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Identification of hydantoin based 
Decaprenylphosphoryl‑β‑d‑Ribose 
Oxidase (DprE1) inhibitors 
as antimycobacterial agents using 
computational tools
Suraj N. Mali1*, Anima Pandey1, Richie R. Bhandare2,3* & Afzal B. Shaik4*

Tuberculosis (TB) is one of the emerging infectious diseases in the world. DprE1 
(Decaprenylphosphoryl‑β‑d‑ribose 2′‑epimerase), an enzyme accountable for mycobacterial cell wall 
synthesis was the first drug gable target based on discoveries of inhibitors via HTS (high throughput 
screening). Since then, many literature reports have been published so far enlightening varieties of 
chemical scaffolds acting as inhibitors of DprE1. Herein, in our present study, we have developed 
statistically robust GA‑MLR (genetic algorithm multiple linear regression), atom‑based as well as 
field based‑3D‑QSAR models. Both atom‑based as well as field based‑3D‑QSAR models (internally 
as well as externally validated) were obtained with robust Training set,  R2 > 0.69 and Test set, 
 Q2 > 0.50. We have also developed top ranked 5 point hypothesis AAAHR_1 among 14 CPHs (common 
pharmacophore hypotheses). We found that our dataset molecule had more docking score (XP 
mode = − 9.068 kcal/mol) than the standards isoniazid and ethambutol; when docked into binding 
pockets of enzyme 4P8C with Glide module. We further queried our best docked dataset molecule 
151 for ligand based virtual screening using “SwissSimilarity” platform. Among 9 identified hits, 
we found ZINC12196803 had best binding energies and docking score (docking score = − 9.437 kcal/
mol, MMGBSA dgBind = − 70.508 kcal/mol). Finally, our molecular dynamics studies for 1.2–100 ns 
depicts that these complexes are stable. We have also carried out in‑silico ADMET predictions, 
Cardiac toxicity, ‘SwissTargetPredictions’ and Molecular Mechanics/Generalized Born Surface Area 
(MM/GBSA) binding energy calculations for further explorations of dataset as well as hit molecules. 
Our current studies showed that the hit molecule ZINC12196803 may enlighten the path for future 
developments of DprE1 inhibitors.

Abbreviations
3D-QSAR model  3D-quantitative structure–activity relationship models
Prime/MM-GBSA  Prime/molecular mechanics generalized born surface area
CPH  Common pharmacophore hypothesis
R2  Correlation coefficient
Q2  Cross-validation correlation coefficient
RMSE  Root mean square error
PDB  Protein Databank
ADMET  Absorption, distribution, metabolism, excretion and toxicity properties
MIC  Minimum inhibitory concentration
IC50  Inhibitory concentration
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PLS  Partial least squares
SP  Standard precision
#stars  Number of property or descriptor values that fall outside the 95% range of 

similar values for known drugs
QPlogPo/w  Predicted octanol/water partition coefficient
QPPCaco  Predicted apparent Caco-2 cell permeability in nm/sec.
Percent Human Oral Absorption  Predicted human oral absorption on a 0 to 100% scale.
Rule of Five  Number of violations of Lipinski’s rule of five

TB (tuberculosis), an infectious disease is responsible for deaths of 1.5 million people every year throughout 
the world. TB is caused by pathogenic bacteria called “Mycobacterium tuberculosis”1. Despite being a prevent-
able infectious disease, millions of people die every  year2,3. Most of these cases have been seen from low- and 
middle-income countries, but it has a profound presence throughout the world. TB is the main cause of HIV 
deaths and is being contributed to anti-Tb drug  resistance4,5. WHO estimates the presence of one-quarter of 
the world’s population infected with  TB1. As TB bacteria exist in the replicating and dormant forms, it becomes 
challenging to develop a novel anti-TB drug. Anti-Tb agents should act on both forms of the bacterium. Previ-
ously, we were just focusing on the developments of anti-TB drugs acting on the replicating forms, whilst it is 
also important to develop drugs acting and inhibiting the dormant forms of Mtb. Recently, there has been an 
emergence of MDR-TB and XDR-TB  cases6–20.

The research carried out by Christophe et  al. and Makarov et  al.2 depicted significance of 
decaprenylphosphoryl-β-d-ribose 2′-epimerase (DprE1) as a new potential anti-TB target for active drug mol-
ecules against Mtb. Decaprenylphosporyl arabinose (DPA) plays a crucial role by acting itself as a substrate for the 
 arabinosyltransferase12. This is a key step responsible for Mtb cell wall synthesis i.e. arabinogalactan and lipoara-
binomannan. DprE1 is a flavoprotein responsible for the oxidation of DPR (decaprenylphosphoryl-d-ribose) 
to DPX (decaprenylphosphoryl-2-ketoribose), which further reported to reduce by the enzyme DprE2 to DPA. 
A recent review explains thoroughly the broad classifications of DprE1 inhibitors based on the modes of bind-
ings with the enzyme as covalent and non-covalent DprE1  inhibitors12,13. In one of the study, it was found that 
2-carboxyquinoxalines (non-covalent inhibitors) possess an essential 2-carboxylate moiety essential for forma-
tions of key hydrogen bonds with the side-chain of Lysine 418 and the hydroxyl group of Tyrosine  6014,15. There 
have been several reports for a variety of the chemical scaffolds acting as DprE1 inhibitors. This list includes but 
not limited to scaffolds like dinitrobenzamides, azaindoles, pyrazolopyridines, benzothiazinones, etc. Recently, 
benzothiazinones BTZ043, PBTZ-169/macozinone and the azaindole AZ7371 have been entered in clinical trials 
as inhibitors of  DprE113–20. Some of the important inhibitors of DprE1 have been displayed in (Fig. 1). Nowadays, 
CADD (computer aided-drug designing) techniques are finding their ways in successful drug  discoveries20–43.

In our present study, we have explored hydantoin as a new class of DprE1 inhibitors using atom based- as well 
as field-based-3D-QSAR studies. Thorough molecular modelling studies were carried out to generate pharmaco-
phore hypothesis, and to identify new possible hits using ligand-based virtual screening, docking simulations, and 
molecular dynamics (online Supplementary, Figs. S1–S15). We had also extended our study to identify ADMET 
properties of the dataset as well as for new hits using a variety of commercial (QikProp, V. 6.6, Schrodinger, LLC, 
NY, 2020) as well as non-commercial software tools (admetSAR, SwissADME, pred-hERG, etc.). Our generated 
hits might pave the new way towards the development of DprE1 inhibitors.

