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Identification 
of a prognosis‑related ceRNA 
network in cholangiocarcinoma 
and potentially therapeutic 
molecules using a bioinformatic 
approach and molecular docking
Xiaoling Gao1,7*, Wenhao Zhang2,7, Yanjuan Jia3,4,5, Hui Xu3,4, Yuchen Zhu6 & Xiong Pei6

Cholangiocarcinoma (CCA) is a highly malignant disease with a poor prognosis, and mechanisms of 
initiation and development are not well characterized. It is long noncoding RNAs (lncRNAs) acting as 
miRNA decoys to regulate cancer‑related RNAs in competing endogenous RNA (ceRNA) networks that 
suggest a possible molecular mechanism in CCA. The current study aims to find potential prognosis 
biomarkers and small molecule therapeutic targets based on the construction of a CCA prognosis‑
related ceRNA network. A transcriptome dataset for CCA was downloaded from the TCGA database. 
Differentially expressed lncRNAs (DElncRNAs), DEmiRNAs and DEmRNAs were identified based on 
the differential expression and a DEceRNA network was constructed using predicted miRNA‑lncRNA 
and miRNA‑mRNA interactions. Heat maps, PCA analysis, and Pathway enrichment analysis and 
GO enrichment analysis were conducted. The prognostic risk model and molecular docking were 
constructed based on identified key ceRNA networks. A DElncRNA‑miRNA‑mRNAs network consisting 
of 434 lncRNA‑miRNA pairs and 284 miRNA‑mRNA pairs with 200 lncRNAs, 21 miRNAs, and 245 
mRNAs was constructed. There were three lncRNAs (AC090772.1, LINC00519, and THAP7‑AS1) and 
their downstream mRNAs (MECOM, MBNL3, RCN2) screened out as prognostic factors in CAA. Three 
key networks (LINC00519/ hsa‑mir‑22/ MECOM, THAP7‑AS1/hsa‑mir‑155/MBNL3, and THAP7‑AS1/
hsa‑mir‑155/RCN2) were identified based on binding sites prediction and survival analysis. A 
prognostic risk model was established with a good predictive ability (AUC = 0.66–0.83). Four anticancer 
small molecules, MECOM and 17‑alpha‑estradiol (−7.1 kcal/mol), RCN2 and emodin (−8.3 kcal/
mol), RCN2 and alpha‑tocopherol (−5.6 kcal/mol), and MBNL3 and 17‑beta‑estradiol (−7.1 kcal/mol) 
were identified. Based on the DEceRNA network and Kaplan–Meier survival analysis, we identified 
three important ceRNA networks associated with the poor prognosis of CCA. Four anti‑cancer small 
molecules were screened out by computer‑assisted drug screening as potential small molecules for 
the treatment of CCA. This study provides theoretical support for the development of ceRNA network‑
based drugs to improve the prognosis of CCA.

Abbreviations
CCA   Cholangiocarcinoma
EBRT  External beam radiation therapy
lncRNAs  Long non-coding RNAs
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ceRNA  Competitive endogenous RNA
miRNAs  MicroRNAs
mRNAs  Messenger RNAs
TCGA   The cancer genome atlas
PCA  Principal component analysis
GO  Gene ontology
GDSC  The genomics of drug sensitivity in cancer
95%CI  95% Confidence interval
HR  Hazard ratio
LINC00519  Long intergenic non-protein coding RNA 519
THAP7-AS1  THAP7 antisense RNA 1
KIF23  Kinesin family member 23
STMN1  Stathmin 1
MECOM  MDS1 and EVI1 complex locus
RCN2  Reticulocalbin-2
LONRF3  LON peptidase N-terminal domain and ring finger 3
MBNL3  Muscle blind like splicing regulator 3
AUC   Area under the curve
TKI  Tyrosine kinase inhibitor
HCC  Hepatocellular carcinoma

Cholangiocarcinoma (CCA) is a rapidly progressing cancer with an extremely poor prognosis. CCA patients 
are usually diagnosed in the later stage due to the lack of recognizable symptoms and sensitive early diagnosis 
measures. CCA is categorized as intrahepatic, perihilar, and distal CCA 1. According to statistics from WHO, the 
incidence of CCA has increased worldwide over the past decades, especially in eastern Asia including China, 
South Korea, and  Thailand2. The incidence of CCA in China has exceeded 6 deaths per 100,000 people for many 
 years3. The current primary treatment for CCA is resection with regional lymphadenectomy and EBRT with 
concurrent fluoropyrimidine regional  therapy4. Targeted therapy has recently generated modest benefits; however, 
CCA is highly heterogeneous with redundancy of mutation such that only a small proportion of patients bearing 
drug-targeted genome alterations benefit from molecular-targeted therapies. Therefore, there is a great urgency 
to elucidate the molecular mechanisms of CCA, identify new diagnostic biomarkers and therapeutic targets, as 
well as develop effective therapeutic medicine for CCA.

