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Post‑stroke respiratory 
complications using machine 
learning with voice features 
from mobile devices
Hae‑Yeon Park 1,8, DoGyeom Park 2,8, Hye Seon Kang 3,4, HyunBum Kim 5, 
Seungchul Lee 2,6,9* & Sun Im 7,9*

Abnormal voice may identify those at risk of post‑stroke aspiration. This study was aimed to 
determine whether machine learning algorithms with voice recorded via a mobile device can 
accurately classify those with dysphagia at risk of tube feeding and post‑stroke aspiration pneumonia 
and be used as digital biomarkers. Voice samples from patients referred for swallowing disturbance 
in a university‑affiliated hospital were collected prospectively using a mobile device. Subjects that 
required tube feeding were further classified to high risk of respiratory complication, based on the 
voluntary cough strength and abnormal chest x‑ray images. A total of 449 samples were obtained, 
with 234 requiring tube feeding and 113 showing high risk of respiratory complications. The eXtreme 
gradient boosting multimodal models that included abnormal acoustic features and clinical variables 
showed high sensitivity levels of 88.7% (95% CI 82.6–94.7) and 84.5% (95% CI 76.9–92.1) in the 
classification of those at risk of tube feeding and at high risk of respiratory complications; respectively. 
In both cases, voice features proved to be the strongest contributing factors in these models. Voice 
features may be considered as viable digital biomarkers in those at risk of respiratory complications 
related to post‑stroke dysphagia.
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APQ  Amplitude perturbation quotient
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CI  Confidence interval
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F0  Fundamental frequency
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GMM  Gaussian mixture model
HNR  Harmonic-to-noise ratio
LR  Logistic regression
ML  Machine learning
MBI  Modified Barthel index
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MMSE  Mini-mental state examination
NIHSS  National Institutes of Health Stroke Scale
NHR  Noise-to-harmonic ratio
RAP  Relative average perturbation
RF  Random forest
PCF  Peak cough flow
PPQ5  Five point-period perturbation quotient
SNR  Signal-to-noise ratio
SVM  Support vector machine
VFSS  Videofluoroscopic swallowing study
VIF  Variance inflation factor
XGBoost  EXtreme gradient boost

Disturbed swallowing, or oropharyngeal dysphagia, commonly occurs after cerebrovascular disease, and may 
result in malnutrition, dehydration, and aspiration  pneumonia1. These respiratory complications occur in approx-
imately one-third of the post-stroke dysphagia population and are associated with high mortality and  morbidity2. 
Early screening and prevention of these respiratory events may also affect prognosis; a recent study found that 
any previous episode of aspiration pneumonia resulted in poor stroke  outcomes3.

Consequently, efforts have been made to develop a screening test that can safely and quickly predict aspiration 
pneumonia. Impaired gag reflex, dysphonia, weak cough, and choking after swallowing are known predictive 
 factors4. Among these clinical signs, voice change is associated with aspiration and  penetration5. A study has 
demonstrated that 90% of aspirators exhibit dysphonic vocal  quality6, and specific voice patterns may indi-
cate  aspiration7–9. While speech-language pathologists and other experts can reliably detect pathological voice 
changes, non-experts can be  inaccurate10 or miss  them5. An acoustic analysis can increase the sensitivity of 
detecting voice changes objectively and help in clinical  evaluation11,12.

Recently, machine learning (ML) and deep learning methods have been used to better predict voice disor-
ders, achieving accuracy levels as high as 90% by using the acoustic parameters of jitter, shimmer, and noise-to-
harmonic ratio (NHR)13. Another study using Gaussian mixture model system reported discriminating vocal fold 
disorders with 99%  accuracy14. In addition, studies advocated using vocal biomarkers recorded via smartphones 
to classify patients with coronary artery disease and pulmonary  hypertension15–18. By contrast, no study has used 
machine learning algorithms to identify those at risk of dysphagia and subsequent respiratory complications 
using vocal biomarkers. A previous study demonstrated that phonation among critically ill and intensive care 
unit patients helps screen aspiration, but objective acoustic features from the phonation data were not  collected19. 
Also, despite the widespread use of mobile devices to integrate vocal biomarkers in making a patient’s diagnosis, 
no study has yet used these devices to analyze the voice features in these patients.

An automated system that identifies vocal biomarkers from those at risk of aspiration and thus require tube 
feeding in a non-invasive and easy manner using a mobile device has high potentials to be used at the bedside 
or in remote settings via telemedicine. Therefore, we aimed to determine if incorporating these digital voice 
signals, recorded via iPad tablets, into multimodal ML algorithms can accurately classify those at risk of aspira-
tion. Because severe stroke can lead to aspiration pneumonia, we also sought to introduce the best model that 
classifies those at high risk of respiratory complications.