Materials and methods
Dataset used for the developments of pharmacophore, QSARINS (QSAR‑INSUBRIA) and 
3D‑QSAR models. For the developments of pharmacophore and 3D-QSAR models, we have used pre-
viously reported dataset of 100 compounds (online Supplementary Table  S1). This dataset has diversity 
among pharmacological and structural  characteristics13. For conversion of the  IC50 (µM) values to  pIC50, we 
used well known conversion formula i.e.  (pIC50 =  − log10  IC50). DprE1  pIC50 is the negative logarithm of the 
 IC50-concentration expressed in molar (M) obtained in the DprE1-inhibition assay. All  pIC50 values were fur-
ther considered for modelling  studies21. The same dataset was used for the developments of GA-MLR (genetic 
algorithm multiple linear regression) models using popular software QSARINS ver. 2.2.2 and validated both 
internally and  externally43–45.

Software and hardware used. For our current study, we have utilized commercial Schrodinger’s small 
molecules drug discovery package installed on Linux operating system (Intel Pentium, i7 processor, 16 Gb RAM) 
(release 2020_4, Schrödinger, LLC, NY). For molecular docking analysis, we used Glide module incorporated in 
Schrödinger, LLC, NY package, 2020, V 8.9, (Maestro version 12.6). Studies pertaining to molecular dynamics, 
ADMET predictions, pharmacophore developments and binding energy calculations (MMGBSA) were carried 
out using desmond (V.6.4), Qikprop (V 6.6), Phase and Prime modules respectively (release 2020, Schrödinger, 
LLC, NY)21,24–26,29,36. Further, we have also executed popular non-commercial (free) online software tools like 
SwissADME, SwissSimilarity, SwissTarget prediction, lazar toxicity predictions and admetSAR for our current 
 studies22,30–32. The higher resolution images pertaining to 3D-QSAR, docking, MMGBSA and CPH (common 
pharmacophore hypothesis) were generated through Schrödinger’s molecular modelling software and Gimp 
freeware. The detailed analysis of descriptors generation, pruning of descriptors, and QSAR validations using the 
QSARINS ver. 2.2.2 has been enclosed in the supporting information43–45.

Retrieval of the 3D crystal structure of the M. tuberculosis DprE1 complex. We have carefully 
selected and collected the necessary crystal structure of the M. tuberculosis DprE1 complex (pdb id:4P8C, Reso-
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lution: 1.95 Å) from the Protein Data Bank (http:// www. rcsb. org). The selection of pdb id was performed based 
on our careful literature studies. This enzyme (monomer) essentially consisting of 2 chains, chain A (448 resi-
dues) and chain B (417 amino acid residues). Figure 2a, depicts necessary angles ψ against φ of amino acid resi-
dues characteristics to be visualized from Ramachandran plot for given protein structure 4P8C. The favoured 
region and generously allowed regions are generally depicted by red and yellow regions of Ramachandran plot 
respectively. The key residues involved in binding of native ligands were taken into considerations for molecular 
docking simulations, which generally gives idea for binding pockets of enzyme (Fig. 2b).

Protein preparation for selected target Mycobacterium tuberculosis DprE1. The required 3D 
crystal structure of M. tuberculosis DprE1 was imported into maestro workflow (http:// www. rcsb. org). We pro-
cessed the protein so that it was free from all the cofactors, inbound ligands and water molecules. Schrödinger’s 
protein preparation wizard was used for adding missing residues, adding hydrogens, generating Het states, and 
optimisation of the selected protein. After, processing of required protein, it was further processed for grid gen-
eration. Default parameter like centroid of inbound co-crystal ligand was used for making the grid. OPLS-2005 
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Figure1.  Literature reported compounds targeting DprE1inhibitors.

Figure 2.  (a) Ramchandran plot and (b) binding pocket for native ligands for protein 4P8C [(b) this figure has 
been visualized with ‘BIOVIA Discovery Studio Visualizer’ V.2022, available at: https:// disco ver. 3ds. com/ disco 
very- studio- visua lizer- downl oad].

http://www.rcsb.org
http://www.rcsb.org
https://discover.3ds.com/discovery-studio-visualizer-download
https://discover.3ds.com/discovery-studio-visualizer-download
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(optimized potentials for liquid simulations) force field was utilized throughout the entire protein preparations 
and  simulations36,37.

Preparations of ligands for study. Firstly, we have sketched all the ligand structures selected from the 
literature  source13 (tabulated in SI) in popular ‘ChemBiodraw’ (Version 12.0.2) in 2D forms and further saved 
in .sdf or .mol file format. These 2D structures then allowed importing into LigPrep module (Schrödinger, LLC, 
NY,2020) incorporated in maestro (V 12.6, 2020) for successful conversion into 3D forms. LigPrep utility was 
known to provide least energy conformers via ConfGen. After conversion into 3D forms, we allowed to run 
for geometrical optimization, add hydrogen, and generate a stereoisomer. The default option of generating 32 
conformers for ligand was kept intact. The ‘Epik’ module (V 5.4, Schrödinger, LLC, NY 2020) was used for gen-
erating possible ionisation states for each ligand at pH = 7.0 ± 0.0. For our entire ligand preparation protocols, we 
adhered to OPLS-2005 force  field28.

Common pharmacophore modelling (virtual screening approach). We have applied “Phase” mod-
ule (Schrodinger, 2020) for efficient developments of common pharmacophore hypothesis (CPH) (Table 1)21. 
There are number of literature reports for usage of Phase for CPH generations and 3D-QSAR models. With the 
help of flexible ligand alignments, firstly we aligned all 100 ‘Ligprep’ molecules. Use of the macromodel search 
method with maximum of 1000 per structure was applied in order to generate conformers for all the ligands. 
They were further minimized using the OPLS-2005 force field, as it has 100 steps of minimization. Finally, we 
have generated 14 CPH models, out of them we selected best top-ranked CPH (AAAHR_1) based on its scores 
and utilized for 3D-QSAR generations. We developed 5 point hypothesis as AAAHR_1. All actives were allowed 
to align on AAAHR_1 (Fig. 3). This CPH has 3 hydrogen bond acceptor (A), 1 hydrophobic group (H), and 1 
aromatic ring (R) features as depicted by Phase utility. We have shortlisted ligands into 3 categories as active, 
inactive and intermediates based on biological data. The splitting pattern was considered by referring previous 
publications. Ligands with activity above 5.50 (pIC50 > 5.50) were considered as actives, while those having 
below 4.50 (pIC50 < 4.50) considered as inactive. While in between actives and in-actives there were intermedi-
ates (5.50 > Intermediates > 4.50). So, in our CPH developments there were 54 actives, 33 inactive and 13 inter-
mediates (total of 100 ligands).