Although pseudogenes have long been thought to be nonfunctional, recent studies proved that some expressed 
pseudogenes equipped with transcripts biologically  function5. Poliseno et al. reported that the pseudogene 
PTENP1 regulated the level of PTEN in human cancer cells and exerted a growth inhibitory  effect6. Some 
expressed pseudogene transcripts have biological functions, such as a subclass like functional long noncoding 
RNAs (lncRNAs). lncRNAs regulate gene expression in multiple ways: lncRNAs interact with DNA, RNA, or 
proteins, such as RNA–DNA–DNA triplexes, to affect the structure and function of chromatin so that regu-
late nearby and distant  genes7. Besides, lncRNAs could act as competitive endogenous RNAs (ceRNA) to bind 
microRNAs (miRNAs), thus attenuating their regulatory role in promoting or hampering the translation of 
downstream protein-coding messenger RNAs (mRNAs), which may indeed have important functional roles in 
various human  cancers8.

ceRNAs have been used to clarify the occurrence and development of CCA, and some lncRNAs and miR-
NAs have been demonstrated to serve as potential diagnostic markers and therapeutic targets in CAA. Some 
research worked on the ceRNA networks in CAA development, but with discrepant conclusions. The research 
from Dongkai Zhou et al. and Zhichen Kang et al. focused on intrahepatic CCA and found lncRNA HULC or 
MME-AS1 with other 6 hub mRNAs, respectively, which was related to the prognosis of  ICC9,10. Junyu Long et al. 
identified 26 lncRNAs, 3 miRNAs, and 13 mRNAs as prognostic biomarkers for patients with CCA 11. Wang Xiang 
et al. found that three lncRNAs COL18A1-AS1, SLC6A1-AS1, and HULC are associated with overall  survival12. 
Based on all these discrepancies, we intended to identify a comprehensive ceRNA network based on the updated 
database. And, with the aim to verify the potential biomarkers and the possible binding way of proteins and 
anti-cancer small molecules, molecular docking validation was performed.

In the present study, in order to identify the prognosis-related ceRNA networks and the potential anti-cancer 
drug treatments for CCA, we screened differentially expressed RNAs to establish DElncRNA-miRNA-mRNA 
networks and performed survival analysis and binding-sites prediction. We constructed three key prognosis-
related ceRNA networks. And we used molecular docking to virtual screen out four anti-cancer small molecules. 
Moreover, our study contributes to understanding the regulatory mechanism of CCA better and gives valuable 
insight into the development of potential target drugs for CCA.

Materials and methods
Data source and processing. Figure 1 shows the workflow schematic of this study. The cancer genome 
atlas (TCGA), a landmark cancer genomics program, molecularly characterized over 20,000 primary cancer and 
matched normal samples spanning 33 cancer types. We identified and downloaded RNA-Seq profiles (lncRNAs, 
miRNAs, and mRNAs) and clinical data for CCA. There were 8 normal mRNA samples and 33 tumor samples in 
the 41 cases of CCA, and 8 normal samples and 33 tumor samples in the 41 miRNA samples.

Differential expression analysis. Based on the standard of |logFC|≥ 2, adjusted p-value < 0.05, the dif-
ferentially expressed mRNAs, miRNAs, and lncRNAs were analyzed using the “EdgeR” package in R  software13. 
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The miRNA-lncRNA interactions were predicted and confirmed in the miRcode  database14 and miRNA-mRNA 
interactions were predicted and confirmed with the miRDB database, TargetScan Human database, and miRtar-
Base  database15–17. Differential expression analysis of 8 paired samples was performed with the Wilcoxon test.

Construction of a ceRNA network and Kaplan–Meier survival analysis. According to the endog-
enous competitive network hypothesis, relationship pairs with the same expression levels of DElncRNAs and 
DEmiRNAs are ignored. The rest of the differential lncRNA-miRNA and miRNA-mRNA pairs were selected and 
a ceRNA network was constructed and visualized with Cytoscape 3.7. Survival data available from the TCGA 
database and survival analysis was further analyzed by the “survival” package, which generated survival curves 
for DElncRNAs (p-value < 0.05). In addition, all DEmRNAs were entered into the StarBase database and the ones 
associated with significant survival (p-value < 0.05) were  selected18, and a survival-related ceRNA network was 
generated. The binding sites of lncRNAs and mRNAs with their corresponding miRNAs were predicted based 
on their sequences with  miRanda19 and the TargetScan database.