Methods
Study design and participants. This study included patients referred for swallowing disturbance for at 
least seven days at a university-affiliated hospital from September 2019 to June 2021. The inclusion criteria were 
participants with suspected swallowing disorder who were referred for swallowing assessment attributable to 
a brain lesion including stroke, and the ability to understand the instructions and participate in the phonation 
task. Participants who were unable to perform phonation or had not undergone the instrumental swallowing 
tests or other swallowing assessments were excluded from the study. Those with severe cognitive dysfunction 
that would not allow participation in the voice recording or spirometry assessment were excluded. Those with 
neurodegenerative disorders such as Parkinson’s disease, Alzheimer’s disease was also excluded. The Institutional 
Review Board (HC19EESE0060) of the Catholic University of Korea, Bucheon St. Mary’s hospital approved the 
use of pertinent clinical information relevant to swallowing, neurological deficit at the time of encounter, and 
medical record preceding the assessment to confirm for any respiratory events, including aspiration pneumonia 
for analysis. All the subjects’ identifying information was removed. Explanation of the study was provided to all 
participants verbally, with all pertinent information including the process of the voice recording. Voice record-
ing was performed with patient’s consent during the routine swallowing assessment. After the data collection 
was completed, all personal information was de-identified. Any conversational component that would identify 
the participant were not recorded. Database was locked, and only researchers who were responsible for the soft-
ware and data curation had authorization to access the data. Because this study presented no harm to subjects, 
took less than 2 min to complete and ensured participant privacy, the institutional review board approved the 
study. Informed consent was given by all participants for data collection.

Datasets from voice recording. Voice recording was performed at enrollment with a blinded assessment, 
where the participants underwent clinical evaluation with chief complaints of dysphagia. Contrary to previ-
ous studies, no solid or liquid boluses were provided prior to voice recording. Voice was recorded with no oral 
bolus swallowing. Phonation were recorded using an iPad (Apple, Cupertino, CA, USA) through an embedded 
microphone. A voice recorder application by Apple was used, and the sound sampling frequency was 44,100 Hz. 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16682  | https://doi.org/10.1038/s41598-022-20348-8

www.nature.com/scientificreports/

The digitized phonation signals were band-pass filtered between 20 and 8000 Hz to use data from the entire fre-
quency band gathered by the iPad. In each case, the smart device was positioned 20 cm from the patient’s  face20. 
Estimation accuracy is unaffected if the microphone is positioned within 30 cm from the participant’s mouth. 
Acoustic signals were obtained in a quiet room to eliminate ambient  sounds20. No additional equipment was 
used. Under the examiner’s instructions, the patient was asked to phonate a single syllable for at least 5 s with 
comfortable pitch and loudness. To ensure uniformity in pitch variation a single instructor provided guidance 
so that the participants produced phonation under a comfortable pitch and loudness. An easy-to-follow single 
vowel phonation was chosen in this study in consideration that some participants manifested severe neuro-
logical deficits. The vowel /e/ vowel requires an unrounded lip position and a mid-tongue position and can be 
performed even in those with facial palsy or tongue deviations. A minimum of three attempts was recorded. The 
examiner was blinded to the patient’s neurological information and did not participate in the clinical evaluation 
of swallowing.

Clinical parameters. Based on the findings from the instrumental swallowing test, enrolled participants 
were classified into two groups: (1) mild or minimal evidence of aspiration or dysphagia, who were deemed safe 
to undergo oral feeding, or (2) severe dysphagia with risk of aspiration that required tube feeding. The latter 
group was then further classified into two subgroups according to the risk of respiratory complications. This risk 
was stratified according to peak cough flow (PCF)21 evaluated using spirometry performed within the same day 
and abnormal chest x-ray images. Voluntary PCF was measured with forceful cough produced by the partici-
pants. Before the PCF measurement, the clinician provided verbal instructions to explain the method of cough 
production by command. The clinician then provided a live demonstration of coughing on the portable spirom-
eter. Those with poor understanding could practice several times before a formal assessment. Voluntary PCF was 
measured on the peak flow meter (Micro-Plus Spirometer; Carefusion Corp.), in adherence to the guidelines 
recommended by the American Thoracic Society/European Respiratory  Society22. The values were presented as 
the mean of the three highest values from the five  attempts23. For voluntary PCF, cutoff values of less than 80 L/
min were classified as high risk of respiratory  complications24. Description on other clinical parameters is shown 
on Supplementary Methods S1.

Preprocessing data. The study used an Intel i9 X-Series processor and GeForce RTX 3090 (24 GB). A 
two-step wise model was developed using various ML algorithms that would classify (1) the presence of severe 
dysphagia requiring tube feeding and (2) high risk of respiratory complications with Fig. 1 delineating the pre-
processing and model developmental process.

The preprocessing steps of data splitting, transformation and performance evaluation are presented in the 
Supplementary Methods S2.

