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An improved multi‑view spectral 
clustering based on tissue‑like P 
systems
Huijian Chen & Xiyu Liu*

Multi-view spectral clustering is one of the multi-view clustering methods widely studied by numerous 
scholars. The first step of multi-view spectral clustering is to construct the similarity matrix of each 
view. Consequently, the clustering performance will be greatly affected by the quality of the similarity 
matrix of each view. To solve this problem well, an improved multi-view spectral clustering based on 
tissue-like P systems is proposed in this paper. The optimal per-view similarity matrix is generated 
in an iterative manner. In addition, spectral clustering is combined with the symmetric nonnegative 
matrix factorization method to directly output the clustering results to avoid the secondary operation, 
such as k-means or spectral rotation. Furthermore, improved multi-view spectral clustering is 
integrated with the tissue-like P system to enhance the computational efficiency of the multi-view 
clustering algorithm. Extensive experiments verify the effectiveness of this algorithm over other 
state-of-the-art algorithms.

In 1998, membrane computing1 (also known as the P system or membrane system) was first proposed by Pânu, 
an academician of the European Academy of Sciences and the Romanian Academy of Sciences. As a branch 
of natural computing, membrane computing is a distributed and parallel computing model abstracted from 
the structure and function of biological cells and the collaboration of cell groups such as organs and tissues. P 
system consists of three parts: membrane structure, multiple sets of objects and rules. Up to now, membrane 
computing mainly includes three basic computational models: cell-like P system2, tissue-like P system3,4 and 
nerve-like P system5,6. Tissue-like P system was proposed inspired by the collaboration between organs and cells 
in tissues, which can be described by a arbitrary graph. The nodes in the graph correspond to cells (the environ-
ment is regarded as a specific node), and the edges correspond to the communication channels between cells. 
If there is a side between the two nodes, it means that the corresponding cells can communicate through rules. 
Researchers’ research on membrane computing is mainly divided into theoretical research and application. In 
terms of theoretical research, numerous variants of membrane systems have been proposed by researchers. Luo 
et al.7 proposed a tissue-like P systems with evolutionary codirection / reverse rules. Objects would be changed 
in the transmission process, and the assumption that the number of objects in the environment is infinite was 
removed, which reduced the impact of the environment on the system and made the environment no longer 
provide powerful energy for cells. Luo et al.8 proposed an homeostasis tissue-like P system, which assumed that 
the environment no longer provided energy for cells, and introduced multiple set rewriting rules in tissue-like P 
system. In terms of application of tissue-like P system, the uncertainty and computational parallelism of P system 
make it possible to combine with other algorithms to improve computational efficiency. Jiang et al.9 introduced 
a tissue-like P system with active membrane to improve the clustering algorithm, which could improve the 
efficiency of the algorithm and reduced the computational complexity.

With the rapid development of multimedia technology, multi-view data appears in large numbers, which 
means that the same object can be described from different angles. For example, a person can be photographed 
from different angles, each of which corresponds to a view. A piece of news can be broadcast on television or 
presented in words. These are kind of different views. Such data is considered multi-view data10,11. The appli-
cation of multi-view learning in clustering problems produces a great deal multi-view clustering algorithm 
suitable for multi-view data. Multi-view clustering aims to classify similar data points into the same cluster and 
search for consistent clustering results in different views by combining multiple available feature information, 
so as to divide different types of points into different clusters. Multi-view clustering12–14 can be roughly divided 
into several types, such as multi-view subspace clustering15,16, multi-view spectral clustering17–19,29, multi-view 
K-means clustering20, etc. Multi-view spectral clustering has been widely studied for its ability to better process 
nonlinear data. Multi-view spectral clustering requires three separate steps: (1) the similarity matrix of each 
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view is constructed. (2) all the similarity matrices are fused and the spectral embedding matrix is obtained. (3) 
k-means or spectral rotation operation is performed on spectral embedding matrix to get clustering results. The 
construction of the similarity matrix of each view is the first step, consequently, the quality of the similarity matrix 
will affect the clustering performance. Nevertheless, the existing multi-view spectral clustering algorithms do not 
obtain the affinity matrix of each view in the light of the characteristics and quality of each view, but in a static 
way. On the other hand, the post-processing operation of multi-view spectral clustering will lose momentous 
information, which will also exert influence on the clustering performance.

To solve these problems, an improved multi-view spectral clustering algorithm based on tissue-like P systems 
(IMVSCP) is proposed in this paper. The optimized similarity matrix for each view is constructed in a weighted 
iterative manner. In addition, the discrete nonnegative embedding matrix is obtained by combining with the 
symmetric nonnegative matrix factorization method to directly output the clustering results, avoiding the influ-
ence of post-processing. Furthermore, the improved multi-view graph clustering algorithm is combined with 
the tissue-like P system to improve the efficiency of the algorithm. Figure 1 displays the flow of the improved 
multi-view spectral clustering algorithm. The main contributions of this paper are summarized as follows:

•	 In order to fully utilize the features of each view, the method of acquiring the similarity matrix of each view is 
optimized. Instead of getting the affinity matrix of each view statically, a dynamic weighted iterative method 
is adopted to obtain the optimal similarity matrix of each view to improve the clustering performance.

•	 The post-processing of multi-view spectral clustering will lead to the loss of significant information. There-
fore, multi-view spectral clustering is combined with symmetric nonnegative matrix factorization method 
to obtain discrete nonnegative embedding matrix and output the clustering results directly.

•	 Due to the computational parallelism of tissue-like P system, the improved multi-view spectral clustering 
algorithm is embedded in the framework of tissue-like P system to improve the computational efficiency of 
the algorithm.

•	 Extensive experiments have been conducted to verify that IMVSCP algorithm can achieve better clustering 
performance compared to the state-of-the-art algorithms.

The structure of this paper is as follows. In section “Related work”, we summarize the related work of multi-
view spectral clustering and tissue-like P system, and we describe the improved multi-view spectral clustering 
algorithm and the initial configuration of tissue-like P system in detail in section “The proposed method”. In 
section “Experiments”, experiments are carried out to verify the effectiveness of the algorithm. We discuss the 
experimental results and the shortcomings of the proposed algorithm in section “Discussion”. In section “Con-
clusion”, we summarize this work.
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Figure 1.   The basic process of IMVSCP algorithm is as follows: The IMVSCP algorithm is divided into two 
sub-algorithms, one is the IMVSCP-1 algorithm, and the other is the IMVSCP-2 algorithm. The IMVSCP-1 
algorithm firstly obtains the similarity matrix (Zv)mv=1

 by K-nearest neighbor algorithm, and then fuses (Zv)mv=1
 

into a unified matrix P by weighted fusion operation. In turn, the unified matrix P updates the similarity matrix 
for each view. IMVSCP-1 algorithm is an iterative updating process. The IMVSCP-2 algorithm takes the updated 
similarity matrix (Zv)mv=1