PCA analysis and functional enrichment analysis. The heatmaps and PCA analysis were gener-
ated and visualized on Hiplot (https:// hiplot- acade mic. com/)20. Pathway enrichment analysis was conducted 
based on the Reactome database using Web-based gene set analysis toolkit (WebGestalt, http:// www. webge stalt. 
org/)21,22 and Gene Ontology (GO) analysis was conducted and visualized utilizing the R “clusterProfiler” pack-
age on  Hiplot23. A p-value < 0.05 was regarded as statistically significant.

Construction of a prognostic risk model. The raw counts and corresponding clinical information from 
the RNA sequencing data were downloaded from TCGA. The expression of these genes in CCA patients was 
extracted and the transcriptional information from the patients was matched with the accompanying clinical 
data. The least absolute shrinkage and COX regression algorithm were conducted by R “glmnet” and “survival” 
packages for candidate gene selection, using tenfold cross-validation, and the penalty parameter (λ) was deter-
mined using the minimum criteria. Finally, the candidate genes and their coefficients were used to construct the 
risk model. The formula to calculate the risk score was as follows: Risk score = 

∑
n

i
Xi × Yi (X: coefficients, Y: 

gene expression level). Patients were classified into high-risk and low-risk groups according to the median value 
of the risk score. Kaplan–Meier (KM) survival analysis with a log-rank test was utilized to make comparisons 
of the survival difference between the high and low-risk groups. Finally, the timeROC analysis was applied to 
perform the predictive accuracy of the risk model.

Molecular docking and virtual screening. To verify the potential drug target of MBNL3, MECOM, 
RCN2, and potential small molecules, we obtained their related small molecules from the HERB database 
(http:// herb. ac. cn/)24, obtained the protein structure from the AlphaFold database (https:// alpha fold. com/)25, 
predicted pockets of activity for drug binding of candidate proteins, and calculated the lowest free energy of 
binding between the candidate protein and small molecule through the AutoDock Vina soft. Finally, visualiza-
tion was performed with  Pymol26,27.

Identification of a prognosis-related ceRNA network in cholangiocarcinoma and 
potentially therapeutic molecules using a bioinformatic approach and molecular docking
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Figure 1.  Flow chart of the methodology of the study.
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Immune infiltration and spearman correlation analysis of IC50 scores and MECOM, MBNL3, 
and RCN2 expression. Immune infiltration analysis of the six survival-related genes was conducted on the 
Timer 2.0 database (http:// timer. comp- genom ics. org/)28. The results based on TIMER and CIBERSORT algo-
rithms were retained. Spearman correlation analysis of the IC50 score was conducted using R “pRRophetic” 
package based on Genomics of Drug Sensitivity in Cancer (GDSC) database (https:// www. cance rrxge ne. org/)29.

Ethical approval. Our study was based on open-access databases, TCGA and GEO. Users could download 
relevant data for free for research and publication purposes. The data from the patients who had consented to 
participate and ethical approval had been obtained for each study.

Results
Identification of differentially expressed RNAs. To illustrate the differentially expressed RNAs in 
CCA, we collected data from 33 CCA and 8 adjuvant normal tissues in the TCGA database and performed a 
differential expression (DE) analysis. We identified 6837 DEmRNAs (61.9% up-regulated and 38.1% down-reg-
ulated), 2771 DElncRNAs (69.3% up-regulated and 30.7% down-regulated) and 173 DEmiRNAs (63.6% up-reg-
ulated and 36.4% down-regulated). The heat maps showed that DElncRNAs (Fig. 2A), DEmiRNAs (Fig. 2B), and 
DEmRNAs (Fig. 2C) were differentially expressed between normal and cancer samples with obvious boundaries. 
The principal component analysis (PCA) analysis based on 3 types of DERNAs indicated that cancer samples 
and normal samples can be well isolated by PCA1 components, with an explanation rate of 21.82% (Fig. 2D), 
24.92% (Fig. 2E), and 28.99% (Fig. 2F), which indicated that they were clearly distinguished from each other. 
Among the 33 CCA samples and 8 normal samples, there were 8 paired samples. To determine if there was a 
bias in the differential expression of RNAs between paired and unpaired samples, we conducted a differential 
analysis based on the paired samples. The results were all significant except for hsa-mir-155-5p (p-value = 0.13) 
(Fig. S1). Further, Pathway enrichment analysis and GO analysis were carried out to identify the enriched func-
tions and signal pathways involving DEmRNAs. They were enriched in GO terms (Fig. 3A–C) like “reproductive 
structure development”, “transcriptional regulatory complexes”, “tyrosine, serine, threonine kinase activities” 
and “phosphatidylinositol 3-kinase activities”. While main pathways (Fig. 3D) were “activated NTRK3 signals 
through PI3K”, “activation of BH3-only proteins”, “intrinsic pathway for apoptosis”, “signaling by PTK6”, “signal-
ing by Non-Receptor Tyrosine Kinases”, “IL-4 and IL-13 signaling” and “signaling by receptor tyrosine kinases”. 
These enriched pathways and function analysis results revealed that the development of CCA was closely related 
to tyrosine kinase activity, as well as immune responses.