Feature extraction. The following features were extracted using the Praat software. Jitter and shimmer 
values can be measured using different parameters, namely local, absolute, Relative Average Perturbation (RAP), 
five point-Period Perturbation Quotient (PPQ5), and ddp for jitter; and local, localdbShimmer, Amplitude Per-
turbation Quotient (APQ)3, APQ5, APQ11, and Dda for shimmer values, and finally the cepstral peak promi-
nence (CPP) values. Description of these features and feature selections are described in the Supplementary 
Methods S3.

Multimodal model development. Age and severity of neurological deficit may affect voice features. To 
adjust these differences, clinical data were concatenated to the acoustic features in the ML algorithms to produce 
multimodal models. Among the various functional parameters, confounding variables were controlled accord-

Figure 1.  Algorithm development. Raw data from voice signals were preprocessed after normalization. Clinical 
data were concatenated to the Praat features in the machine learning models. A two step-process was then used 
to first classify those with oral feeding versus tube feeding (algorithm 1) and, among the latter, classify those at 
high risk of respiratory complications (algorithm 2). ML machine learning, SVM support vector machine, GMM 
Gaussian mixture model, XGBoost extreme gradient boosting.
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ing to the VIF, and those with high multicollinearity were excluded from the final models. To evaluate the effect 
of the clinical factors on the ML algorithms, we compared the addition of a clinical factor to the absence of one. 
The machine learning algorithms performed in this study are described in detail at the Supplementary Methods 
S4. All methods were carried out in accordance with relevant guidelines and regulation in model development 
and validation.

Statistical analysis. Because participants were assessed at the time of enrollment, no missing data required 
the imputation method. The Shapiro–Wilk test for normality was used to evaluate the distribution of continu-
ous variables. Between-group analyses were conducted using the Student’s t-test, Mann–Whitney test, or chi-
square test. Continuous variables were expressed as mean and standard deviation, and categorical variables were 
expressed as numbers with percentages. All statistical analyses were performed using R Statistical Software (ver-
sion 2.15.3; R Foundation for Statistical Computing, Vienna, Austria), which can be downloaded for free from 
the Internet (https:// www.r- proje ct. org/). For the ML algorithms, the performance of the prediction models was 
evaluated by computing the AUC, sensitivity, specificity, positive predictive value, and negative predictive value 
using the Scikit-Learn package in Python.

Results
Demographic features. A total of 449 participants were enrolled, and based on the instrumental swal-
lowing tests, 215 participants (47.9%) were classified as having only mild dysphagia with mild aspiration that 
allowed full oral feeding, while 234 participants (52.1%) were classified as having severe dysphagia and aspira-
tion and required tube feeding. As shown in Table 1, those with tube feeding exhibited severe neurological defi-
cits and poor swallowing function, confirmed by the instrumental swallowing tests.

Among those with tube feeding, 113 participants (48.3%) in the high risk (higher risk for respiratory com-
plications) showed abnormal chest x-ray findings with significantly low voluntary cough strength (52.4 ± 20.0 L/
min) compared to those with low risk (lower risk for respiratory complications) (175.1 ± 85.2 L/min) (Table 2). 
Among these patients, 93% (n = 105) had been linked to a respiratory disorder, such as confirmed aspiration 
pneumonia (n = 98) or pleural effusion or bronchitis (n = 7) after dysphagia onset. The SNR of the voice files 
were in the range 55–70 dB, which indicate that the background noise was minimal. The high-risk group showed 
higher values of standard deviation of the fundamental frequency, frequency and amplitude perturbation, and 
noise parameters than the low-risk group. Figure 1 shows how clinical data were concatenated to the acoustic 
features in the ML algorithms to produce multimodal models. Figure 2 shows the relationship between the voice 
features and clinical parameters.

Severity of dysphagia, tube feeding risk classification (algorithm 1). Table 3 shows that among 
the various ML models, the XGBoost model showed the highest sensitivity (72.7%; 95% CI 64.3–81.0%) and 
AUC (0.78; 95% CI 0.73–0.82) levels with the selected Praat features. After testing for multicollinearity, age, 
weight, and NIHSS score were selected to evaluate the performance of the models with the voice parameters. The 
multimodal models showed improved diagnostic properties, with the XGBoost model again showing the highest 
sensitivity (88.7%; 95% CI 82.6–94.7%) and AUC (0.85; 95% CI 0.82–0.89) values (Fig. 3a).

Respiratory risk classification (algorithm 2). Table 4 shows the performance of the ML algorithms for 
the risk classification of respiratory complications with Praat features. The XGBoost model’s algorithms showed 
the highest sensitivity (76.5%; 95% CI 68.2%-84.8%) and AUC (0.74; 95% CI 0.66–0.81) levels. MBI was selected 
as a clinical feature to evaluate the risk of aspiration pneumonia, while other factors, including MMSE, were not 
used in this algorithm because of multicollinearity with other variances. With the inclusion of MBI, age and 
weight in the models, the sensitivity of the XGBoost model increased to 84.5% (95% CI 76.9–92.1%), and the 
AUC increased to 0.84 (95% CI 0.81–0.87) (Fig. 3b).