 obtained by the IMVSCP-1 algorithm as input, and combines the spectral clustering 
algorithm and symmetric non-negative matrix factorization algorithm to obtain the non-negative embedding 
matrix M, so as to directly output the clustering results.
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Related work
Multi‑view clustering.  Multi-view graph clustering and multi-view spectral clustering complete the clus-
tering process by means of exploring the local geometric structure of data. A great deal of scholars has carried 
out relevant studies with the purpose of learning the similarity graph of each view from the original data better. 
Li et al.21 constructed the similarity graph in the embedded space instead of the original space to deal with noise 
excellently and learn high-quality similarity graph. Zhang et al.22 proposed flexible multi-view unsupervised 
graph embedding (FMUGE), which introduced a flexible regression residual term to relax the strict linear map-
ping. New-coming data and noise were better processed, and the original data negotiated with the learned low-
dimensional representation in the process. In order to ensure the consistency between multiple views, FMUGE 
adaptively weighted and fused different features to obtain the optimal similarity graph of multi-view consist-
ency. In order to better mine view-specific information, Shi et al.23 proposed self-weighting multi-view spectral 
clustering based on nuclear norm (SMSC-NN) and introduced the nuclear norm to perform sparse processing 
on the obtained unified similarity matrix to make it better oriented to spectral clustering. The post-processing 
procedure required to obtain the clustering results will lose useful information. Wang et  al.24 proposed two 
parameter-free weighted multi-view projected clustering methods, which simultaneously performed structured 
graph learning and dimensionality reduction and could directly utilize the obtained structured graph to extract 
clustering indicators without other discretization processes like previous graph-based clustering methods. Nie 
et  al.25 proposed self-weighted multiview clustering with multiple Graphs (SwMC). Once the target graph is 
acquired in the model, SwMC can directly assign cluster labels to each data point without any post-processing.

Tissue‑like P system.  The tissue-like P system consists of cells and environment, and carries out the evolu-
tion and transmission of objects through rules. In this paper, we introduce the formal definition of tissue-like P 
system with rule triggering mechanism:

where 

(1)	 O is a finite multiset of objects.
(2)	 syn ⊆ {1, 2, · · · ,m} × {1, 2, · · · ,m} represents communication channels between cells.
(3)	 i0 is the output cell.
(4)	 E represents any number of copies of objects in the environment.
(5)	 σ1, σ2, · · · , σm represents m cells, and σi is defined as follows: 

 where wi is the initial state of cell i. Ri represents a finite set of rules in cell i including rule with triggering 
mechanisms: when the condition ε is satisfied, the rule is triggered and executed preferentially.

The proposed method
Initializing the similarity matrix for each view.  For raw data (Xv)mv=1 ∈ R

di×n , where di is the dimen-
sion of the ith view, m and n are the number of views and the number of data points respectively, each view is 
initialized to get its affinity matrix 

(

Z
v
)m

v=1
∈ R

n×n . Greater similarity should be given to two similar data points, 
while smaller similarity should be given when two data points are far apart26. Therefore, we specify that the 
objective function of initializing the similarity matrix is:

According to reference26, Eq. (2) is obtained by optimizing Eq. (1) to initialize the similarity matrix of each view.

where qi,j =� x
v
i − x

v
j �

2
2 , e is the number of neighbors.

Optimizing the similarity matrix for each view.  The initial similarity matrix (Zv)mv=1 are fused to 
obtain a unified matrix P so as to update the similarity matrix of each view iteratively. We compute the unified 
matrix P by the following formula:

where wv is the weight of the v views, the formula is:

�= (O, σ1, σ2, · · · , σm, syn, i0,E).

σi = (wi ,Ri)

(1)
min
{Zv}

m
∑

v=1

n
∑

i,j=1

� xvi − xvj �22 z
v
ij + α

m
∑

v=1

n
∑

i=1

� zvi �22

s.t. ∀v, zvii = 0, zvij ≥ 0, 1Tzvi = 1.

(2)ẑvij =

{

qi,e+1−qij
eqi,e+1−

∑e
h=1 qih

j ≤ e

0 j > e,

(3)
min
P

m
∑

v=1

wv � P − Zv �2F

s.t. ∀i, pij ≥ 0, 1Tpi = 1,
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Due to the different quality of each view, the contribution to the clustering result is not the same. Therefore, 
each view needs to be assigned a different weight, with high quality views being given a larger weight and low 
quality views being given a smaller weight. As can be seen from Eq. (4), wv is related to unified matrix P and 
the similarity matrix (Zv)mv=1 , so wv can be automatically iterated in the update without any trivial solution. 
Therefore, Eq. (3) avoids the appearance of hyperparameters. Next, we combine Eqs. 1 and 3 to update (Zv)mv=1 
with the unified matrix P:

We impose rank constraint on the Laplacian matrix of the unified matrix P to make the optimized (Zv)mv=1 more 
suitable for clustering problem. The Laplacian matrix of matrix P is defined as LP = DP −

(

P
T + P

)

/2 , where the 
degree matrix is a diagonal matrix whose i-th diagonal element is 

∑

j

(

pij + pji

)

/2 . Here we introduce Theorem 1:

Theorem 1  The multiplicity c of the eigenvalue 0 of the Laplacian matrix LP is equal to the number of connected 
components of the graph of LP.

It can be seen from Theorem 1 that the unified matrix P obtained when we set rank(LP) = n− c can be 
divided into c clusters, which ensures that the optimized (Zv)mv=1 can better handle the clustering problem. 
Therefore, Eq. (5) can be transformed into the following formula:

It is very difficult to solve problem 6 directly, so according to Ky Fan’s Theorem25 we have:

where F1 is the spectral embedding matrix and ℓi(LP) represents the i-th smallest eigenvalue of LP . Then, Eq. (6) 
becomes:

where φ is a parameter that can be adjusted automatically. Next, we get the optimal (Zv)mv=1 by iteratively optimiz-
ing Eq. (8). There are four variables in Eq. (8) that need to be optimized.

Update (Zv)mv=1 , fix wv , P and F1 . When we fix wv , P and F1 , Eq. (8) transforms into the following form:

It can be seen from Eq. (9) that updating Zv is independent for each view, so we have:
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2
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According to reference28, we get the solution:

where the relevant symbols are the same as those defined in section “Initializing the similarity matrix for each 
view”. Update wv , fix (Zv)mv=1 , P and F1 . As we know from Eq. (4), the weight of view v is determined by the uni-
fied matrix P and the similarity matrix Zv . In consequence, when Zv and P are fixed, wv is updated by Eq. (4). 
Update P, fix (Zv)mv=1 , wv and F1 . When (Zv)mv=1 , wv and F1 are fixed and Tr

(

FT1 LPF1
)

= 1/2
∑

i,j � f1i − f1j �
2
2 pij , 

Eq. (8) becomes:

It is obvious that the Eq. (12) is independent for each view, in the meantime, we define bij =� f1i − f1j �
2
2 , after-

wards, the Eq. (12) is transformed into:

According to reference28, solving the problem 13 equals solving the problem 14:

where the j-th element of bi is bij.The optimal solution of problem 14 is given in reference28. F1 , fix (Zv)mv=1 , wv 
and P. When (Zv)mv=1 , wv and P are fixed, Eq. (8) becomes the following form:

The optimal solution of F1 is composed of the eigenvectors corresponding to the first c eigenvalues of LP.The 
process of optimizing the similarity matrix of each view is explained by algorithm 1 as a whole.