Differential ceRNA networks. To better demonstrate the interactions and regulatory mechanisms 
between DElncRNAs, DEmiRNAs, and DEmRNAs, we constructed a complicated ceRNA regulatory networks 

Differentially express mRNAsC

Differentially express miRNAsEDifferentially express lncRNAsD Differentially express mRNAsF

Differentially express miRNAsBDifferentially express lncRNAsA
Group

control
cancer

Group
�
�cancer

control

Figure 2.  Data from the analysis of differential expression between CCA samples and control samples derived 
from the TCGA transcriptome. (A–C): Heat maps of 2771 DElncRNAs, 173 DEmiRNAs, and 6837 DEmRNAs 
from 33 CCA samples and 8 normal samples; the upper part of the heat map represents the sample, orange is 
the control group and blue is the cancer group. (D–E): Principal component analysis (PCA) of DElncRNAs, 
DEmiRNAs, and DEmRNAs. Red is the control group, green is the cancer group, and the circle is the 95% 
confidence interval. R “ggplot2” package version 3.3–6, < URL: https:// ggplo t2. tidyv erse. org > .

http://timer.comp-genomics.org/
https://www.cancerrxgene.org/
https://ggplot2.tidyverse.org
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diagram (Fig. 4) in which the lncRNA-miRNA pairs with the same ascending and descending relationship were 
deleted, including 200 lncRNAs nodes, 21 miRNAs nodes and 245 mRNAs nodes with 434 lncRNA-miRNA 
pairs and 284 miRNA-mRNA pairs. The prediction results of lncRNA-miRNA pairs (Supplementary Table S1) 
and miRNA-mRNA pairs (Supplementary Table S2) in the database are shown in the supplementary material.

Figure 3.  GO and Pathway enrichment analysis functional enrichment analysis of 6837 DEmRNAs 
differentially expressed between CCA samples and control samples derived from the TCGA transcriptome. 
(A–C): Cellular component, molecular function, and biological process enrichments for DEmRNAs in the 
network; the size of the dots represents the number of enriched genes, and the color represents p adjustment. 
(D): Pathway enrichment analysis of DEmRNAs in the network; the length represents the enrichment ratio, and 
the color depth represents the extent of FDR significance.

Figure 4.  Construction of the ceRNA network on 200 lncRNAs nodes, 21 miRNAs nodes, and 245 mRNAs 
nodes with 434 lncRNA-miRNA pairs and 284 miRNA-mRNA pairs; the shape represents the type of RNA, blue 
means down-regulation in cancer samples, and red means up-regulation in cancer samples.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16247  | https://doi.org/10.1038/s41598-022-20362-w

www.nature.com/scientificreports/

Kaplan–Meier survival analysis of DElncRNAs and DEmRNAs.. Kaplan–Meier survival analysis 
was performed on all DElncRNAs and DEmRNAs in the DEceRNA network identified in our study to find the 
survival-related RNAs. The survival data from TCGA was used for Kaplan–Meier survival analysis. The median 
of gene expression was taken as a cutoff to partition the training set samples into high expression and low expres-
sion groups respectively, which were used to perform survival analysis. After the comprehensive survival analy-
sis for 200 DElncRNA, LINC00519 (Long Intergenic Non-Protein Coding RNA 00,519), THAP7-AS1(THAP7 
antisense RNA 1), and AC090772.1 (also named as ENSG00000264924) were identified as being related to the 
survival of CCA patients, as shown in Fig. 5. The increased expression level of LINC00519 indicated a wors-
ening prognosis in CCA patients, (log-rank p-value = 0.038 Fig. 5A). In contrast, decreased THAP7-AS1 and 
AC090772.1 expression implied a worse survival time in CCA patients (log-rank p-value = 0.041 Fig. 5B, log-
rank p-value = 0.025 Fig. 5C). Furthermore, three lncRNAs and their downstream DEmiRNAs and DEmRNAs-
related ceRNA networks were selected for demonstration in supplemental materials. (Fig. S2).