Feature contribution. Feature scoring is frequently used to interpret ML algorithms. The XGBoost algo-
rithm counts out the importance by gain, frequency, and cover. Gain is the measured value of the contribution 
to each tree of an ensemble model. Cover is the relatively measured value of the observed value through the leaf 
node of each tree in the model. Frequency is the measured value as to how frequently each independent variable 
is used decisively in the model. We choose gain to calculate the feature importance score. Figure 4 shows how 
Praat and clinical features contributed to the classification in the XGBoost model. Among these, the RAP and 
APQ11Shimmer were major features, even after the inclusion of other clinical features to the model.

Discussion
This study demonstrated that the acoustic parameters recorded via a mobile device may help distinguish post-
stroke patients at high risk of respiratory complications. Among various ML models, the XGBoost multimodal 
model that included acoustic parameters, age, weight, and NIHSS score, showed an AUC of 0.85 and high 
sensitivity levels of 88.7% in the classification of those with tube feeding and high risk of aspiration. A second 
model showed an AUC of 0.84 and high sensitivity levels of 84.5% in the classification of those at risk of respira-
tory complications. Among these parameters, APQ11shimmer and RAP proved to be the strongest contribut-
ing factors. Our results are consistent with recent work advocating for the use of vocal biomarkers for various 
 medical15,16 and neurological disorders. These algorithms could facilitate the early identification of those at risk 
of aspiration and help prevent respiratory complications in an automated and objective manner.

https://www.r-project.org/
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Comparative analysis of different data input types shows that a multimodal combination approach with 
clinical factors can improve model performance. Previous studies have advocated the combination of clinical 
and demographic data with voice signals to distinguish different voice  pathologies25. Such multimodal learning 
models have proven successful in the classifying pathological voice disorders such as neoplasms, phonotrauma, 
and vocal  palsy26. Considering that post-stroke pneumonia is  multifactorial27, it may be too far-fetched to con-
clude that simple vowel phonation could classify aspiration risk, necessitating the development of multimodal 
algorithms. Following these previous studies, the multimodal models in this study showed the highest sensitivity 
level up to 88.7%. These were promising results considering that subjective methods in swallowing investigation 
can only detect 40% of aspiration  occurrences28. The clinical factors used in this study were already known to 
predict the risk of aspiration pneumonia, with NIHSS known to be a useful parameter for predicting dysphagia 
in stroke  patients29,30 and sub-score of MBI or levels of disability to be associated with aspiration  pneumonia27,31.

One of the key characteristics of this study was to classify the risk of respiratory complications based on the 
spirometry findings. In contrast, previous studies have attempted to use acoustic features to classify the pres-
ence/absence of aspiration per se from instrumental assessments, which have shown inconsistent diagnostic 
 properties11,12. As in phonation, complete glottic closure is an essential mechanism for generating a strong 
 cough32. Smith-Hammond and Goldstein reported that objective measurements of voluntary cough could be 
used to help identify at-risk of aspiration in stroke  patients8. Not all patients with abnormal swallow aspirate, 
with only one-third showing aspiration on  VFSS2,33,34. Similarly, not all who aspirate develop aspiration pneu-
monia; only one-third do. Therefore, in this study, the risk of respiratory complication was not classified based 
on presence of aspiration but the strength of the voluntary cough and abnormal chest images. 93% of those in 

Table 1.  Demographic features and acoustic parameters between mild versus severe dysphagia. Values are 
presented in mean ± standard deviation (SD) or number (%). *p < 0.05 is used for statistical significance. PAS 
penetration-aspiration scale, FOIS functional oral intake scale, MASA mann assessment of swallowing ability, 
PCF peak cough flow, MMSE mini-mental state examination, MBI modified barthel index, NIHSS national 
institutes of health stroke scale, BBS berg balance scale, F0 fundamental frequency, HNR harmonic to noise 
ratio, RAP relative average perturbation, PPQ period perturbation quotient, APQ amplitude perturbation 
quotient, CPP cepstral peak prominence.