Improved multi‑view spectral clustering.  In this section, spectral clustering is combined with sym-
metric nonnegative matrix factorization method (symNMF)29 to directly output clustering results. The relation-
ship between spectral clustering and symNMF requires to be comprehended. The objective function of spectral 
clustering is:

where Z is the similarity matrix, D is the degree matrix, LZ is the Laplacian matrix of Z, and F is the spectral 
embedding matrix. Since LZ = D − S , Eq. (16) becomes:

The optimized spectral embedding matrix F is acquired by utilizing Eq. (17), and then k-means or spectral rota-
tion operation is performed on it to obtain clustering results. The symNMF method is introduced below. For a 
matrix Z, its symNMF objective function is:

(11)zvij =

{

qi,e+1−qij+2wvpij−2wvpi,e+1

eqi,e+1−
∑e

h=1 qih−2ewvpi,e+1+2
∑e

h=1 wvpih
j ≤ e

0 j > e,

(12)
min
P

m
∑

v=1

n
∑

i,j=1

wv

(

pij − zvij

)2

+ �

n
∑

i,j=1

� f1i − f1j �
2
2 pij

s.t. ∀i, pij ≥ 0, 1Tpi = 1.

(13)
min
pi

m
∑

v=1

n
∑

j=1

wv

(

pij − zvij

)2

+ �

n
∑

j=1

bijpij

s.t. ∀i, pij ≥ 0, 1Tpi = 1.

(14)
min
pi

m
∑

v=1

� pi − zvi +
�

2mwv
bi �

2
2

s.t. ∀i, pij ≥ 0, 1Tpi = 1,

(15)min
F1

Tr
(

FT1 LPF1

)

, s.t. FT1 F1 = I .

(16)min
FTF=I

Tr
(

FTD−1/2LZD
−1/2F

)

,

(17)max
FTF=I

Tr
(

FTD−1/2ZD−1/2F
)

.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18616  | https://doi.org/10.1038/s41598-022-20358-6

www.nature.com/scientificreports/

Equation 18 can be converted to the following form:

When we change the constraint M ≥ 0 to MTM = I and the matrix Z to D−1/2ZD−1/2 , the Eq. (19) becomes 
the following form:

It is obvious that Eq. (20) is consistent with the objective function Eq. (17) of spectral clustering. We extend 
this connection to the multi-view spectral clustering, so as to give the improved multi-view spectral clustering 
objective function proposed in this paper:

where

where Fv2 is the spectral embedding matrix of the v-th view, and M is a consistent nonnegative embedding matrix, 
and the cluster corresponding to the maximum value of each row is the cluster to which the data point belongs. 
Therefore, clustering results can be directly given. It is worth noting that Zv is optimized by iterative update of 
algorithm 1. In addition, the weight of the v-th view can be automatically determined by αv based on Zv and Fv2.

Equation 21 has two variables to be optimized. Next, we optimize Eq. (21) by iterative method: Fix Fv2 , Update 
M. By means of fixing Fv2 and removing irrelevant variables, the following problem is solved to optimize M:

Since 
(

Fv2
)T

Fv2 = I , Eq. (23) becomes:

Furthermore, by introducing and removing fixed terms, the Eq. (24) is changed into:

where

The optimal solution of Eq. (25) is:

Fix M, Update Fv2 . When M is fixed, Fv2 is independent for each view. In consequence, Fv2 is updated by solving 
the following problem:

Singular value decomposition of (Zv)TM yields left singular vector U and right singular vector V. The optimal 
solution of Eq. (28) is:

Algorithm 2 illustrates the process of improved multi-view spectral clustering.
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Initial configuration of tissue‑like P system.  Before the calculation, the initial configuration of tissue-
like P system utilized in this paper is described. Figure 2 shows the basic framework of tissue-like P system. This 
type of tissue-like P system has four cells, with arrows representing channels between cells where objects can be 
transmitted in one direction. Outside the cell is the environment. First of all, several rules are defined as follows:

•	 R1 : Eq. (2) is utilized to get initialized (Zv)mv=1.
•	 R2 : Eq. (11) is utilized to update (Zv)mv=1 and send it to cell 3.
•	 R3 : Eq. (4) is utilized to update wv and send it to cell 3.
•	 R4 : Eq. (14) is utilized to update P and send its copy to cell 2.
•	 R5 : Eq. (15) is utilized to update F1.
•	 R6(Trigger mechanism rule): (Zv)mv=1 are sent to cell 4 when theorem 1 is met or the maximum number of 

iterations is reached.
•	 R7 : Eq. (27) is utilized to update M.
•	 R8 : Eq. (29) is utilized to update 

{

Fv2
}m

v=1
.

•	 R9 : Eq. (22) is utilized to update {αv}mv=1.
•	 R10(Trigger mechanism rule): M is output when Ot−1−Ot

Ot−1
≤ 10−8 or the maximum number of iterations is 

met.

It is worth noting that there is a priority relationship between these rules. Rules with higher priorities are executed 
before rules with lower priorities. The priorities of rules are as follows:

R2 → R3 ; R4 → R5 ; R7 → R8 → R9 → R7
The priority of the rule decreases with the direction of the arrow, and it should be noted that the three rules 

R7 − R9 are executed according to priority and loop. Next, the initial configuration of the tissue-like P system 
is presented:

•	 cell 1: (Xv)mv=1 , e; R1.
•	 cell 2: (Xv)mv=1 , wv , P, e; R2,R3,R6.
•	 cell 3: F1 ; R4,R5.
•	 cell 4: 

{

Fv2
}m

v=1
 , {αv}mv=1 ; R7,R8,R9,R10.

The calculation procedure.  In this section, the calculation process of the improved multi-view spectral 
clustering algorithm in the tissue-like P system is illustrated in detail.

•	 Step 1: Rule R1 in cell 1 is executed to initialize the similarity matrices (Zv)mv=1.
•	 Step 2: Rule R2 in cell 2 is executed to optimize the similarity matrices (Zv)mv=1 and transmit them to cell 3.

cell 1

X1, , Xm, e;

R1

cell 2

X1, , Xm,wv,P e;

R2,R3,R6

cell 3

F1;

R4,R5

cell 4

F2
1, , F2

m,

α1, , αm

R7,R8,R9,R10

Environment

Figure 2.   The basic framework of tissue-like P system.
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•	 Step 3: Rule R3 in cell 2 is executed to optimize the weight wv and transmit them to cell 3.
•	 Step 4: Rule R4 in cell 3 is executed to optimize the unified matrix P and transmit its copy to cell 2.
•	 Step 5: Rule R5 in cell 3 is executed to optimize the spectral embedding matrix F1.

Steps 2-5 constitute an iterative process.

•	 Step 6: When the trigger condition for rule R6 in cell 2 is triggered, R6 is executed to transfer (Zv)mv=1 to cell 
4.

•	 Step 7: Rule R7 is executed to optimize the nonnegative embedding matrix M after cell 4 receives (Zv)mv=1 
from cell 3.

•	 Step 8: Rule R8 in cell 4 is executed to optimize the spectral embedding matrices 
{

Fv2
}m

v=1
.

•	 Step 9: Rule R9 in cell 4 is executed to optimize {αv}mv=1.

Steps 7-9 loop.

•	 When the trigger condition of R10 in cell 4 is triggered, R10 is executed to output M. The calculation termi-
nates.