Scoring for best pharmacophore hypothesis. We have developed 14 pharmacophore hypotheses; 
which were further ranked according to their scores. The best hypothesis was selected on basis of survival score, 
site score, vector score, etc. (Table 1).

Atom‑based and field‑based 3D‑QSAR modelling using the flexible ligand alignment. Phase 
module from maestro (V 12.6) interface of Schrodinger’s utility was utilized for developments of 3D-QSAR 
models. For better understanding of correlation between structural features and biological activity, we tend to 
develop atom based as well as field based-3D-QSAR models (online Supplementary, Fig. S1). All the models 
were developed through random selection of training set and test set into 70%:30% by using default settings of 
‘Phase’ module as per literature procedures defined earlier and adopted  widely36,38–41. However, we ensured that 
developed models were not a chance of randomness and further assessed for their internal and external valida-
tions for statistical significance. Further splitting of datasets into training and test sets, were further checked for 
diverse chemical space adopted by  molecules36,38–41. Active as well as inactive molecules were part of both sets to 
ensure good reliability of developed models. Further, for MLR based QSAR models, same strategy was used. In 
all cases, we have thoroughly checked our models for their robustness as per statistical formulas mentioned in 
the Supplementary information36,38–41. We randomly divided the dataset into 70% training set and 30% test set 

Table 1.  Various pharmacophore hypotheses generated by PHASE. Significant values are given in bold.

Sr. no Hypothesis Survival scores Site score Vector score Volume score Selectivity Inactive score
Phase hypo 
score

1 AAAHR_1 5.931836 0.895113 0.962592 0.81223 1.529507 2.309382 1.36

2 AAAHR_3 5.901082 0.891958 0.968926 0.796781 1.511023 2.319135 1.35

3 AAHRR_1 6.045822 0.844886 0.9061 0.815984 1.754577 2.244988 1.35

4 AAAHR_2 5.90853 0.873433 0.973764 0.798487 1.530452 2.278402 1.35

5 AAHRR_2 6.023762 0.876879 0.855126 0.820522 1.746959 2.021338 1.35

6 AAHRR_4 6.018948 0.881016 0.875326 0.809973 1.728357 2.336682 1.35

7 AAHRR_3 6.019396 0.849673 0.92015 0.787902 1.737394 2.266527 1.35

8 AAHRR_5 5.992291 0.807977 0.902254 0.81122 1.746563 2.05645 1.35

9 AAHRR_6 5.944514 0.773089 0.894152 0.780675 1.772322 2.045571 1.35

10 AAHRR_7 5.933289 0.782156 0.911423 0.793733 1.721702 2.240607 1.34

11 AAHR_3 5.652884 0.907227 0.956151 0.812921 1.244191 2.231216 1.34

12 AAHR_1 5.672322 0.908235 0.956427 0.81333 1.261937 2.188775 1.33

13 AAHR_2 5.660586 0.936981 0.973037 0.785876 1.232298 2.566902 1.33

14 AHRR_1 5.772924 0.916642 0.884065 0.833694 1.414248 2.142401 1.33
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molecules with application of PLS factor of 4 for both 3D-QSAR models. The random selection made by soft-
ware was further checked by visualizing the training and test set molecules (diversity among dataset molecules 
in training and test sets). We have taken care to maintain 1 Å grid spacing for the selected hypothesis. We have 
developed 4 atom-based 3D-QSAR models, while in case of filed based we developed 3 models (Tables 2, 3, 4, 
5, 6, 7). In case of Atom-based models, we have incorporated 68 molecules in training set and 32 molecules in 
test set (Table 4). However, in case of field-based models there were 70 training set and 30 test set molecules. 
Statistical parameters were applied to select best models (Table 5) (online Supplementary Table S2). The Gauss-
ian field-based 3D-QSAR models were consisting of Gaussian steric, electrostatic, hydrophobic, hydrogen bond 

Figure 3.  (a) A five point Pharmacophore model (AAAHR_1) generated by PHASE. The model illustrates 
acceptor feature (AAA; red coloured arrows), Hydrophobic feature (H:green) and aromatic ring (R: Brown 
color) features. (b) All active ligands overlapped on the generated model AAAHR_1 (this figure has been 
visualized from ‘Phase module’ Schrodinger, LLC, NY, V.2020; Available at: https:// www. schro dinger. com/).

Table 2.  PLS parameters for developed Atom based 3D-QSAR models.

Statistical parameters

PLS model (PLS factor 4)

PLS factor 1 PLS factor 2 PLS factor 3 PLS factor 4

Number of molecules in the training set 68 68 68 68

Number of molecules in the test set 32 32 32 32

Regression coefficient

Training set,  R2 0.4053 0.5826 0.7815 0.8838

Test set,  Q2 0.1976 0.4695 0.4844 0.5054

Standard deviation (SD) 0.926 0.7818 0.5701 0.419

Root mean square error (RMSE) 1.1 0.89 0.88 0.86

Stability 0.904 0.753 0.364 0.253

Pearson correlation coefficient (Pearson-r) 0.4585 0.6909 0.7088 0.725

Variance ratio (F-value) 45 45.4 76.3 119.7

Significance level of variance ratio (P-value) 5.37E−09 4.66E−13 4.20E−21 1.04E−28

Table 3.  The atom based 3D-QSAR statistics for atom type fraction.

# Factors H-bond donor Hydrophobic/non-polar Negative ionic Electron-withdrawing Other

1 0.02 0.631 0.01 0.288 0.051

2 0.021 0.611 0.006 0.291 0.071

3 0.022 0.597 0.001 0.286 0.093

4 0.022 0.598 0.001 0.286 0.094

https://www.schrodinger.com/
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Ligand name QSAR set Actual activity Predicted activity Docking score (xp) kcal/mol (pdb id: 4P8C)