Through survival analysis of 245 DEmRNAs, the expression of 6 mRNAs was significantly related to the 
survival rate. Among them, KIF23 (kinesin family member 23) (log-rank p-value = 0.015 HR = 3,69 Fig. 5D), 
STMN1 (stathmin 1) (log-rank p-value = 0.012 HR = 3,49 Fig. 5E), MECOM (MDS1 and EVI1 complex locus) 
(log-rank p-value = 0.038 HR = 2.80 Fig. 5F), RCN2 (Reticulocalbin-2) (log-rank p-value = 0.034 HR = 2.86 
Fig. 5G) were highly expressed in cancer samples, while 2 were decreased in cancer samples: LONRF3 (LON 
peptidase N-terminal domain and ring finger 3) (log-rank p-value = 0.013 HR = 0.31 Fig. 5H), MBNL3 (muscle 
blind like splicing regulator 3) (log-rank p-value = 0.015 HR = 0.32 Fig. 5I). Especially, MECOM, MBNL3, and 
RCN2 appeared as downstream targets of the LINC00519, THAP7-AS1, and AC090772.1.

Construction of key ceRNA networks and a cancer pathway ceRNA network map. As shown in 
Fig. 6, we further constructed the key ceRNA networks related to survival rate. Four networks enrolled 3 lncRNA-
miRNA pairs and 4 miRNA-mRNA pairs were obtained: LINC00519/ hsa-mir-22-3p/MECOM, THAP7-AS1/
hsa-mir-429/MBNL3, THAP7-AS1/hsa-mir-155-5p/MBNL3 and THAP7-AS1/hsa-mir-155-5p/RCN2. Moreo-
ver, to demonstrate the direct binding reliability between lncRNA with miRNA as well as miRNA with mRNA, 
we checked the binding sites of lncRNAs and mRNAs with their corresponding miRNAs with miRanda and 
TargetScan. The lncRNAs and mRNAs had binding sites with the same miRNAs, suggesting that lncRNAs were 
likely to act as endogenous competitive RNAs to influence the expression of mRNAs (Fig. 6A). According to this, 
we selected three key pathways, including 2 lncRNAs, 2 miRNAs, and 3 mRNAs. Two lncRNA-miRNA pairs and 
3 miRNA-mRNA pairs were obtained: LINC00519/ hsa-mir-22-3p/MECOM, THAP7-AS1/hsa-mir-155-5p/
MBNL3 and THAP7-AS1/hsa-mir-155-5p/RCN2 (Fig. 6B). In CCA patients, the strongly reduced expression 
of THAP7-AS1 decreased the expression of MBNL3 and increased RCN2 expression. Similarly, the increased 
expression of LINC00519 hindered the expression of the downstream miRNA, which led to the overexpression 

Figure 5.  Kaplan–Meier survival analysis of survival-significant DElncRNAs using R “survival” package version 
3.2–11, < URL: https:// CRAN.R- proje ct. org/ packa ge= survi val > : LINC00519, THAP7-AS1, AC090772.1(A–C); 
survival-significant DEmRNAs: KIF23, STMN1, MECOM, RCN2, MBNL3, LONRF3(D–J).

https://CRAN.R-project.org/package=survival
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of MECOM and appeared to affect the behavior of tumor cells. A mechanism map was drawn with MECOM, 
MBNL3, and RCN2, three key genes in the three key ceRNA networks we analyzed, by consulting a large number 
of documents (Fig. S3).

Construction of disease‑specific survival (DSS) prognostic risk model based on lncRNAs and 
genes in key ceRNA networks. To explore the prognostic value of LINC00519, THAP7-AS1, MECOM, 
MBNL3, RCN2 in these ceRNA key networks, a DSS prognostic risk model was established as shown in 
Fig. 7, and the risk score = (0.593) * RCN2 + (0.1334) * LINC00519 + (0.1604) * MECOM + (-1.44) * THAP7-
AS1 + (-0.2911) * MBNL3. Patients were separated into high-risk and low-risk groups according to the median 
risk score point. Firstly, the expression levels were demonstrated after differential expression analysis. The results 
showed higher expression of LINC00519, MECOM, RCN2, and lower expression of THAP7-AS1, and MBNL3 
in tumors compared to the adjuvant tissues (Fig. 7A). The expression trends were consistent with the differential 
ceRNA network regulation strategy (Fig. 3). Secondly, four key RNAs were obtained through Cox regression 
analysis for the establishment of the final prognostic model (Fig. 7B). The relationship between the expression of 
these four key RNAs and survival is shown in Fig. 7C. In the overall survival probability, the high-risk and low-
risk groups showed a significant difference in survival with a p-value of 0.0145, HR of 3.963, and a 95% CI (1.313, 
11.956), and the median time between high-risk and low-risk groups was 1.4 years and 4.2 years (Fig. 7D). The 
AUC (1 ~ 4 years) was 0.66 ~ 0.83 (Fig. 7E) which indicated good predictive performance.