Mild dysphagia (Oral feeding) (N = 215) Tube feeding (Tube feeding) (N = 234) p value

Age (years) 65.7 ± 13.2 72.2 ± 11.2 < 0.001*

 Male 63.5 ± 13.9 71.4 ± 11.4 < 0.001*

 Female 69.5 ± 11.1 73.4 ± 10.9 0.020*

Gender (Male) 135 (62.8%) 137 (58.5%) 0.411

Weight (kg) 61.3 ± 11.6 57.2 ± 10.8 < 0.001*

PAS 3.7 ± 1.9 7.2 ± 1.2 < 0.001*

Aspiration (Yes) 37 (17.2%) 222 (94.9%) < 0.001*

FOIS 5.0 ± 1.0 1.7 ± 1.0 < 0.001*

MASA 182.6 ± 13.3 157.2 ± 17.3 < 0.001*

PCF (L/min) 231.7 ± 130.0 115.8 ± 87.8 < 0.001*

MMSE 22.9 ± 6.2 16.5 ± 8.7 < 0.001*

MBI 65.9 ± 29.4 29.8 ± 29.3 < 0.001*

NIHSS 5.3 ± 4.4 10.3 ± 5.1 < 0.001*

BBS 35.4 ± 20.1 15.2 ± 18.8 < 0.001*

F0 (Hz) 199.9 ± 58.8 206.0 ± 73.4 0.324

 Male 183.7 ± 57.2 185.9 ± 67.7

 Female 227.1 ± 51.2 234.6 ± 71.9

F0_SD (Hz) 5.0 ± 11.1 7.2 ± 12.5 0.051

HNR (dB) 16.45 ± 4.91 13.46 ± 5.36 < 0.001*

LocalJitter (%) 1.21 ± 0.98 2.03 ± 1.49 < 0.001*

LocalAbsoluteJitter (μs) 64.42 ± 55.12 112.64 ± 96.42 < 0.001*

RAP (%) 0.60 ± 0.52 1.05 ± 0.86 < 0.001*

PPQ5Jitter (%) 0.68 ± 0.60 1.18 ± 0.99 < 0.001*

DdpJitter (%) 1.80 ± 1.56 3.16 ± 2.59 < 0.001*

LocalShimmer (%) 6.71 ± 4.08 9.74 ± 5.47 < 0.001*

LocaldbShimmer 0.65 ± 0.34 0.91 ± 0.44 < 0.001*

APQ3Shimmer (%) 3.30 ± 2.02 5.04 ± 3.21 < 0.001*

APQ5Shimmer (%) 4.12 ± 3.05 6.12 ± 3.81 < 0.001*

APQ11Shimmer (%) 5.63 ± 4.83 8.05 ± 5.50 < 0.001*

DdaShimmer (%) 9.91 ± 6.07 15.14 ± 9.62 < 0.001*

CPP 23.36 ± 0.18 24.09 ± 0.15 < 0.001*
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the high-risk group had confirmed aspiration pneumonia proving the validity of these measures to assess those 
at risk of respiratory complications.

Another important characteristic is that we incorporated acoustic features into the ML algorithms. Among 
these models, XGBoost showed the best accuracy and had higher learning potential than the other models, which 
was expected because of the structure that this technique is a nonlinear model with larger dimensions and has 
shown excellent performance in other clinical  studies35,36. From these XGBoost algorithms, the APQ11shimmer 
and RAP were shown to be the two major Praat features even after controlling other clinical factors that may 
increase respiratory complications, indicating that these two features may be used as potential biomarkers to 
distinguish those at high-risk respiratory complications.

Past studies on which acoustic parameters can best predict  aspiration11 have shown conflicting  results12.
Our results showed consistent findings that the RAP and APQ11shimmer to be the most vital contributing 

factors in classifying those with tube feeding and those at high risk of respiratory complications, though some 
differences were observed in the rank of these features in each model. For example, the RAP was the most cru-
cial contributor to classifying those with severe dysphagia that would require tube feeding, who also showed 
a more severe grade of an aspiration than those with mild dysphagia. RAP is one of the best jitter parameters 
that reflects the perceptual pitch and increases when the glottis is in contact with material or  secretion5 and is 
therefore very likely to be the most significant contributor in classifying those at high risk of aspiration. Our 
results correspond to previous studies that have shown the RAP to show significant changes after  aspiration12 
with high sensitivity  levels11.

By contrast, the APQ11 shimmer was the most critical contributor in classifying those at risk of respira-
tory complications. Our findings agree with the fact that among the amplitude perturbation parameters, 

Table 2.  Demographic features and acoustic parameters according to respiratory complication risk within 
those with tube feedings. Values are presented in mean ± standard deviation (SD) or number (%). *p < 0.05 
is used for statistical significance. PAS penetration-aspiration scale, FOIS functional oral intake scale, MASA 
mann assessment of swallowing ability, PCF peak cough flow, MMSE mini-mental state examination, 
MBI modified barthel index, NIHSS national institutes of health stroke scale, BBS berg balance scale, F0 
fundamental frequency, HNR harmonic to noise ratio, RAP relative average perturbation, PPQ period 
perturbation quotient, APQ amplitude perturbation quotient, CPP cepstral peak prominence.