Experiments
Evaluate indicators and datasets.  In this section, relevant experiments were carried out to verify the 
effectiveness of IMVSCP algorithm. Six evaluation indicators were selected: Acc (Accuracy), NMI (Normal-
ized Mutual Information), Recall, Precision, F-score, and ARI (Adjusted Rand Index). These indicators are 
widely utilized to evaluate the clustering performance of multi-view clustering, and their definitions are seen in 
reference31. The larger the index value is, the better the clustering performance is. Six datasets were used as sup-
porting datasets in this paper, the specific information is as follows:

BBCSport 32: This is a text dataset with 500 samples and has two views with dimensions 3183 and 3203. It 
can be divided into five categories.

ORL 33: The dataset is an image dataset, which contains 400 face images from 40 individuals. There are four 
views, whose dimensions are: 512, 59, 864, 254.

MSRC 34: The dataset is an image dataset that contains 210 objects from seven categories and has five features 
to describe: CM, GIST, CENT, HOG, and LBP, and their dimensions are as follows:24, 576, 512, 256, 254.

Mfeat: This is a handwritten dataset with 2000 objects, which contains 10 digits. In this paper, three views 
were utilized for this dataset, whose dimensions are: 76, 216, 64.

NUS 35: This is a real image dataset of 2400 samples, described by six features of dimension 64, 144, 73, 128, 
225 and 500, divided into 12 categories.

3-sources 36: 3-sources is a text dataset of news stories from three news companies (views): BBC, Reuters 
and The Guardian. The dimensions of the three views are 3560, 3631, 3068 respectively. 169 samples are divided 
into six categories.

Table 1 shows the information for the dataset, where di is the dimension of the i-th view.

Clustering results.  In order to compare the effectiveness of IMVSCP algorithm, ten comparison algorithms 
were used in this experiment, among which the first one was single-view clustering algorithm and the remaining 
nine were multi-view clustering algorithms.

SC 37: This is a single-view spectral clustering algorithm which can deal with nonlinear structural data well. 
The results of the best view have been extracted in this article.

Co-Reg 38: Co-Reg searches for the consistency graph of multiple views by co-regularizing clustering assump-
tions so that clustering performance is better than that of a single view.

AMGL39: AMGL automatically assigns a weight to each view without additional parameters, which can be 
well used for multi-view clustering and semi-supervised classification tasks.

SwMC 25: The algorithm imposes Laplacian rank constraint on the unified similarity matrix and automati-
cally learns the weights.

Table 1.   Information about six datasets.

Datasets BBCSport ORL MSRC Mfeat NUS 3-sources

d1 3183 512 24 76 64 3560

d2 3203 59 576 216 144 3631

d3 – 864 512 64 73 3068

d4 – 254 256 − 128 −

d5 – – 254 – 225 –

d6 – – – – 500 –

Sample 544 400 210 2000 2400 169

cluster 5 40 7 10 12 6
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GFSC 40: The algorithm utilizes a self-representation method to construct the representation matrix of each 
view, which is then fused and clustering results are obtained using a single-view spectral clustering algorithm.

MVGL 41: The algorithm learns the affinity graph of each view and fuses it into a high-quaity unified graph.
GMC 26: GMC integrates the affinity graph of each view into a unified graph and imposes Laplacian rank 

constraint on the unified graph to obtain the clustering result directly.
AWP42: AWP extends the spectral rotation method in spectral clustering and combines it with Procrustes 

Analysis to automatically assign the weight of each view.
S-MVSC 43: S-MVSC learns consistent sparse unified graph through multiple views, which has fast clustering 

speed and can achieve prosperous clustering results.
MCDCF 44: MCDCF applies a matrix decomposition method (deep matrix decomposition) to multi-view 

clustering and integrates them into a unified framework.
The results of part of the comparison algorithms refer to Reference45. Each algorithm was run 30 times for 

each dataset, recording its mean and standard deviation, with the best results in italics and the second-best in 
bold. Tables 2, 3, 4, 5, 6, 7 lists the clustering results of IMVSCP and other comparison algorithms. Before the 
experiment, the number of neighbors of IMVSCP algorithm needs to be adjusted. In this paper, the number 
of neighbors for BBCSport, ORL, MSRC, Mfeat, NUS and 3-source datasets was set to 80, 8, 33, 60, 35, 100, 
respectively.

•	 The IMVSCP algorithm is an improvement based on the spectral clustering algorithm. It can be seen from 
the experimental results that in terms of algorithm accuracy, the IMVSCP algorithm on BBCSport, ORL, 
MSRC, Mfeat, NUS and 3-sources datasets are 0.541, 0.073, 0.171, 0.214, 0.077 and 0.238 higher than the 
spectral clustering algorithm (SC), respectively. This proves that multi-view clustering performs better than 
single-view clustering because it can well integrate information from multiple views.

•	 Co-Reg, AMGL, SWMC, MVGL, AWP and S-MVSC all construct the initial similarity matrix of each view 
in a static way, while IMVSCP constructs the optimal similarity matrix of each view in a dynamic way. 
Therefore, the clustering performance of IMVSCP is generally better than these algorithms. For example, 
the IMVSCP algorithm is 0.405, 0.587, 0.59, 0.538, 0.338 and 0.12 higher than the above algorithms in the 
clustering accuracy on the BBCSport dataset.

Table 2.   Experimental results (mean standard deviation) on the BBCSport dataset. Significant values are in 
[bold/italics].

Method Acc NMI F-score ARI Precision Recall

SC 0.431±0.000 0.178±0.000 0.398±0.003 0.091±0.022 0.282±0.013 0.688±0.087

Co-Reg 0.567±0.052 0.421±0.029 0.481±0.040 0.290±0.050 0.426±0.029 0.552±0.060

AMGL 0.385±0.010 0.045±0.005 0.385±0.001 0.029±0.011 0.251±0.005 0.831±0.045

SwMC 0.382±0.000 0.084±0.001 0.391±0.001 0.019±0.001 0.246±0.000 0.960±0.002

GFSC 0.579±0.000 0.238±0.000 0.453±0.000 0.178±0.000 0.323±0.000 0.756±0.000

MVGL 0.434±0.000 0.182±0.000 0.402±0.000 0.050±0.000 0.259±0.000 0.895±0.000

GMC 0.809±0.000 0.701±0.000 0.759±0.000 0.667±0.000 0.656±0.000 0.902±0.000

AWP 0.634±0.028 0.517±0.019 0.552±0.024 0.408±0.027 0.542±0.010 0.564±0.043

S-MVSC 0.852±0.086 0.821±0.051 0.845±0.055 0.798±0.072 0.853±0.059 0.839±0.058

MCDCF 0.774±0.073 0.683±0.054 0.738±0.056 0.634±0.087 0.638±0.104 0.892±0.043

IMVSCP 0.972±0.000 0.910±0.000 0.942±0.000 0.924±0.000 0.948±0.000 0.936±0.000

Table 3.   Experimental results (mean standard deviation) on the ORL dataset. Significant values are in [bold/
italics].