Molecular docking and virtual screening. To find potentially approved drugs that target MECOM, 
RCN2, and MBNL3, we screened the herb database for related small molecules with anti-cancer effects.

We visualized binders with lowest binding affinity (kcal/mol) after molecular docking: MECOM and 17-alpha-
estradiol (−7.1 kcal/mol), RCN2 and emodin (−8.3 kcal/mol), RCN2 and alpha-tocopherol (-5.6 kcal/mol), 
MBNL3 and 17-beta-estradiol (−7.1 kcal/mol). The binding sites and interactions are displayed in Fig. 8. Based 
on the 3D view of the best-selected conformations, three, four, one, and two hydrogen bonds were found in the 
binding of MECOM and 17-alpha-estradiol (Figs. 8A), RCN2 and emodin (Figs. 8B), RCN2 and alpha-tocopherol 
(Figs. 8C), MBNL3 and 17-beta-estradiol (Figs. 8D).

Spearman correlation analysis of the IC50 score and MECOM, MBNL3, and RCN2 expres‑
sion. The expression level of MECOM was negatively correlated with the AZ628 IC50, as was the relationship 
between RCN2 and paclitaxel, and MBNL3 and crizotinib (Fig. S4). As the expression levels of MECOM, RCN2 
and MBNL3 increased, the IC50 of AZ68, paclitaxel and crizotinib in CCA decreased. This indicated increasing 
sensitivity to AZ68 and paclitaxel in CCAs with high MECOM and RCN2 expression, while in CCAs with low 
MBNL3 expression, patients were resistant to crizotinib.

Immune infiltration analysis and GEO dataset validation. To better elucidate the impact of 
MECOM, RCN2, and MBNL3 on the tumor microenvironment and immunotherapy, we conducted an immune 
infiltration analysis. The results show that the expression of MECOM in tumor patients is positively correlated 
with the infiltration level of CD8 + T cells, neutrophils, and T cell gamma delta. RCN2 was positively correlated 
with the infiltration level of Macrophage M0 cells, resting Mast cells, B cells, Myeloid dendritic T cells, T cell 
gamma delta, and CD8 + T cells, and negatively correlated with activated NK cells. The expression of MBNL3 
was positively correlated with the infiltration level of CD8 + T cells and neutrophils and B cells (Fig. S5). The 
above mRNAs were verified in GSE132305 in the GEO database (Fig. S6) and it was found that the expression of 
MECOM (p-value < 0.01) and RCN2 (p-value = 0.049) was significant, while the expression of MBNL3 was not 
significant (p-value = 0.12).

Figure 6.  (A) Prediction of binding sites of lncRNA-miRNA and miRNA-mRNA in three key networks. (B) 
The construction of three ceRNA networks: LINC00519/ hsa-mir-22/MECOM, THAP7-AS1/hsa-mir-155/
MBNL3, and THAP7-AS1/hsa-mir-155/RCN2; the shape represents the type of RNA, blue means down-
regulation in cancer samples and red means up-regulation in cancer samples.
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Discussion
In this study, a large number of differentially expressed genes were identified and a ceRNA network was con-
structed to illustrate potential prognostic and therapeutic targets for CCA. The differentially expressed genes 
of CCA were enriched with many amino acid kinase-related genes, such as Tyrosine Kinase Inhibitor (TKI), 
which has been widely used as a targeted therapy for  cancers4. In addition, in three survival-associated lncRNA-
related ceRNA networks, THAP7-AS1 and LINC00519 share the same mRNAs targets, ERBB3 and YWHAZ, 
both of which are members of the tyrosine kinase family. This indicates that amino acid kinase inhibitors may 
be a potential strategy to improve the prognosis of CCA.

In the LINC00519/hsa-mir-22-3p/MECOM axis, up-regulated LINC00519 inhibited the expression of hsa-
mir-22, thereby promoting the expression of MECOM, which may inhibit the pathway TWEAK/Fn14/NF-kB and 
promote cell proliferation in CCA 30–32. Moreover, this network can also inhibit the expression of PTEN protein 
and activate the PI3K/AKT/mTOR pathway to promote cell  metastasis33. Moreover, with regard to THAP7-AS1/
hsa-mir-155-5p/MBNL3, down-regulated THAP7-AS1 promoted the expression of hsa-mir-155-5p, thereby 
inhibiting the expression of MBNL3. MBNL3 is involved in cellular selective  splicing34. Lastly, in the THAP7-
AS1/hsa-mir-155-5p/RCN2 relationship, down-regulated THAP7-AS1 promoted the expression of hsa-mir-
155-5p, thereby promoting the expression of RCN2. RCN2 might activate the EGFR/ERK pathway by interacting 
with EGF to cause cell  proliferation35. In addition, the PI3K/AKT and EGF/EGFR axis have been reported to 
promote the progression of CCA 36,37. Combined with current reports on the mechanism of these pathways in 
CCA and the mechanism of the three genes participating in these pathways in other specific cancers, the roles 
of three genes in the development of CCA are worthwhile to verify.