Low risk (N = 121) High risk (N = 113) p value

Age (years) 70.2 ± 12.1 74.4 ± 9.8 0.004*

 Male 70.1 ± 12.3 73.7 ± 9.5 0.078

 Female 70.4 ± 11.7 75.0 ± 10.1 0.044*

Gender (Male) 86 (71.1%) 51 (45.1%) 1.000

Weight (kg) 59.2 ± 9.9 55.0 ± 11.3 0.003*

PAS 7.1 ± 1.1 7.3 ± 1.2 0.131

FOIS 1.9 ± 1.0 1.6 ± 0.9 0.061

MASA 165.1 ± 13.4 148.6 ± 16.9 < 0.001*

PCF (L/min) 175.1 ± 85.2 52.4 ± 20.0 < 0.001*

MMSE 20.7 ± 7.5 11.9 ± 7.5 < 0.001*

MBI 41.6 ± 31.5 17.1 ± 20.3 < 0.001*

NIHSS 9.1 ± 5.3 11.6 ± 4.6 < 0.001*

BBS 21.9 ± 20.9 7.9 ± 12.8 < 0.001*

F0 (Hz) 199.0 ± 68.7 213.5 ± 77.7 0.13

 Male 181.92 ± 60.32 192.48 ± 78.89

 Female 241.04 ± 70.78 230.88 ± 72.83

F0_SD (Hz) 5.00 ± 9.27 9.48 ± 14.89 0.007*

HNR (dB) 14.29 ± 4.83 12.57 ± 5.76 0.013*

LocalJitter (%) 1.63 ± 1.08 2.45 ± 1.74 < 0.001*

LocalAbsoluteJitter (μs) 93.15 ± 74.20 133.51 ± 112.21 0.001*

RAP (%) 0.83 ± 0.62 1.29 ± 1.02 < 0.001*

PPQ5Jitter (%) 0.93 ± 0.71 1.44 ± 1.17 < 0.001*

DdpJitter (%) 2.49 ± 1.85 3.88 ± 3.05 < 0.001*

LocalShimmer (%) 8.38 ± 4.31 11.19 ± 6.19 < 0.001*

LocaldbShimmer 0.80 ± 0.36 1.03 ± 0.49 < 0.001*

APQ3Shimmer (%) 4.24 ± 2.37 5.91 ± 3.73 < 0.001*

APQ5Shimmer (%) 5.18 ± 2.80 7.13 ± 4.45 < 0.001*

APQ11Shimmer (%) 6.64 ± 3.25 9.55 ± 6.86 < 0.001*

DdaShimmer (%) 12.72 ± 7.10 17.73 ± 11.20 < 0.001*

CPP 23.81 ± 0.30 24.52 ± 0.37 < 0.001*
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Figure 2.  Correlation analysis between the Praat features and the clinical parameters. The correlation graph 
shows that nearly all the voice features showed significant association with the clinical parameters, especially 
with those related to swallowing, and peak cough flow values. An exception was observed with the fundamental 
frequencies, which failed to show any association with the clinical parameters. *p < 0.05; **p < 0.01; ***p < 0.001. 
HNR harmonic to noise ratio, F0 fundamental frequency, MBI modified barthel index, NIHSS national institutes 
of health stroke scale. F0 fundamental frequency, SD standard deviation, APQ amplitude perturbation quotient, 
PPQ period perturbation quotient, RAP relative average perturbation, PAS penetration-aspiration scale, NIHSS 
national institutes of health stroke scale, HNR harmonic to noise ratio, MASA mann assessment of swallowing 
ability, FOIS functional oral intake scale, PCF peak cough flow, MMSE mini-mental state examination, MBI 
modified barthel index.

Table 3.  Evaluation metric table of samples for voice signals in classifying tube feeding. Values are presented 
in mean (95% confidence interval). Values with bold-text represent the highest values among the models. 
NPV negative predictive value, PPV positive predictive value, AUC  area under curve, LR logistic regression, 
DT decision tree, RF random forest, SVM support vector machine, GMM Gaussian mixture model, XGBoost 
extreme gradient boosting.

Accuracy (%) Sensitivity (%) Specificity (%) NPV (%) PPV (%) F1 AUC 

Voice only

LR 68.2 (64.3–72.1) 65.7 (58.2–73.1) 70.7 (65.4–75.9) 67.8 (63.1–72.6) 69.3 (65.0–73.7) 0.67 (0.62–0.72) 0.69 (0.64–0.74)

DT 69.0 (64.5–73.5) 62.0 (56.5–67.5) 76.0 (67.2–84.8) 66.6 (63.2–70.0) 73.3 (66.1–80.6) 0.67 (0.62–0.71) 0.70 (0.65–0.75)

RF 73.7 (70.2–77.1) 70.7 (66.1–75.3) 76.7 (70.5–82.8) 72.5 (69.2–75.7) 75.7 (70.8–80.6) 0.73 (0.69–0.76) 0.78 (0.73–0.82)

SVM 69.7 (65.9–73.5) 71.0 (66.9–75.1) 68.3 (62.8–73.9) 70.2 (66.4–74.0) 69.4 (65.2–73.5) 0.70 (0.67–0.74) 0.68 (0.63–0.73)