1 Training 7 6.71122 − 7.238

4 Training 4.3 5.80306 − 6.117

7 Training 6.7 7.10433 − 7.836

24 Training 6.7 5.80306 − 6.117

25 Test 6.7 6.46505 − 6.756

26 Training 6 5.65203 − 7.01

27 Test 6 5.82176 − 6.284

28 Training 4.2 5.33654 − 5.817

29 Test  < 4 4.97518 − 6.513

30 Test  < 4 4.54298 − 6.847

31 Training  < 4 4.44724 − 6.684

32 Test  < 4 4.21836 − 6.843

33 Training  < 4 3.64479 − 6.251

34 Test  < 4 4.03335 − 6.754

35 Training 4.3 4.41229 − 7.305

36 Training 4.4 4.17767 − 6.705

37 Training  < 4 3.86292 − 6.933

38 Training 5.4 5.51548 − 6.365

39 Test 4.6 5.32639 − 6.594

40 Test 4.4 4.21767 − 6.514

41 Training 5 4.66835 − 6.622

42 Training  < 4 4.06428 − 7.79

43A Test 4 4.54857 − 7.687

43B Training 4.2 4.54857 − 7.687

44 Test 4.2 5.68154 − 6.946

46 Training  < 4 3.88324 − 6.574

47 Training  < 4 4.06756 − 3.963

109 Training 7.1 6.64915 − 7.054

110 Training 6.1 6.58056 − 6.519

111 Test 7 6.99898 − 7.143

112 Training 6.9 6.50982 − 7.629

113 Training 7.3 7.23067 − 7.223

114 Test 7.4 5.83347 − 7.341

115 Test 6.5 6.55501 − 7.595

116 Test 7.3 5.54471 − 6.965

117 Test 7.1 6.11971 − 8.346

118 Training 6.6 6.35222 − 8.834

119 Training 5.6 6.07747 − 7.904

120 Training 6.8 6.89516 − 6.861

121 Training 4.4 4.58261 − 6.905

122 Test  < 4 4.74593 − 7.415

123 Training 4.5 4.98555 − 7.65

124 Test 5.7 6.91001 − 5.621

125 Training 6.5 6.39954 − 6.334

126 Training 6.7 6.4211 − 6.713

127 Training 6.9 6.97828 − 5.682

128 Training  < 4 3.549 − 6.512

129 Training 4.4 3.90246 − 6.992

130 Test 6.4 6.21595 − 6.941

131 Training 7.3 7.01925 − 6.966

132 Training  < 4 4.54339 − 7.083

133 Training 6.9 7.12085 − 6.897

134 Training 7.3 7.10961 − 7.862

135 Training 6.2 6.94287 − 6.858

136 Training 4.7 4.43187 − 7.492

137 Test 5.1 5.97086 − 8.354

Continued
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donor, and hydrogen bond acceptor. In field-based models, we considered Gaussian intensities as descriptors (as 
independent variables). Finally, best selected 3D-QSAR models were developed to visualize for the 3D contour 
maps associated with structural features (Figs. 4, 5). QSAR model visualization has its own importance for better 
optimization of the scaffolds.

Molecular docking simulations, target predictions, binding energy calculations and ligand 
based‑virtual screenings. All the 100 ligands were allowed to dock into active pocket of selected protein 

Table 4.  Experimental  dataseta employed for Atom based 3D-QSAR study along with docking scores and 
predicted/actual  pIC50 (µM) values (against) (PLS Factor-4). a DprE1  pIC50 is the negative logarithm of the 
 IC50-concentration expressed in molar (M) obtained in the DprE1-inhibition assay; values < 4 was treated as ≈ 
4.0 for sake of QSAR developments.

Ligand name QSAR set Actual activity Predicted activity Docking score (xp) kcal/mol (pdb id: 4P8C)

138 Test 6.7 5.57084 − 6.194

139 Training 7 6.46065 − 7.932

140 Training 4.2 3.92229 − 7.097

141 Test 4.1 4.59635 − 7.758

142 Training 6 6.55797 − 6.779

143 Test 6.6 6.77677 − 6.987

149 Training 5.8 5.26483 − 5.503

151 Training  < 4 4.01458 − 9.068

155 Training 5.1 5.28465 − 6.982

156 Test 4.9 5.12907 − 6.462

157 Training 4.5 4.7725 − 6.158

160 Training 4.7 4.54468 − 6.271

161 Training  < 4 3.8964 − 6.602

163 Training  < 4 4.34517 − 6.056

180 Test 7.2 6.60346 − 6.723

181 Training 6.4 6.43155 − 5.107

182 Training 7.3 6.84464 − 6.489

183 Training 7.2 6.82754 − 6.761

184 Training 5.7 5.67255 − 6.809

185 Test 6.2 6.14353 − 5.899

186 Training 5.9 5.41442 − 6.545

187 Training 4.4 4.57332 − 6.458

188 Training 6.5 6.44496 − 6.571

189 Test 5.6 5.93 − 6.639

190 Training 6.3 6.56541 − 6.952

191 Training 5.7 5.76688 − 7.494

192 Training 6.7 6.24905 − 6.912

193 Test 7 6.0381 − 6.939

194 Test 6.8 6.35491 − 6.87

195 Training 5.7 5.97326 − 5.716

196 Training 6.7 6.59133 − 6.046

197 Test 5.7 5.936 − 6.577

198 Test 4.7 5.81499 − 5.668

199 Training 5.3 5.09867 − 6.331

200 Training 4.6 5.06595 − 6.339

201 Training 6.6 6.15047 − 6.596

202 Training 6.4 6.29976 − 6.61

203 Training 5.4 5.77936 − 7.34

204 Training 7 6.90883 − 7.227

205 Training 5 5.07395 − 7.003

206 Training 7 6.89124 − 5.151

207 Training 7.2 7.02906 − 6.485

208 Test 4.3 5.73972 − 7.181

209 Test 4.4 6.27557 − 6.083
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Ligand name QSAR set Actual activity Predicted activity