Figure 7.  Construction of a prognostic risk model of five key RNAs by lasso regression and multifactorial 
cox using R “glment” package version 4.2–4, < URL: https:// glmnet. stanf ord. edu > . (A): scatter plot of the five 
RNA expression levels from low to high, with different colors representing different expression groups; (B) The 
relationship between partial likelihood deviation and log (l) was plotted using the Lasso Cox regression model. 
(C): Scatter plot distribution of survival time and survival status corresponding to sample RNA expression 
and expression heat map. (D): Overall survival probabilities of the four RNAs in different expression groups; 
the Log-rank p-value, HR, and 95% confidence interval are marked above it; (E): the below are ROC curves 
predicting 1-, 2-, 3- and 4-year survival based on the risk score.

https://glmnet.stanford.edu
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It has been reported that LINC00519 could be a potential prognostic biomarker and promote the development 
of lung adenocarcinoma through positively regulated YAP1, which is a pivotal factor in the Hippo  pathway38,39 
In a recently published report, it was pointed out that THAP7-AS1 can be activated by SP1 transcription, by 
improving the entry of CUL4B protein into the nucleus to inhibit the expression of miR-22-3p and miR-320a, 
and it then activated the PI3K/AKT signaling pathway to promote GC  progression40. Therefore, the mechanism 
of these three lncRNAs in CCA remains to be experimentally verified. However, based on published reports, 
LINC00519 and THAP7-AS1 may become potential drug targets and biomarkers for CCA, and the three key 
networks in which they are involved may be able to explain the occurrence and progress of CCA.

Immune infiltration analysis was performed on the three survival-related genes MECOM, RCN2, and 
MBNL3, and concerning immune infiltration, the expression level of these three genes in CCA may be related 
to the degree of infiltration of a variety of immune cells including NK cells and macrophages. Studies have shown 
that high macrophage infiltration is associated with a poor prognosis, and the activity of NK cells inhibited tumor 
growth. The increase in NK cells may be a promising method for the treatment of CCA. The high expression of 
RCN2 in CCA was positively correlated with the degree of infiltration of M0 macrophages and negatively cor-
related with the appearance of NK cells. Therefore, inhibiting the expression of RCN2 may inhibit the degree of 
infiltration of M0 macrophages and promote the infiltration of NK cells to improve prognosis. Increased neutro-
phil infiltration may enhance tumor  invasiveness41. The expression of MBNL3 was positively correlated with the 
degree of neutrophil infiltration, suggesting that MBNL3 may affect tumor occurrence by reducing neutrophil 
infiltration. Changes in the expression of these genes may affect the infiltration of immune cells around tumor 
tissues, which in turn affects their invasiveness, differentiation, and proliferation.

We also verified three survival-related mRNAs in GSE132305 based on the GEO database and found that 
MBNL3 down-regulated genes with a p-value > 0.05. This may be due to the complexity of big data sources and 
the inconsistency of statistical methods. We also supplemented the differential expression analysis based on 8 
pairs of paired samples, in which the result of hsa-mir-155 was not significant, which may be due to the small 
sample size. With only 8 paired samples, some information can be missed. In the case of comparing all CCA 
samples with all normal samples, the obtained data may be more comprehensive. Therefore, we did not proceed 
with the analysis based on the results obtained from the paired samples.

We evaluated recent research on these six prognostic genes in specific cancers. MECOM has been reported 
to be up-regulated and is related to the aggressive behavior of CCA. It may become a potential therapeutic target 
and classification basis for CCA 42. It has also been reported that the up-regulation of RCN2 can activate the 
MYC signal and regulate the activation of the EGFR-ERK pathway to promote the occurrence of hepatocellular 
carcinoma (HCC)43. Furthermore, highly expressed STMN1 has been reported to promote the proliferation of 
CCA and lead to a poor  prognosis44,45. In addition, knockdown of MBNL3 can almost eliminate the occurrence 
of HCC and can up-regulate PXN and promote the occurrence of  tumors21. Many reports have noted that KIF23 
may become a prognostic predictor and biomarker of  HCC46,47. There is no report on the specific mechanism of 
MBNL3 and KIF23 in CCA, and only one related study indicated that LONRF3 was a causative gene of pancreatic 
 cancer48. As HCC and CCA are close in anatomical position and similar in high-risk factors for carcinogenesis, 
their pathogenesis may be related. The specific mechanisms of the survival-related genes in the occurrence and 
development of CCA are not yet clear and have great exploratory value, and may become predictors and bio-
markers for the prognosis of patients with CCA.