GMM 66.2 (61.3–71.0) 64.7 (51.3–78.1) 67.7 (60.1–75.2) 67.5 (61.2–73.7) 66.3 (61.1–71.5) 0.64 (0.55–0.74) 0.64 (0.55–0.72)

XGBoost 74.8 (71.0–
78.7)

72.7 (64.3–
81.0)

77.0 (68.9–
85.1)

74.8 (69.5–
80.2)

76.8 (71.2–
82.4)

0.74 (0.69–
0.79)

0.78 (0.73–
0.82)

Voice + clinical

LR 77.2 (74.4–80.0) 76.7 (67.1–86.2) 77.7 (70.1–
85.2) 78.3 (72.5–84.2) 78.7 (73.5–83.8) 0.77 (0.73–0.81) 0.82 (0.79–0.85)

DT 74.5 (70.6–78.4) 80.0 (72.9–87.1) 69.0 (64.8–73.2) 78.3 (72.6–84.0) 72.1 (68.8–75.3) 0.76 (0.71–0.80) 0.75 (0.71–0.80)

RF 79.7 (75.9–83.4) 85.0 (78.6–91.4) 74.3 (67.0–81.7) 83.9 (78.9–89.0) 77.5 (72.3–82.7) 0.81 (0.77–0.84) 0.84 (0.80–0.88)

SVM 77.0 (73.8–80.2) 84.3 (78.7–90.0) 69.7 (64.1–75.2) 82.3 (77.4–87.1) 73.8 (70.4–77.2) 0.79 (0.75–0.82) 0.81 (0.77–0.84)

GMM 73.2 (68.9–77.5) 76.3 (69.5–83.1) 70.0 (63.6–76.4) 75.4 (69.4–81.3) 72.1 (67.6–76.6) 0.74 (0.70–0.78) 0.75 (0.71–0.79)

XGBoost 82.5 (78.0–
87.0)

88.7 (82.6–
94.7) 76.3 (71.4–81.3) 87.6 (81.6–

93.5)
79.0 (74.9–
83.1)

0.83 (0.79–
0.88)

0.85 (0.82–
0.89)
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APQ11shimmer is known to reflect better the decreased glottic control than the APQ3 or APQ5. Proper glottic 
closure is related to the cough force, and its impairment can lead to improper secretion clearance and aspiration 
 pneumonia32. Our results support the role of APQ11shimmer as a marker that reflects glottic dysfunction that 
plays a most significant role in the model to classify those at high risk of respiratory complications. This strong 
association of APQ11shimmer with glottic dysfunction was further proven in a previous machine learning study 
classifying glottic  cancer37. A final point of interest was while CPP has been pointed to provide a solid basis to 
quantitatively approach dysphonia severity, this was not observed in this study. The CPP showed high VIF values 
and therefore were not eligible to be included in the ML  algorithms38.

In this study, voice recordings were easily attained with no adverse effects or technical difficulties. Record-
ing with mobile devices eliminates the potential risk of bolus aspiration and does not require the use of special 
equipment, such as a sensor or  accelerometer39,40. The methods proposed in this study differed from past studies 
in that the voice recording was performed without the introduction of additional bolus material and posed no 

Figure 3.  AUC-ROC curve of the XGBoost model for classifying tube feeding and risk of respiratory 
complications. AUC-ROC curves show that multimodal models that combine phonation and clinical data 
demonstrate high levels of AUC in classifying (a) risk of tube feeding and (b) respiratory complications. AUC  
area under curve, ROC receiver operating characteristic.

Table 4.  Evaluation metric table of samples for voice signals in classifying risk of respiratory complications. 
Values are presented in mean (95% confidence interval). Values with bold-text represent the highest values 
among the models. NPV negative predictive value, PPV positive predictive value, AUC  area under curve, LR 
logistic regression, DT decision tree, RF random forest, SVM support vector machine, GMM Gaussian mixture 
model, XGBoost extreme gradient boosting.

Accuracy (%) Sensitivity (%) Specificity (%) NPV (%) PPV (%) F1 AUC 

Voice only

LR 66.2 (61.5–71.0) 55.0 (49.5–60.5) 77.5 (70.5–84.5) 63.3 (59.4–67.2) 72.2 (65.1–79.3) 0.62 (0.56–0.67) 0.64 (0.59–0.70)

DT 70.0 (64.3–75.7) 72.5 (65.3–79.7) 67.5 (57.5–77.5) 71.5 (64.6–78.4) 70.2 (62.5–77.9) 0.71 (0.66–0.76) 0.71 (0.64–0.77)

RF 70.5 (66.5–74.5) 71.5 (60.4–82.6) 69.5 (57.9–81.1) 72.7 (66.5–78.8) 72.0 (65.1–79.0) 0.70 (0.65–0.75) 0.73 (0.67–0.78)