1 Training 7 6.10082

4 Training 4.3 5.66211

7 Training 6.7 6.11888

24 Training 6.7 5.66211

25 Training 6.7 5.59165

26 Training 6 5.68028

27 Training 6 5.50716

28 Test 4.2 5.81369

29 Training  < 4 4.71645

30 Training  < 4 4.82689

31 Test  < 4 4.95305

32 Training  < 4 3.79922

33 Training  < 4 3.49725

34 Test  < 4 3.74747

35 Test 4.3 4.4435

36 Training 4.4 4.01246

37 Training  < 4 4.2946

38 Test 5.4 5.77377

39 Training 4.6 4.94864

40 Test 4.4 4.66993

41 Training 5 5.05224

42 Test  < 4 5.69583

43A Training 4 4.55733

43B Training 4.2 4.55733

44 Training 4.2 5.02306

46 Training  < 4 3.33966

47 Test  < 4 3.20449

109 Test 7.1 5.72532

110 Test 6.1 5.60888

111 Test 7 5.86738

112 Test 6.9 7.26893

113 Training 7.3 8.15042

114 Training 7.4 6.96995

115 Training 6.5 7.10337

116 Test 7.3 7.04264

117 Training 7.1 6.70553

118 Training 6.6 6.76209

119 Test 5.6 5.86526

120 Training 6.8 6.4697

121 Training 4.4 5.1949

122 Training  < 4 5.27201

123 Test 4.5 4.83226

124 Training 5.7 5.55523

125 Training 6.5 5.67364

126 Test 6.7 5.4366

127 Training 6.9 6.35027

128 Training  < 4 4.33974

129 Training 4.4 3.85812

130 Training 6.4 5.89607

131 Training 7.3 6.43156

132 Training  < 4 5.93841

133 Training 6.9 6.32088

134 Training 7.3 6.37863

135 Training 6.2 6.57981

136 Training 4.7 5.47606

137 Training 5.1 5.53093

Continued
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 4P8C43. We have employed Glide V 8.9 for molecular docking simulations (PDB ID: 4P8C) to analyse compound 
binding for dataset as well as hit molecules (Table 4) (online Supplementary Fig. S8). As DprE1 has two chains, 
chain A (448 residues) and chain B (417 residues). We had taken the precaution before docking that correspond-
ing protein and ligands were processed from Protein preparation wizard and LigPrep respectively. We noticed 
that co-crystal ligand from protein DprE1 shows binding residues with its inbound ligand as His132, Gly133, 
Lys134, Leu317, Val365, Lys367, Cys387 and Lys418. So, it is essential to dock dataset molecules as well as hits 
in order to get correlation between docking results and ligands to serve as inhibitors of enzyme (Table 4). So, we 

Table 5.  Experimental  dataseta employed for Field based 3D-QSAR study along with predicted/ actual 
 pIC50 (µM) values (against) (PLS factor-3). a DprE1  pIC50 is the negative logarithm of the  IC50-concentration 
expressed in molar (M) obtained in the DprE1-inhibition assay; values < 4 were treated as ≈ 4.0 for sake of 
QSAR developments.

Ligand name QSAR set Actual activity Predicted activity

138 Training 6.7 5.87643

139 Training 7 7.10182

140 Test 4.2 4.37926

141 Training 4.1 3.89458

142 Training 6 5.87527

143 Training 6.6 6.16728

149 Training 5.8 5.38632

151 Test  < 4 4.59198

155 Training 5.1 4.83155

156 Test 4.9 5.30381

157 Training 4.5 4.99565

160 Training 4.7 4.11717

161 Training  < 4 3.95283

163 Training  < 4 4.58974

180 Test 7.2 6.5701

181 Training 6.4 6.93056

182 Test 7.3 6.40699

183 Training 7.2 6.47744

184 Training 5.7 5.56804

185 Training 6.2 6.74523

186 Test 5.9 5.3185

187 Training 4.4 5.31995

188 Test 6.5 6.05776

189 Training 5.6 5.37319

190 Test 6.3 6.38775

191 Test 5.7 6.69532

192 Test 6.7 6.88175

193 Training 7 6.00603

194 Training 6.8 6.78083

195 Training 5.7 5.52751

196 Training 6.7 6.855

197 Training 5.7 5.56247

198 Training 4.7 4.3781

199 Training 5.3 5.798

200 Test 4.6 5.90879

201 Test 6.6 6.42449

202 Test 6.4 6.84693

203 Training 5.4 6.5968

204 Training 7 6.16027

205 Test 5 6.76156

206 Training 7 6.83376

207 Training 7.2 6.41214

208 Training 4.3 5.29981

209 Training 4.4 5.1808
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prepared the crystal structures with the co-crystallized ligandY22 for docking simulations. After completion of 
docking, the best docked dataset molecule 151(Fig. 6) was employed further for predictions of molecular tar-
gets other than one which docked by using the free utility “SwissTargetPrediction”. Further, same molecule was 
allowed for ligand based-virtual screening of hits using the “SwissSimilarity” online tool (online Supplementary 
Figs. S4, S6; Figs. 7, 8). By using this utility, we screened almost ASINEX hits (# = 69,3000 molecules) using 
combined method as reported by search algorithm. After, screening of hits, top 9 hits were further visualized for 
their pharmacokinetics characteristics, water solubility, toxicity studies, etc. MDS studies were also performed 
for 151 as well as best ASINEX hit molecule (Desmond 6.4, release 2020) (Figs. 9 and 10). We employed 3 dock-
ing modes HTVS (High throughput virtual screening), SP (standard precision) and XP mode (extra precision) 
for analysis of docking simulations of hits (Table 8). We have also calculated binding energy calculations using 
Prime MM/GBSA module from Schrodinger suite (Table 8).

Absorption, distribution, metabolism, excretion and toxicity predictions for dataset and 
newly identified ASINEX hits. We thoroughly carried out ADMET profiling studies using multiple com-
mercial as well as free software tools including Schrödinger’s Qikprop, admetSAR, SwissADME and Pred-HERG 
(online Supplementary Tables S3–S10). We have calculated in-silico Drug-likeness and medicinal Chemistry for 
top 9 ASINEX molecules by SwissADME. Additionally, hERG blockage studies were also carried using popular 
“Pred-HERG” for new 9 hits. Boiled-egg model study was also incorporated for new hits to study the intestinal 
absorption profile using swissADME tool (online Supplementary Figs. S2, S7). Analysis of pharmacokinetics 
with CYP’s enzymes was done in silico with SwissADME (online Supplementary Table S5). QikProp calculations 
(Table 9) gave us ideas on pharmacokinetic parameters like rule of five, % human oral absorption, O/W coef-
ficient, brain blood barrier permeability and caco cell permeability. For in-silico analysis of carcinogenicity and 
AMES test toxicity profiling were performed with popular online free utility called “admetSAR” V. 2.0 (http:// 
lmmd. ecust. edu. cn/ admet sar2/) (SI Table-S11)32.

Molecular dynamics simulation studies for best dock hits. We have carried out 1.2  ns and 5  ns 
molecular dynamics simulations (MDS) studies for our best dock hits (151:4P8C and ZINC12196803:4P8C 
complexes respectively) using Desmond 3.8 module (release 2017, Schrödinger, LLC, NY) incorporated into 
Schrodinger’s interface in order to check the stability of the complexes (Figs.  9, 10) (online Supplementary 
Figs. S5, S9, S10). For MDS studies, we used the target protein 4P8C only by considering its importance with 
mycobacteria. We make use of OPLS-2005 MM force field for our initial steps during setup of MDS. For simula-
tion of 151:4P8C complex, the counter ion/salt used was Na with concentration of 2.065 mM. Total of 59,725 
atoms were simulated for 1.205 ns with NPT ensemble kept at temperature of 300.0 k (250 numbers of frames 
and 1.01325 bar pressure) using maestro version 11.1.011; 2017. For simulation of ZINC12196803:4P8C com-
plex, we used same protocol as previous but total of 60,861 and 60,625 atoms were simulated for 1.205 (250 
numbers of frames and 1.01325 bar pressure) and 5.008 ns respectively. The trajectory and number of frames 
kept at as obtained. The necessary MDS interactions were recorded from results obtained.