Method Acc NMI F-score ARI Precision Recall

SC 0.797±0.033 0.929±0.010 0.768±0.031 0.762±0.032 0.711±0.039 0.836±0.026

Co-Reg 0.808±0.008 0.933±0.003 0.778±0.008 0.772±0.008 0.723±0.010 0.842±0.005

AMGL 0.635±0.055 0.888±0.019 0.547±0.090 0.533±0.094 0.420±0.098 0.811±0.017

SwMC 0.739±0.051 0.903±0.028 0.511±0.115 0.495±0.120 0.373±0.113 0.853±0.033

GFSC 0.575±0.000 0.753±0.000 0.346±0.000 0.324±0.000 0.231±0.000 0.690±0.000

MVGL 0.788±0.000 0.937±0.000 0.715±0.000 0.707±0.000 0.602±0.000 0.880±0.000

GMC 0.765±0.000 0.891±0.000 0.596±0.000 0.584±0.000 0.454±0.000 0.869±0.000

AWP 0.748±0.035 0.884±0.011 0.675±0.033 0.667±0.033 0.647±0.034 0.705±0.033

S-MVSC 0.753±0.034 0.897±0.009 0.701±0.028 0.694±0.028 0.646±0.037 0.767±0.019

MCDCF 0.714±0.041 0.858±0.017 0.627±0.048 0.617±0.050 0.554±0.066 0.728±0.020

IMVSCP 0.870±0.000 0.935±0.000 0.832±0.000 0.828±0.000 0.810±0.000 0.855±0.000
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•	 GFSC algorithm uses self-representation method to construct affinity matrix of each view, and finally uti-
lizes post-processing operation (k-means) to obtain clustering result. The experimental results indicate that 
IMVSCP algorithm is superior to GFSC algorithm in each index, which demonstrates the effectiveness of the 
method of dynamically obtaining the similarity matrix of each view and the method of spectral clustering 
combined with symNMF adopted in this paper.

•	 The standard deviation of IMVSCP algorithm is 0, indicating that the clustering result does not change 
without considering the times of calculation when the number of neighbors is fixed. This verifies the com-
putational stability of the IMVSCP algorithm.

Table 4.   Experimental results (mean standard deviation) on the MSRC dataset. Significant values are in [bold/
italics].

Method Acc NMI F-score ARI Precision Recall

SC 0.677±0.069 0.600±0.048 0.566±0.057 0.495±0.067 0.557±0.061 0.576±0.053

Co-Reg 0.663±0.128 0.563±0.130 0.551±0.128 0.476±0.149 0.539±0.125 0.563±0.131

AMGL 0.714±0.061 0.674±0.030 0.603±0.037 0.529±0.048 0.540±0.052 0.687±0.026

SwMC 0.782±0.063 0.725±0.061 0.679±0.070 0.623±0.084 0.635±0.083 0.732±0.059

GFSC 0.676±0.000 0.703±0.000 0.637±0.000 0.569±0.000 0.560±0.000 0.740±0.000

MVGL 0.833±0.000 0.713±0.000 0.693±0.000 0.642±0.000 0.676±0.000 0.711±0.000

GMC 0.748±0.000 0.742±0.000 0.697±0.000 0.640±0.000 0.612±0.000 0.809±0.000

AWP 0.775±0.081 0.667±0.053 0.660±0.073 0.604±0.087 0.650±0.083 0.672±0.064

S-MVSC 0.831±0.036 0.744±0.013 0.728±0.022 0.683±0.026 0.713±0.034 0.744±0.009

MCDCF 0.754±0.035 0.673±0.023 0.638±0.023 0.577±0.026 0.617±0.020 0.660±0.027

IMVSCP 0.848±0.000 0.731±0.000 0.738±0.000 0.695±0.000 0.729±0.000 0.747±0.000

Table 5.   Experimental results (mean standard deviation) on the Mfeat dataset. Significant values are in [bold/
italics]. ‘∼ ’ indicates that the running time of the algorithm exceeds one hour, and the following is the same

Method Acc NMI F-score ARI Precision Recall

SC 0.717±0.000 0.661±0.000 0.616±0.038 0.573±0.042 0.609±0.039 0.627±0.037

Co-Reg 0.743±0.082 0.733±0.035 0.685±0.059 0.649±0.066 0.662±0.070 0.710±0.047

AMGL 0.755±0.000 0.826±0.000 0.742±0.000 0.710±0.000 0.677±0.000 0.820±0.000

SwMC 0.845±0.025 0.896±0.020 0.838±0.027 0.818±0.030 0.776±0.033 0.910±0.018

GFSC 0.814±0.000 0.757±0.000 0.719±0.000 0.687±0.000 0.698±0.000 0.742±0.000

MVGL 0.928±0.000 0.882±0.000 0.862±0.000 0.846±0.000 0.852±0.000 0.872±0.000

GMC 0.836±0.000 0.851±0.000 0.811±0.000 0.788±0.000 0.747±0.000 0.887±0.000

AWP 0.763±0.082 0.721±0.053 0.655±0.087 0.616±0.097 0.652±0.088 0.657±0.086

S-MVSC 0.792±0.066 0.852±0.032 0.779±0.065 0.751±0.075 0.708±0.085 0.871±0.024

MCDCF ∼ ∼ ∼ ∼ ∼ ∼

IMVSCP 0.931±0.000 0.867±0.000 0.869±0.000 0.854±0.000 0.867±0.000 0.871±0.000

Table 6.   Experimental results (mean standard deviation) on the NUS dataset. Significant values are in [bold/
italics].

Method Acc NMI F-score ARI Precision Recall

SC 0.221±0.008 0.093±0.003 0.131±0.003 0.050±0.004 0.127±0.004 0.136±0.003

Co-Reg 0.264±0.031 0.133±0.025 0.157±0.012 0.078±0.014 0.153±0.013 0.161±0.011

AMGL 0.234±0.007 0.161±0.002 0.162±0.002 0.055±0.003 0.119±0.003 0.254±0.024

SwMC 0.147±0.011 0.107±0.014 0.154±0.002 0.005±0.002 0.086±0.001 0.802±0.088

GFSC 0.253±0.000 0.134±0.000 0.154±0.000 0.071±0.000 0.142±0.000 0.167±0.000

MVGL 0.154±0.000 0.117±0.000 0.156±0.000 0.009±0.000 0.087±0.000 0.756±0.000

GMC 0.186±0.000 0.094±0.000 0.158±0.000 0.018±0.000 0.092±0.000 0.555±0.000

AWP 0.276±0.027 0.097±0.011 0.140±0.011 0.061±0.012 0.138±0.011 0.141±0.010

S-MVSC 0.294±0.006 0.161±0.005 0.172±0.003 0.096±0.003 0.169±0.002 0.176±0.005

MCDCF ∼ ∼ ∼ ∼ ∼ ∼

IMVSCP 0.298±0.000 0.167±0.000 0.177±0.000 0.101±0.000 0.173±0.000 0.181±0.000
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•	 In general, the clustering performance of multi-view clustering algorithm is greatly affected by the qual-
ity of similarity matrix of each view and the method of obtaining clustering results. Compared with these 
state-of-the-art algorithms, IMVSCP algorithm has the advantage of dynamically obtaining high-quality 
similarity matrix of each view, and combining spectral clustering algorithm and symmetric nonnegative 
matrix factorization method to output clustering results directly, so as to avoid the information loss caused 
by the second operation.