SVM 67.0 (63.4–70.6) 56.0 (47.9–64.1) 78.0 (72.9–
83.1) 64.5 (60.3–68.7) 72.2 (66.8–77.6) 0.63 (0.57–0.68) 0.65 (0.61–0.69)

GMM 62.2 (57.8–66.7) 69.0 (62.7–75.3) 55.5 (45.9–65.1) 64.3 (59.7–68.9) 61.5 (56.5–66.4) 0.65 (0.61–0.68) 0.61 (0.55–0.66)

XGBoost 74.0 (68.5–
79.5)

76.5 (68.2–
84.8) 71.5 (59.3–83.7) 76.4 (71.3–

81.4)
75.9 (66.3–
85.5)

0.75 (0.71–
0.79)

0.74 (0.66–
0.81)

Voice + clinical

LR 75.8 (71.3–80.2) 78.0 (70.4–85.6) 73.5 (64.1–82.9) 78.2 (71.1–85.3) 75.9 (68.9–82.8) 0.76 (0.72–0.80) 0.79 (0.74–0.84)

DT 73.8 (68.7–78.8) 74.5 (66.7–82.3) 73.0 (66.6–79.4) 74.8 (68.3–81.4) 73.7 (68.2–79.1) 0.74 (0.68–0.79) 0.73 (0.68–0.79)

RF 76.5 (73.1–79.9) 82.0 (77.6–86.4) 71.0 (64.1–77.9) 80.3 (75.7–84.9) 74.4 (69.8–79.1) 0.78 (0.75–0.81) 0.81 (0.77–0.86)

SVM 74.5 (70.4–78.6) 80.5 (70.0–91.0) 68.5 (59.6–77.4) 80.1 (72.0–88.2) 72.7 (68.2–77.2) 0.76 (0.71–0.80) 0.76 (0.72–0.80)

GMM 74.2 (69.7–78.8) 81.5 (75.1–87.9) 67.0 (57.6–76.4) 79.6 (73.3–85.9) 72.8 (65.5–80.2) 0.76 (0.72–0.80) 0.76 (0.71–0.81)

XGBoost 80.8 (78.7–
82.8)

84.5 (76.9–
92.1)

77.0 (69.4–
84.6)

84.6 (79.3–
89.8)

79.8 (74.4–
85.1)

0.81 (0.79–
0.84)

0.84 (0.81–
0.87)
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additional threat of aspiration and thus can be safely performed even on those at risk of aspiration pneumonia. 
Also, the main objective of our algorithms differed from past studies; we attempted to classify those with severe 
dysphagia or risk of respiratory complications, while past studies attempted only to detect the presence of aspi-
ration per se via voice changes after a bolus swallow. Additionally, voice recordings can easily be performed on 
severely ill patients to obtain objective voice biomarkers. In a broader context, this novel method to assess patients 
admitted to the intensive care unit or in the emergency setting, which require an easy but noninvasive bedside 
evaluation to screen for the risk of dysphagia and aspiration  pneumonia19 before referral for instrumental tests.

Our study has some limitations. First, only those with brain lesions were included in the study; and those 
with any degree of dysphagia referred for assessment were used for model development with no comparison to 
a healthy normal population. However, our ongoing studies on deep learning models include acoustic analysis 
data from a healthy population and attempt to distinguish dysphagic voices from normal ones. Second, while 
those undergoing FEES underwent phonation recording simultaneously, there was a lapse in those who under-
went VFSS with a median interval of four days. Future studies that assess voice change 24 h after stroke onset 
upon hospital arrival would better reflect early voice change in predicting dysphagia and aspiration risk. Third, 
a single vowel phonation of /e/ was evaluated in this study. Previous studies have shown that the corner vowels 
/i/, /o/, or /u/ have differences in the acoustic parameters, and the logarithmic energy during vowel phonation 
was also proven to show  differences41. The acoustic parameters from this vowel showed good AUC values, but 
whether multiple vowels can help increase the accuracy is a topic that warrants more future studies. Finally, 
despite the high AUC, the sensitivity levels for the second algorithm showed wide confidence intervals. Future 
studies that combine voice signals with other patient-generated health data to further increase these diagnostic 
properties are warranted.

In conclusion, voice parameters obtained via a mobile device under controlled settings can help to classify 
those at risk of respiratory complications with high sensitivity and accuracy levels. Whether our novel algorithms 
using mobile devices can help identify those at a high risk of respiratory complications, allowing for early referral 
to respiratory experts and subsequently reducing aspiration pneumonia is a topic that needs to be explored in 
future large-scale multi-center prospective studies.

Data availability
Data may be available upon special request to the corresponding authors. Scripts, including the method of feature 
extract, the preprocessing method, and ML algorithms, on GitHub: https:// github. com/ ruaeh/ Dysph agia- ML.
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