Table 6.  PLS parameters for developed field based 3D-QSAR models.

Statistical parameters

PLS statistics

Factor 1 Factor 2 Factor 3

Number of molecules in the training set 70 70 70

Number of molecules in the test set 30 30 30

Regression coefficient

Training set,  R2 0.4135 0.5906 0.691

Test set,  Q2 0.4354 0.5194 0.5085

Standard deviation (SD) 0.9316 0.7842 0.6865

Root mean square error (RMSE) 0.9 0.83 0.84

Stability 0.867 0.704 0.577

Pearson correlation coefficient (Pearson-r) 0.6683 0.7208 0.7267

Variance ratio (F-value) 47.9 48.3 49.2

Significance level of variance ratio (P-value) 1.94E−09 1.02E−13 8.13E−17

Table 7.  The field based 3D-QSAR statistics for field fractions.

# Factors Gaussian steric Gaussian electrostatic Gaussian hydrophobic
Gaussian Hbond 
acceptor Gaussian Hbond donor

1 0.429 0.081 0.2 0.211 0.079

2 0.4 0.088 0.231 0.196 0.084

3 0.382 0.097 0.235 0.184 0.102

http://lmmd.ecust.edu.cn/admetsar2/
http://lmmd.ecust.edu.cn/admetsar2/
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Results and discussions
Glide based molecular docking analysis. We had docked all the dataset as well as hits into binding 
cavity of protein 4P8C using Glide module V 8.9. We found that the dataset best docked molecule (Fig. 6) had 
docking score (XP mode) of − 9.068 kcal/mol; while that of standards isoniazid (INH = − 6.24 kcal/mol) and 
ethambutol (ETH = − 6.173 kcal/mol) had lesser docking scores (Table 4). We further used best docked dataset 
molecule 151 for ligand based virtual screening using “SwissSimilarity”. We also evaluated the docking score 
analysis for hits and found to be in range of − 5.61 to − 7.862 kcal/mol. The best docked hit ZINC12196803 
(Fig. 8) had docking scores of − 9.437 kcal/mol (XP mode) and − 6.53 kcal/mol (HTVS mode) (Tables 8, 10). 
The molecule 151 had interactions with key amino acids in binding pockets of 4P8C. These were LYS418— 
–(N–C=O–NH) (hydrogen bond), GLY117—(–C=O–) (hydrogen bond) and non-polar interactions with 
THR118,PRO116,LEU115,PHE313 amino acid residues. The ASINEX best docked hit ZINC12196803 obtained 
with 2 side chains hydrogen bonding with TYR60, LYS418 and 1 backbone hydrogen bond with ARG58 amino 
acid (Fig. 8, Table 10). Other interactions includes hydrophobic interactions with ALA417, ARG58, ILE131, 
HIS132, etc. We had utilized same binding pocket as that of mentioned in materials and methods section. Fig-
ure 8 depicts 2D and 3D-interaction diagram for best dock molecules. We obtained RMSD values lesser than 2 Å 
indicating that docking was performed correctly.

Figure 4.  (a–e) Visual representation of atom-based PHASE 3D-QSAR model(compound 1)—(a) electron 
withdrawing, (b) hydrogen bond donor, (c) hydrophobic, (d) negative ionic and (e) others. Blue color cubes 
indicate positive coefficient or increase in activity and red colour cubes indicate negative coefficient or decrease 
in activity (this figure has been visualized from ‘Phase module’ Schrodinger, LLC, NY, V.2020, Available at: 
https:// www. schro dinger. com/).

https://www.schrodinger.com/


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16368  | https://doi.org/10.1038/s41598-022-20325-1

www.nature.com/scientificreports/

MMGBSA (molecular mechanics generalized born surface area) binding energy calcula‑
tions. We had carried out the evaluation of binding energies for all dataset as well as all hits with respect to 
standards such as isoniazid (INH), ethambutol (ETH). We found that best docked molecule 151:4P8C complex 
had MMGBSA dgBind energy of − 59.159 kcal/mol with respects to standards INH (− 30.214 kcal/mol) and 
ETH (− 39.290 kcal/mol). We also calculated binding free energy for ZINC12196803:4P8C complex and it was 
found to be − 70.508 kcal/mol. Our calculations suggested that hit molecule ZINC12196803 had better binding 
free energy and hence better stability rather than standards INH and ETH. Overall, results clarified the fact that 
our hits may have better stability (more negative binding energies) in terms of binding to protein 4P8C.

Evaluation of MDS (molecular dynamics simulations) studies. During molecular docking simula-
tions, the flexibility of protein may not involve in general. Studies pertaining to MDS were initially, obtained 
through Desmond 6.4 module (Schrödinger, LLC, NY, 2020) and finally with Groningen Machine for Chemical 
Simulations (GROMACS v5.1.5) with GROMACS 96-53a6 force  fields46–48. We have analysed the molecular 
dynamics for our best dock hits 151:4P8C and ZINC12196803:4P8C complexes throughout the period of 1.2 ns, 
5 ns (1200 ps to 5000 ps) and upto 100 ns (Figs. 9, 10) to confirm the exact modes of binding and to check 
stability of them. We have simulated both complexes with water molecules. These systems were set at particu-
lar temperature and pressure conditions. We observed that the atom-positional root-mean-square deviation 
(RMSD) plots for both complexes demonstrated stability of complexes throughout the simulation timing of 
1200 ps to 5000 ps (1.2–5 ns) and 100 ns. Both MDS results retained exact interaction patterns as obtained from 
the molecular docking simulations. We noticed that there were fewer fluctuations among the RMSF (root mean 
square fluctuation) plots of 151:4P8C and ZINC12196803:4P8C complexes throughout the period of 1.2–100 ns 
(Fig. 10, SI. Fig. S11). Molecular dynamics simulations are representing closer connections to the physiologi-
cal environmental conditions; and thus, will guide for better understanding of binding patterns. Figures 9, 10, 
depicts timeline representation plots as obtained from Desmond. Supplementary Fig. S11 analyses the stability 
of ZINC12196803:4P8C complex over a period of 100 ns.