In the optimization of the similarity matrix of each view by algorithm 1, it is necessary to automatically assign 
weights to each view according to the quality of each view, so as to obtain the optimal similarity matrix of each 
view. Figure 3 shows the weight change of each view in the optimization process by algorithm 1. It can be seen 
from Fig. 3 that the weight of each view of BBCSport and 3 source datasets are roughly the same, indicating 
that the quality of each view is not much different, while the quality of the remaining four datasets is uneven.

Ablation study.  For numerous graph-based multi-view clustering, since the Laplacian rank constraint is 
applied to the unified matrix to make the unified matrix have block structure and can directly output the cluster-
ing results, the noise and redundant information cannot be well removed. On the other hand, in order to verify 
the impact of the optimized similarity matrix of each view in this paper on the improvement of clustering per-
formance, ablation experiments were carried out.

Firstly, we utilized IMVSCP-1 to output the clustering results directly by means of the unified matrix P 
obtained by algorithm 1 because P was imposed Laplacian rank constraint. In addition, We define IMVSCP-2 
to obtain the similarity matrix for each view using the k nearest neighbors of the graph rather than the method 
proposed in this paper to dynamically obtain the similarity matrix of each view. We designed the IMVSCP-3 
algorithm to remove the rank constraint on the unified matrix P to verify the effect of rank constraint on the 
clustering performance. Four algorithms were run under the identical experimental conditions. Table 8 shows 
the comparison results of IMVSCP, IMVSCP-1, IMVSCP-2 and IMVSCP-3 on ORL, MSRC, NUS and 3-sources 
datasets, with the best results in bold. Figure 4 visualizes the unified matrix obtained by IMVSCP-1.

The clustering performance of IMVSCP algorithm is better than that of IMVSCP-1 and IMVSCP-2 algorithm 
from Table 8. It can be seen from Fig. 4 that for ORL and MSRC datasets, block structures can be seen, but there 
is still a lot of noise around. Nevertheless, for NUS and 3-sources datasets, the block structures are not visible. 
This indicates that IMVSCP-1 algorithm cannot deal with noise data well and its application range is small. In 
addition, the clustering performance of IMVSCP is better than that of IMVSCP-2, which fully demonstrates that 
using a dynamically optimized similarity matrix for each view can obtain better clustering results than using 
the static method. Ablation study verify that IMVSCP-1 and IMVSCP-2 algorithms are complementary and 
indispensable. Furthermore, although the clustering performance of IMVSCP-3 algorithm is the same as that 
of IMVSCP-1 on the dataset ORL and higher than that of IMVSCP-1 on the dataset 3Sources, in general, the 
clustering performance of IMVSCP-3 without rank constraint is worse than that of IMVSCP-1.

Visual analysis.  In order to make the clustering results of IMVSCP algorithm more intuitive to be verified, 
t-SNE experiments on 3 views of Mfeat and MSRC datasets were performed. The t-SNE experiments on these 
two datasets are shown in Fig. 5. From the visualization results of Mfeat dataset, the dark blue and light green 
points in view 1 are not well separated but are well parted in other views. Combined with the experiment of 
view weight assignment of Mfeat dataset in Fig. 3, the quality of view 1 of Mfeat is poor, so it is assigned a lower 
weight, which proves the effectiveness of IMVSCP to optimize each similarity matrix. The clustering results of 
view 2, 3, 4 of MSRC dataset are similar, so it can be seen from Fig. 3 that the weights of these three views are 
not significantly different.

Convergence and time consumption analysis.  To further verify the convergence of IMVSCP algo-
rithm, the variation of the objective function value of algorithm 2 with the number of iterations is shown in 

Table 7.   Experimental results (mean standard deviation) on the 3-sources dataset. Significant values are in 
[bold/italics].

Method Acc NMI F-score ARI Precision Recall

SC 0.555±0.000 0.469±0.000 0.487±0.024 0.349±0.031 0.536±0.035 0.448±0.027

Co-Reg 0.551±0.031 0.493±0.017 0.468±0.013 0.321±0.018 0.504±0.031 0.439±0.027

AMGL 0.392±0.064 0.190±0.065 0.345±0.019 0.014±0.045 0.240±0.023 0.628±0.086

SwMC 0.396±0.049 0.189±0.051 0.350±0.009 0.002±0.021 0.232±0.009 0.719±0.049

GFSC 0.450±0.000 0.327±0.000 0.343±0.000 0.075±0.000 0.275±0.000 0.455±0.000

MVGL 0.408±0.000 0.202±0.000 0.343±0.000 0.007±0.000 0.229±0.000 0.677±0.000

GMC 0.757±0.000 0.597±0.000 0.659±0.000 0.528±0.000 0.552±0.000 0.817±0.000

AWP 0.294±0.007 0.083±0.006 0.257±0.006 0.010±0.005 0.226±0.003 0.298±0.016

S-MVSC 0.707±0.054 0.676±0.031 0.651±0.050 0.562±0.062 0.739±0.055 0.583±0.049

MCDCF 0.776±0.026 0.684±0.026 0.721±0.030 0.627±0.047 0.675±0.058 0.776±0.016

IMVSCP 0.793±0.000 0.701±0.000 0.776±0.000 0.708±0.000 0.768±0.000 0.785±0.000



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18616  | https://doi.org/10.1038/s41598-022-20358-6

www.nature.com/scientificreports/

Figure 3.   The weight change of each view in the optimization process by algorithm 1.

Table 8.   The comparison results of IMVSCP, IMVSCP-1, IMVSCP-2 and IMVSCP-3 on ORL, MSRC, NUS 
and 3-sources datasets. Significant values are in [bold].

IMVSCP-1 IMVSCP-2 IMVSCP-3 IMVSCP

ORL

Acc 0.765 0.825 0.765 0.870

Precision 0.454 0.728 0.454 0.810

ARI 0.584 0.765 0.584 0.828

MSRC

Acc 0.804 0.791 0.757 0.848

Precision 0.672 0.690 0.626 0.729

ARI 0.685 0.662 0.632 0.695

NUS

Acc 0.186 0.297 0.157 0.298

Precision 0.091 0.160 0.087 0.173

ARI 0.011 0.094 0.009 0.101

3-sources

Acc 0.757 0.781 0.787 0.793

Precision 0.552 0.704 0.621 0.768

ARI 0.528 0.643 0.603 0.708
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Figure 4.   Visualize the unified matrix obtained by IMVSCP-1.

-80 -60 -40 -20 0 20 40 60 80 100
-80

-60

-40

-20

0

20

40

60

80

100

120
Mfeat (view 1)

-80 -60 -40 -20 0 20 40 60 80
-100

-80

-60

-40

-20

0

20

40

60

80

100
Mfeat (view 2)

-80 -60 -40 -20 0 20 40 60 80
-80

-60

-40

-20

0

20

40

60

80

100
Mfeat (view 3)

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15
MSRC (view 2)

-20 -15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15
MSRC (view 3)

-20 -15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15
MSRC (view 4)

Figure 5.   The t-SNE experiments on Mfeat and MSRC datasets.
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Fig. 6. It is proved that the convergence rate of algorithm 2 is fast enough to converge within 60 iterations. Table 9 
shows the comparison of running time of some state-of-the-art algorithms on six datasets. As can be seen from 
Table  9, although the IMVSCP algorithm first generates the similarity matrix of each view dynamically and 
iteratively, and then the spectral clustering algorithm is combined with the symmetric nonnegative matrix fac-
torization algorithm to generate clustering results, the running time of IMVSCP is not longer than other state-
of-the-art algorithms on the whole.
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Figure 6.   The change in the value of the objective function of algorithm 2.