Figure 8.  Molecular docking results for MECOM, RCN2, MBNL3. (A): A 3D view of the best-selected 
conformation of MECOM and 17-alpha-estradiol. (B): A 3D view of the best-selected conformation of RCN2 
and emodin. (C): A 3D view of the best-selected conformation of RCN2 and alpha-tocopherol. (D): A 3D 
view of the best-selected conformation of MBNL3 and 17-beta-estradiol. Green color: protein; red color: small 
molecules; yellow color: conventional hydrogen bonds.
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AZ628, crizotinib, and paclitaxel were predicted to be effective drugs for MECOM, RCN2, and MBNL3, 
respectively. Among them, AZ628 is a new type of pan-Raf inhibitor, Crizotinib is an ALK tyrosine kinase 
inhibitor, and paclitaxel acts on the microtubule/tubulin  system49,50. Whether these treatments can improve 
CCA patient survival needs further evidence. We evaluated the herbal database for small molecules that may 
have potential interactions. The small molecules 17-alpha-estradiol, emodin, alpha-tocopherol, and 17-beta-
estradiol were identified for molecular docking with MECOM, RCN2, and MBNL3 and all have been reported 
to inhibit tumor growth. 17-Alpha-estradiol has been shown to inhibit prostate-specific antigen gene expression, 
which in turn inhibited prostate tumor proliferation and  growth51. Emodin is a pleiotropic molecule capable of 
interacting with several major molecular targets, including NF-κB, HER2/neu, HIF-1α, AKT/mTOR, STAT3, 
CXCR4, p53, and p21. It has been verified to have the ability to treat a variety of  cancers52. Several reports and 
clinical trials have confirmed that alpha-tocopherol plays an important role in the treatment and prevention of 
 cancer53. 17-Beta-estradiol can inhibit cell growth and induce apoptosis in hepatoma HepG 2 and LCL-PI 11 
cell  lines54 and plays an important role in breast cancer, renal cell carcinoma, prostate cancer, and other cancers. 
Through molecular docking, we carried out computer-aided verification of the mRNAs downstream of the three 
key networks we identified, and verified their binding ability with existing anticancer molecules, proving that 
they had the potential ability to become anticancer drug therapeutic targets.

Compared with our study, Dongkai Zhou et al. predicted the intersection of the lncRNA-miRNA interaction 
by at least 3 of these databases (miRcode, miRDB, miRanda, miRTarBase, and TargetScan database)9. Zhichen 
Kang et al. downloaded their raw data from the SRA database, which is a possible reason for the discrepancy 
with our  results10. The difference in methods between the report of Junyu Long et al. and ours is mainly in the 
sample size and |logFC| value, which is the main reason for the difference in the  results11. In the study of Wang 
Xiang et al., different methods including selected sample size, |logFC| value, and databases for screening lncRNA-
mRNA pairs caused differences in  results12. In addition, the update of the TCGA database was also one of the 
main reasons for the discrepancies in the obtained lncRNAs related to prognosis. Based on the experience of 
these studies, we constructed the CCA ceRNA network based on the updated TCGA database, predicted mul-
tiple prognostic markers and potential drug targets including MECOM, RCN2, and MBNL3, and carried out 
molecular docking-assisted verification to provide the basis for the prediction of multiple prognostic markers 
and potential drug targets. Our research will provide new ideas for CCA-targeted drugs.

There are some limitations to our study. It is undeniable that the limited sample size is a hindrance in the cur-
rent ceRNA study. We did not verify our results by conducting experiments in vitro and in vivo, but only assisted 
verification by computer molecular docking. The results of the computer-aided analysis can be validated by in 
vitro cell experiments, and the role of our key ceRNA networks in CCA can be further validated by knocking 
out key genes (such as MECOM, RCN2, etc.) in CCA cells. At present, many studies have reported on the role 
of lncRNAs and mRNAs in the above-mentioned key networks in inhibiting liver cancer and CCA. We used 
molecular docking to verify this possibility and in combination with small molecule anticancer substances, indi-
cating that they may be potential drug targets for CCA. This work can provide ideas for future clinical research 
and laboratory research.

 Data availability
The datasets generated during the current study are available from the corresponding author upon reasonable 
request.
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