Figure 5.  Fields contour maps based on test set compounds. (a) Gaussian electrostatic fields: favored 
electropositive (blue) and disfavored electronegative (red). (b) Gaussian hydrogen bond acceptor field: favored 
(red) and disfavored (magenta). (c) Gaussian Hydrogen bond donor field: favored (purple) and disfavored 
(cyan). (d) Gaussian Steric field: favored (green) unfavorable (yellow). (e) Gaussian Hydrophobic field: favoured 
(yellow) and disfavored (white) (this figure has been visualized from ‘Phase module’ Schrodinger, LLC, NY, 
V.2020, Available at: https:// www. schro dinger. com/].

https://www.schrodinger.com/
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Figure 6.  2D (a) and 3D (b) Ligand interaction diagram with the best docked molecule 151 (this figure has 
been visualized from ‘Glide module’ Schrodinger, LLC, NY, V.2020, Available at: https:// www. schro dinger. com/).

Figure 7.  Structures of screened top 9 compound after virtual screening. 

https://www.schrodinger.com/
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Evaluation of ADMET properties (absorption, distribution, metabolism, excretion and toxic‑
ity predictions). We had calculated predictions of ADMET properties for our dataset as well as ASINEX 
hit molecules. For all docked dataset molecules, we obtained all QikProp (Schrödinger, LLC, NY, 2020) param-
eters within the standard range (Table 9). For our best docked hit molecule ZINC12196803, we obtained great 
QPPCaco cell permeability, 95.815% human oral absorption and 0 violations for Lipinski’s rule of five. The drug 
likeness and medicinal chemistry were also checked for both best docked hits i.e., 151 and ZINC12196803 using 
“SwissADME” online free software. Drug likeness studies showed us that both molecules had no violations for 

Figure 8.  most docked ASINEX hit (XP docking): (a) 2D- and (b) 3D-representation of binding mode for 
ZINC12196803 (this figure has been visualized from ‘Glide module’ Schrodinger, LLC, NY, V.2020, Available at: 
https:// www. schro dinger. com/).

Figure 9.  (a) Showing the protein ligand(4p8c:151) interaction throughout the simulation time of 1.2 ns 
(green-H-bond, purple-hydrophobic contacts, Pink-ionic contacts and Blue-Water bridges). Values more than 
1 suggesting more contacts and corresponding to 100%. (b) A timeline representation of the interactions and 
contacts (H-bonds, Hydrophobic, Ionic, Water bridges).

https://www.schrodinger.com/
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Figure 10.  (a) RMSD Plot Showing the protein ligand interaction throughout the simulation time of 1.2 ns. (b) 
RMSF plot for the target protein selected (for 4P8C:ZINC12196803) [Simulation Graphs using GROMACS, has 
been attached in the SI, for 100 ns results].

Table 8.  Molecular docking and binding free energy analysis for studies ZINC hits. Significant values are 
given in bold.

Entry

PDB ID:4P8C

docking score (sp) kcal/mol
docking score (xp) kcal/
mol

docking score (HTVS) 
kcal/mol

MMGBSA dG bind (sp 
complex) kcal/mol

ZINC19500480 − 7.076 − 6.58 − 5.95 − 61.073

ZINC19500487 − 7.465 − 6.157 − 6.369 − 63.63

ZINC07426404 − 7.274 − 7.288 − 6.337 − 58.203

ZINC02252037 − 6.173 − 6.03 − 6.438 − 45.513

ZINC03157457 − 5.74 − 5.08 − 5.357 − 44.357

ZINC03153031 − 5.61 − 6.274 − 5.86 − 46.604

ZINC19500488 − 7.595 − 6.63 − 5.558 − 55.149

ZINC12196803 − 7.862 − 9.437 − 6.53 − 70.508

ZINC19447057 − 6.531 − 5.842 − 5.901 − 52.235

Table 9.  ADME predictions for computed for ZINC hits by  QikProp*. Significant values are given in bold. 
* Recommended ranges are tabulated in supplementary information.

Entry #stars QPlogPo/w QPPCaco QPlogBB #metab QPlogKhsa % Human oral absorption Rule of five

ZINC19500480 0 1.795 366.379 − 0.92 3 − 0.302 83.342 0

ZINC19500487 0 2.311 342.159 − 1.249 3 − 0.087 85.834 0

ZINC07426404 0 2.955 422.838 − 1.154 4 0.07 91.253 0

ZINC02252037 0 2.902 1180.359 − 0.649 1 0.272 100 0

ZINC03157457 0 2.65 1181.999 − 0.546 1 0.158 100 0

ZINC03153031 0 3.447 1174.892 − 0.73 1 0.39 100 0

ZINC19500488 0 1.868 279.779 − 1.019 3 − 0.234 81.675 0

ZINC12196803 0 2.203 1340.411 − 0.391 3 − 0.254 95.815 0

ZINC19447057 1 3.08 1701.796 − 0.144 0 0.252 100 0
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popular Lipinski’s rule, Ghose, Veber and Egan  rules49. The bioactivity score for 151 was found to be 0.55, while 
synthetic accessibility as 2.93. SwissADME studies displayed that out dataset molecule 151 has solubility in 
water. As it falls in yellow region of boiled egg model, it may have probability to cross the blood–brain barrier 
(BBB). In order to explore other targets (for which these 151 molecules may act), we used “SwissSimilarity” tool. 
Our “SwissTargetPredition" analysis for 151 resulted into probable activities on 4 different classes (7% unclas-
sified, 33% protease, 27% transporters and 33% on membrane receptors. Further, newly ligand based virtual 
screening hits were subjected for docking simulations. Among them, the best docked hit ZINC12196803 had 
same solubility (water soluble) and bioactivity score (0.55) as like 151. Our pharmacokinetic studies carried out 
using “SwissADME” suggested that all our newly searched hits had mixed profiling for BBB and p-gp substrate. 
All hits were found to be non-inhibitors for CYP1A2, CYP2D6 and CYP2C9 (except one). We have obtained 
mixed profiling for CYP2C19 inhibitions. Boiled egg model predictions were also depicted in mixed profiling of 
absorptions. We had also screened all hits for hERG blockade using online free tool called “pred-hERG” (online 
Supplementary Fig. S10). Our in-silico study for hERG blockade showed that ZINC12196803 molecule had no 
signs of cardio-toxicity as depicted in SI.

Finally, we have evaluated all new ASINEX hits for toxicity analysis using “admetSAR” (online Supplemen-
tary Table S11). With exception of 2 hits, all hits were found to be non-Ames toxic. All hits were also resulted in 
non-eye corrosion and non-eye irritation properties. We noticed that our predicted hit molecule ZINC12196803 
may not have any kinds of toxicities as calculated from “admetSAR”. Acute oral toxicity for hit was also found 
to be 2.18 kg/mol.