Table 9.   Comparison of running time of some algorithms (seconds).

BBCSport ORL MSRC Mfeat NUS 3-sources

SwMC 0.3607 0.6774 0.309 137.5248 180.7202 0.4245

GFSC 2.4458 2.1415 0.8174 71.4697 184.8681 0.9066

GMC 10.6281 0.6502 0.4242 19.3592 41.2571 0.3337

MCDCF 39.3723 31.8589 6.5644 ∼ ∼ 4.897

IMVSCP 79.0186 2.1023 0.8551 33.0712 80.2132 0.752
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Impact of different number of neighbors.  We selected an appropriate range and step size for each data-
set to verify the impact of the number of neighbors on the clustering performance. Figure 7 shows the impact of 
the change in the number of neighbors on Acc on the six datasets. It can be seen from Fig. 7 that the change of the 
number of neighbors in a certain range has a certain impact on the clustering performance. In future research, 
we will try to avoid the influence of the number of neighbors on the clustering performance.

Discussion
In previous studies, reference26 adopted the method of imposing Laplacian rank constraint on the unified matrix 
to directly output the clustering results, without this part of algorithm 2 in this paper. Reference43 uses the k-NN 
method to construct the similarity matrix of each view. IMVSCP combines the advantages of the two algorithms 
to improve the clustering performance, which is verified by ablation study. In the ablation study, algorithm 1 
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Figure 7.   Impact of the change in the number of neighbors on Acc.
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was utilized only to generate clustering results by removing algorithm 2, and then k-NN algorithm was used to 
construct the initial similarity matrix of each view and algorithm 2 was used to generate clustering results. The 
ablation study results verified that algorithm 1 and algorithm 2 complement each other and are indispensable.

However, the number of neighbors needs to be set in advance in the IMVSCP algorithm, which will affect 
the robustness of the algorithm. For example, toward the six datasets BBCSport, ORL, MSRC, Mfeat, NUS and 
3sources used in this article, the optimal number of neighbors is 80,8,33,60,35,100, respectively. Therefore, we will 
focus on this problem in the future. The method proposed in this paper has a wide range of application scenarios. 
For example, in the cluster analysis of aerial image data, each scene and object can be accurately identified. It 
can also play a role in the field of medical impact analysis. In addition, the proposed method can also be used to 
solve problems related to the Internet of Things46.

Conclusion
In this paper, an improved multi-view spectral clustering based on tissue-like P systems (IMVSCP) was pro-
posed to construct a high-quality similarity matrix for each view and improve clustering performance. Firstly, 
the similarity matrix of each view is optimized in a dynamic way to obtain high-quality similarity matrix of each 
view. Then, spectral clustering and nonnegative symmetric matrix factorization are combined to directly output 
the clustering results without secondary operation. On the other hand, IMVSCP is combined with tissue-like P 
system to make it run in the framework of tissue-like P system, which improves the efficiency of the algorithm. 
Extensive experiments verify that IMVSCP algorithm is superior to the state-of-the-art multi-view clustering 
algorithms and single-view spectral clustering algorithm in clustering performance.

Data availability
This article uses six datasets, which can be obtained as follows: BBCSport: http://​mlg.​ucd.​ie/​datas​ets/ ORL: 
https://​cam-​orl.​co.​uk/​faced​ataba​se.​html MSRC: https://​www.​resea​rchga​te.​net/​publi​cation/​33585​7675 Mfeat: 
http://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Multi​ple+​Featu​res NUS: https://​lms.​comp.​nus.​edu.​sg/​wp-​conte​nt/​uploa​
ds/​2019/​resea​rch/​nuswi​de/​NUS-​WIDE.​html 3sources: http://​mlg.​ucd.​ie/​datas​ets/​3sour​ces.​html.

Received: 4 May 2022; Accepted: 12 September 2022

References
	 1.	 Pânu, G. Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000).
	 2.	 Song, B., Luo, X., Valencia-Cabrera, L. & Zeng, X. The computational power of cell-like P systems with one protein on membrane. 

J. Membr. Comput. 2, 332–340 (2020).
	 3.	 Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M. & Riscos-Núez, A. Fault diagnosis of power systems using fuzzy tissue-like P systems. 

Integr. Comput. Aided Eng. 24, 401–411 (2017).
	 4.	 Pan, L. & Perez-Jimenez, M. Computational complexity of tissue-like P systems. J. Complex. 26, 296–315 (2010).
	 5.	 Verlan, S., Freund, R., Alhazov, A., Ivanov, S. & Pan, L. A formal framework for spiking neural P systems. J. Membr. Comput. 2, 

1–14 (2020).
	 6.	 Bao, T., Zhou, N., Lv, Z., Peng, H. & Wang, J. Sequential dynamic threshold neural P systems. J. Membr. Comput. 2, 255–268 (2020).
	 7.	 Luo, Y., Guo, P., Jiang, Y. & Zhang, Y. Timed homeostasis tissue-like P systems with evolutional symport/antiport rules. IEEE 

Access. 8, 131414–131424 (2020).
	 8.	 Luo, Y., Zhao, Y. & Chen, C. Homeostasis tissue-like P systems. IEEE Trans. Nanobiosci. 20, 126–136 (2020).
	 9.	 Jiang, Z., Liu, X. & Sun, M. A density peak clustering algorithm based on the k-nearest shannon entropy and tissue-like P system. 

Math. Probl. Eng. 2019, 1–13 (2019).
	10.	 Hu, J., Pan, Y., Li, T. & Yang, Y. TW-Co-MFC: Two-level weighted collaborative fuzzy clustering based on maximum entropy for 

multi-view data. Tsinghua Sci. Technol. 26, 185–198 (2021).
	11.	 Xue, Z. & Wang, H. Effective density-based clustering algorithms for incomplete data. Big Data Min. Anal. 4, 183–194 (2021).
	12.	 Zhang, P., Liu, X., Xiong, J., Zhou, S., & Cai, Z.: Consensus one-step multi-view subspace clustering. IEEE Trans. Knowl. Data Eng. 

(2020).
	13.	 Horie, M., & Kasai, H., Consistency-aware and inconsistency-aware graph-based multi-view clustering. In Proceedings of the 2020 

28th European Signal Processing Conference (EUSIPCO) (2021).
	14.	 Yin, H., Hu, W., Zhang, Z., Lou, J. & Miao, M. Incremental multi-view spectral clustering with sparse and connected graph learn-

ing. Neural Netw. 144, 260–270 (2021).
	15.	 Si, X., Yin, Q., Zhao, X. & Yao, L. Consistent and diverse multi-view subspace clustering with structure constraint. Pattern Recogn. 

121, 108196 (2021).
	16.	 Zheng, Q., Zhu, J., Ma, Y., Li, Z. & Tian, Z. Multi-view subspace clustering networks with local and global graph Information. 

