning circuit that we used in this work is the quantum circuit of the neural 
network for cancer  detection30 which used the design and operation of a classical neural network but it is a 
quantum neural network capable of working on a 10 qubit system. By demonstrating network performance, the 
authors have tried to use the basic principles of machine learning to manage data. The graphical representation 
of this circuit is shown in Fig. 11. Figure 11a shows the original circuit  from30 which is implemented in 17 time 
steps with 67 quantum gates. Figure 11b shows the improved circuit which in addition to a 14.9% reduction in 
the number of gates, reduces its time steps to 16. The comparison result of applying the proposed method to 
this circuit is shown in Fig. 12.

The output results of the circuits are shown in Fig. 13. Figure 13a is the output of the original circuit and 
Fig. 13b is the output after we applied our optimization algorithm. Since the output is the same in both cases, it 
shows that the transformation of the proposed optimization is correct.

The next quantum machine learning circuit that we used in this work is Fig. 14. The quantum repeater cir-
cuit is used as a test for the KNN algorithm  in45. The graphical representation of this circuit is shown in Fig. 14. 
Figure 14a shows the original circuit, which is implemented in 20 time steps with 33 quantum gates. Figure 14b 
shows the improved circuit, which in addition to a 60.60% reduction in the number of gates, reduces its time 
steps to 8. The comparison result of applying the proposed method to this circuit is shown in Fig. 15.

We verified the outputs in IBM Q and the results are demonstrated in Fig. 16. Figure 16a is the output of the 
original circuit and Fig. 16b is the output after we applied our optimization algorithm. Since the output is the 
same in both cases, the transformation has done correctly.

Table 1.  Results of implementation of the proposed method on different quantum circuits.

Quantum 
circuit #of qubits

Pre-optimization After Optimization Improvement(%)

Speed up References

Execusion 
time Imp. 
(S)

#of Time 
steps #of Gates

Execution 
time Imp. 
(S)

#of Time 
steps #of Gates

Execution 
time Imp. 
(S)

#of Time 
steps #of Gates

VQC 3 6.4 13 21 6.3 13 18 1.56 0 14.28 0.1 40

Q transfer 
learning 4 6.8 13 28 6.2 13 25 8.82 – 10.71 0.6 29

Q neural 
network 10 6.9 17 67 6.6 16 57 4.34 5.88 14.92f 0.3 28

Grover 1 4 6.4 26 41 6.2 16 21 3.12 38.46 48.78 0.2 41

Grover 2 4 6.7 21 39 5.9 17 27 11.94 19.09 30.76 0.8 41

QAOA 2 6.7 7 11 6.2 5 7 7.46 28.57 36.36 0.5 42

test circuit K 
Means 3 6.5 14 26 6.2 14 24 4.6 0 7.7 0.3 43

TNN 4 6 10 27 5.9 8 14 1.7 20 48.14 0.1 44

KNN 4 7.8 20 33 4.7 8 13 39.74 60 60.60 3.1 45
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Conclusion
Realizing machine learning algorithms in a quantum system for big data is a real challenge but with remarkable 
advantages of using quantum computers. In quantum circuits, as the number of gates increases, the number of 
time steps and execution time is also increased, which is why optimizing quantum circuits is an effective way to 
overcome these problems. In this study, a new general framework of quantum circuit optimization was presented 
and in particular, quantum machine learning algorithms for big data were investigated in order to improve their 
quantum circuit model which in turn leads to the improvement and reduction in the number of required quan-
tum computation resources. In fact, by applying the proposed method, quantum circuits were implemented in 
less time than the original circuits, with the same functionality of the original design. In addition, applying this 
method also reduces the quantum costs. Several quantum circuits with different functionality and algorithms 
were used to evaluate the proposed method. The results of the improved circuits showed that the number of 
quantum gate, the time steps, and the execution time in the evaluated circuits were reduced. In particular, 
the proposed method was investigated on the quantum circuits of transfer learning and neural network. Our 

Table 2.  Comparison results of the proposed method with state-of-the-art optimization methods on different 
quantum circuits.

Circuit name Method 2-qubit gate count Depth Time

Graycode6-47

ZX Calculus 5 5 0.08

Quilc 5 5 1.03

tket 5 5 0.06

AQCEL 5 5 2.08

Proposed method 5 5 0.04

4gt11-84

ZX Caculus 8 10 0.76

Quilc 8 7 0.83

tket 12 11 0.01

AQCEL 8 7 0.98

Proposed method 8 7 0.06

4mod-v1-24

ZX Calculus 15 28 1.53

Quilc 18 17 1.64

tket 26 25 0.05

AQCEL 19 22 0.87

Proposed method 28 16 0.03

Decod24-bdd-294

ZX Calculus 42 48 1.43

Quilc 46 36 2.16

tket 59 52 0.04

AQCEL 45 46 2.87

Proposed method 54 38 0.02

Mini-alu-305

ZX Calculus 112 110 4.37

Quilc 135 78 16.32

tket 178 112 0.09

AQCEL 172 95 0.32

Proposed method 168 90 0.05

PF4_30_after

ZX Calculus 23386 18380 215.06

Quilc 3632 2822 139.35

tket 3614 2798 5.33

Proposed method 3638 2798 4.86

Dc2_222

ZX Calculus 3426 3620 145.15

Quilc 4130 3517 113.25

tket 4130 3517 2.83

Proposed method 4131 3517 1.83

Square_root_7

ZX Calculus 2295 2052 90.47

Quilc 2560 2102 2.64

tket 3089 2102 2.56

Proposed mthod 2698 2098 1.43

Pf4_20_before

ZX Calculus 3044 2168 56.08

Quilc 1182 1182 76.33

tket 1182 1182 1.52

Proposed Method 1196 1194 1.39
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Figure 8.  Demonstration of original and improved quantum transfer learning circuits. Diagram (a) shows the 
non-optimal circuit and diagram (b) shows the improved circuit with reducing the number of gates by 10.7%.

Figure 9.  Demonstration of optimized and non-optimized diagrams of quantum transfer learning circuits.

Figure 10.  The simulation result of the output of the quantum transfer learning circuit before and after 
optimization in (a) and (b), respectively. The results are identical.
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approach reduced the number of the gates by 10.71% respectively in transfer learning circuit and also reduced the 
number of time steps and the gate by 27.2% and 14.9% respectively in neural network circuit. More importantly, 
this was the amount of reduction for one iteration of the U-subcircuit in the main circuit of the transfer learning 
algorithm. So, for the cases where this sub-circuit was repeated more often in the main circuit, the optimization 
is even more. So, by applying the proposed method on circuits with big data, better results would be obtained.

Figure 11.  Demonstration of  original30, and (b) improved quantum neural network circuits used for cancer 
diagnosis. The non-optimal circuit (a) is executed in 17 time steps, but the improved circuit, which has a 
reduction of 14.9% in the number of gates, its time step is reduced to 16.

Figure 12.  Comparison between optimized and non-optimized quantum neural networks circuits.
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Figure 13.  The simulation result of the output of the quantum neural network circuit before and after 
optimization in (a) and (b) respectively. The results are identical.
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Figure 14.  (a) Demonstration of  original30, and (b) improved quantum circuits test for the KNN algorithm. 
The non-optimal circuit (a) is executed in 20 time steps, but the improved circuit, which has a reduction of 
60.60% in the number of gates, its time step is reduced to 8.

Figure 15.  Comparison between optimized and non-optimized quantum circuits test for the KNN algorithm.
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