Neurocomputing 449, 15–23 (2021).
	17.	 Hao, W., Pang, S. & Chen, Z. Multi-view spectral clustering via common structure maximization of local and global representa-

tions. Neural Netw. 143, 595–606 (2021).
	18.	 Guo, Z., Shu, T., Huang, G. & Yan, X. Multi-view spectral clustering by simultaneous consensus graph learning and discretization. 

Knowl. Based Syst. 235, 107632 (2021).
	19.	 Cai, Y., Jiao, Y., Zhuge, W., Tao, H. & Hou, C. Partial multi-view spectral clustering. Neurocomputing 311, 316–324 (2018).
	20.	 Han, J., Xu, J., Nie, F. & Li, X. Multi-view k-means clustering with adaptive sparse memberships and weight allocation. IEEE Trans. 

Knowl. Data Eng. 34, 816–827 (2020).
	21.	 Li, Z., Tang, C., Liu, X., Zheng, X., & Zhu, E. Consensus graph learning for multi-view clustering (IEEE Transactions on Multimedia, 

Early Access, 2021).
	22.	 Zhang, B., Qiang, Q., Wang, F. & Nie, F. Flexible multi-view unsupervised graph embedding. IEEE Trans. Image Process. 30, 

4143–4156 (2021).
	23.	 Shi, S., Nie, F., Wang, R. & Li, X. Self-weighting multi-view spectral clustering based on nuclear norm. Pattern Recognit. 124, 

108429 (2021).
	24.	 Wang, R., Nie, F., Wang, Z., Hu, H. & Li, X. Parameter-free weighted multi-View projected clustering with structured graph learn-

ing. IEEE Trans. Knowl. Data Eng. 32, 2014–2025 (2019).
	25.	 Nie, F., Li, J., & Li, X.: Self-weighted multiview clustering with multiple graphs. In Proceedings of the twenty-sixth international 

joint conference on artificial intelligence (2017).

http://mlg.ucd.ie/datasets/
https://cam-orl.co.uk/facedatabase.html
https://www.researchgate.net/publication/335857675
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
http://mlg.ucd.ie/datasets/3sources.html


17

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18616  | https://doi.org/10.1038/s41598-022-20358-6

www.nature.com/scientificreports/

	26.	 Wang, H., Yang, Y. & Liu, B. GMC: Graph-based multi-view clustering. IEEE Trans. Knowl. Data Eng. 32, 1116–1129 (2019).
	27.	 Kevin; F. On a theorem of weyl concerning eigenvalues of linear transformations I. Proc. Natl. Acad. Sci. USA 35, 652–655 (1949).
	28.	 Wang, H., Yang, Y., Liu, B., & Fujita, H.: A study of graph-based system for multi-view clustering. Knowl.-Based Syst. 163, 1009–1019 

(2019).
	29.	 Hu, J. et al. Nonnegative matrix tri-factorization based clustering in a heterogeneous information network with star network 

schema. Tsinghua Sci. Technol. 27, 386–395 (2022).
	30.	 Hu, Z., Nie, F., Wang, R. & Li, X. Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding 

- ScienceDirect. Inf. Fusion. 55, 251–259 (2020).
	31.	 Zhan, K., Nie, F., Jing, W. & Yang, Y. Multiview consensus graph clustering. IEEE Trans. Image Process. 28, 1261–1270 (2019).
	32.	 Greene, D., & Cunningham, P.: Producing accurate interpretable clusters from high-dimensional data. In Proceedings of the Knowl-

edge Discovery in Databases: PKDD 2005, 9th European Conference on Principles and Practice of Knowledge Discovery 486–494 
(2005).

	33.	 Samaria, F., & Harter, A: Parameterisation of a stochastic model for human face identification. In Proceedings of the Applications 
of Computer Vision, 1994., Proceedings of the Second IEEE Workshop on, IEEE, 138–142 (1994).

	34.	 Winn, J., & Jojic, N.: LOCUS: Learning object classes with unsupervised segmentation. In Proceedings of the 10th IEEE International 
Conference on Computer Vision (ICCV 2005) 756–763 (2005).

	35.	 Chua, T., Tang, J., Hong, R., Li, H., & Luo, Z: NUS-WIDE: A real-world web image database from National University of Singapore. 
In Proceedings of the Acm International Conference on Image and Video Retrieval 48 (2009).

	36.	 Guo, Y.: Convex subspace representation learning from multi-view data. In Twenty-Seventh AAAI Conference on Artificial Intel-
ligence (2013).

	37.	 Ng, A., Jordan, M., & Weiss, Y.: On spectral clustering: Analysis and an algorithm. In Proceedings of the Advances in Neural Infor-
mation Processing Systems 14, 849–856 (2001).

	38.	 Kumar, A., Rai, P., & Daume, H.: Co-regularized multi-view spectral clustering. In Advances in Neural Information Processing 
Systems 24: 25th Annual Conference on Neural Information Processing Systems 1413–1421 (2011).

	39.	 Nie, F., Li, J., & Li, X: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-
supervised classification. In Twenty-Fifth International Joint Conference on Artificial Intelligence, 1881–1887 (2016).

	40.	 Kang, Z. et al. Multi-graph fusion for multi-view spectral clustering. Knowl.-Based Syst. 189, 105102 (2019).
	41.	 Zhan, K., Zhang, C., Guan, J., & Wang, J.: Graph learning for multiview clustering. IEEE Trans. Cybernet. 2887–2895 (2017).
	42.	 Nie, F., Tian, L., & Li, X.: Multiview clustering via adaptively weighted procrustes. In Proceedings of the 24th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pp. 2022–2030 (2018).
	43.	 Hu, Z., Nie, F., Chang, W., Hao, S. & Li, X. Multi-view spectral clustering via sparse graph learning. Neurocomputing 384, 1–10 

(2019).
	44.	 Chang, S., Hu, J., Li, T., Wang, H. & Peng, B. Multi-view clustering via deep concept factorization. Knowl. Based Syst. 217, 106807 

(2021).
	45.	 Yu, X., Liu, H., Wu, Y. & Zhang, C. Fine-grained similarity fusion for multi-view spectral clustering. Inf. Sci. 568, 350–368 (2021).
	46.	 Qi, L., Hu, C., Zhang, X., Khosravi, M. R., & Wang, T: Privacy-aware data fusion and prediction with spatial-temporal context for 

smart city industrial environment. IEEE Trans. Ind. Informat. 17 (2020).

Author contributions
All authors contributed to the study conception and design. H.C. wrote of the first draft and proposed the 
method. X.L. edited, and conceptualized the first draft. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	An improved multi-view spectral clustering based on tissue-like P systems
	Related work
	Multi-view clustering. 
	Tissue-like P system. 

	The proposed method
	Initializing the similarity matrix for each view. 
	Optimizing the similarity matrix for each view. 
	Improved multi-view spectral clustering. 
	Initial configuration of tissue-like P system. 
	The calculation procedure. 

	Experiments
	Evaluate indicators and datasets. 
	Clustering results. 
	Ablation study. 
	Visual analysis. 
	Convergence and time consumption analysis. 
	Impact of different number of neighbors. 

	Discussion
	Conclusion
	References