CPH (common pharmacophore) analysis. We have developed 14 CPH models, among them CPH 
AAAHR_1 (Fig.  3a) imparted good scores for modelling parameters like survival score of 5.93, phase hypo 
score of 1.36 and site score of 0.895. As top ranked CPH AAAHR_1 satisfied the standard criteria, we further 
employed this for 3D-QSAR studies. Figure shows how we aligned all ligands to top ranked CPH AAAHR_1 
(Phase, 2020, Schrödinger, LLC, NY). Other CPH models with detailed scores are showed in Table. Our top 
ranked CPH AAAHR_1 shows 3Hydrogen bond acceptor (A), 1 hydrophobic group (H), and 1 aromatic ring 
(R) features as generated by Phase utility (Table 1).

Evaluation of atom‑based and field‑based 3D‑QSAR models with statistical parameters. For 
effective reliability in generated atom- as well as field-based 3D-QSAR models, we utilized both internal as well 
as external validation parameters. Leave-one-out (LOO) cross-validation method was implemented in order to 
access the robustness, stability and predictive attributes of developed 3D-QSAR models. We analysed both mod-
els by using 32 and 30 test compounds for atom based- and field based-3D-QSAR models respectively (Tables 2 
and 6). The atom based QSAR models were developed with PLS factor of 4, while in case of field based it was 
3. The internal validation parameters for both atoms based- and field based-3D-QSAR models are depicted in 
tables. Both models were also evaluated with external validation parameters and for both they were obtained 

Table 10.  Comparative ligand–amino acid interactions carried with molecular docking for top 9 ASINEX 
HITS –for 4P8C(1–9), i.e. ZINC19500480,ZINC19500487,ZINC07426404,ZINC02252037,ZINC03157457,
ZINC03153031, ZINC19500488,ZINC12196803, ZINC19447057 and standards (BTZ043, ETHAMBUTOL, 
INH) respectively.

Sr. no Ligand/ASINEX hit Amino acids involved during binding with target PDB ID: 4P8C

1 ZINC19500480 GLY 117 (H-bonding); LYS 418 (Pi-cation); TYR 60 (H-bonding); SER 58 (unspecified residue); SER59; TYR415; ALA417; VAL121; 
ILE131; CYS387; VAL365;PRO116;TYR314; LEU115; SER228; LYS367; HIS132; ASN 385; THR118; TRP16 (Hydrophobic)

2 ZINC19500487 GLY 117 (H-bonding); LYS 418 (Pi-cation); TYR 60 (H-bonding); SER 58 (unspecified residue); SER59; TYR415; ALA417; VAL121; 
ILE131; CYS387; VAL365; PRO116; TYR314; LEU115; SER228; LYS367; HIS132; ASN 385; THR118; TRP16 (Hydrophobic)

3 ZINC07426404 GLY 117 (H-bonding); HIS132(Hydrophobic; H-bonding); GLN334; CYS387; THR118; TYR60;ALA417;SER59; LYS418;VAL121;ILE131; 
PRO116;GLY133; PHE369;SER227; VAL365; ASN385; LEU317; LEU363

4 ZINC02252037 GLY 117 (H-bonding);ASN385(H-bonding); THR118; TYR60;ALA417;SER59; LYS418;VAL121;ILE131; PRO116;GLY133; 
PHE369;SER227; VAL365; ASN385; LEU317; LEU363

5 ZINC03157457 HIS132 (H-bonding); THR118; TYR60;ALA417;SER59; LYS418;VAL121;ILE131; PRO116;GLY133; PHE369;SER227; VAL365; ASN385; 
LEU317; LEU363

6 ZINC03153031 GLY 117 (H-bonding); TYR314(Hydrophobic); ASN385(H-bonding); VAL121;ILE131; PRO116;GLY133; PHE369;SER227; VAL365; 
ASN385; LEU317; LEU363

7 ZINC19500488 TYR60 (H-bonding); GLY 117 (H-bonding); PRO116;GLY133; PHE369;SER227; VAL121; ASN385; LEU317; LEU363; TYR415; ARG58; 
SER228;PRO316

8 ZINC12196803 LYS418(H-bonding); TYR60 (H-bonding);ARG58(H-bonding); VAL121;ILE131; PRO116;GLY133; PHE369;SER227; VAL365; ASN385; 
LEU317; LEU363

9 ZINC19447057 HIS132 (H-bonding); ILE131; PRO116; VAL121;ARG58;TYR415;VAL365

Std BTZ043 TYR60 (H-bonding); GLY 117 (H-bonding); HIS132; VAL121;ILE131; PRO116; LEU363; TYR415; LEU317; ASN364; VAL365; LYS418

Std ETHAMBUTOL HIS315; GLY117; LEU317; SER246; TYR314 (Pi-Cation); ;ALA229; ALA244; VAL245; ASN364; PRO316; TRP230;VAL365; LYN134 
(H-bonding); PHE313

Std INH GLY336; CYS387; GLY117; VAL365; LYN134; ASN385; GLY133; SER228; PHE369; LYS367;HIS132; TYR415; LYS418

Co-crystallized Y22 GLY 117; LYS 418; TYR 60; SER 58; SER59; TYR415; ALA417; VAL121; ILE131; CYS387; VAL365;PRO116;TYR314; LEU115; SER228; 
LYS367; HIS132; ASN 385; THR118; TRP16
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within standard criteria. For both the models, software generated scatters are shown in (Fig. 11). Finally, we 
noticed that our developed 3D-QSAR models had very high statistical significance.

3D‑QSAR visualization. Visualization for atom‑based 3D‑QSAR. It can be seen that biological activities 
could be well correlated with structural patterns of the core moiety responsible for activity in the forms of oc-
clusion maps. From the literature regarding atom based 3D-QSAR studies, blue occlusion maps/contours indi-
cated incremental biological activity; while the red coloured occlusion maps/cubes corresponds to decrement 
(Schrodinger, LLC, NY, 2020). We have selected representative molecule 1 for aligning on top ranked 5 points 
CPH AAAHR_1 for effective visualization of QSAR occlusion maps. The occlusion maps surrounding 2,4-di-
fluorobenzene motif showed blue occlusion maps indicating favoured region for electron withdrawing groups 
(Fig. 4a). While the entire remaining molecule represented mixed regions for electron withdrawing substitutions 
(EWS) (Fig. 4a). In case of occlusion maps corresponding to hydrogen bond donors (HBD); majority of red 
coloured maps (disfavoured regions) near to 2,4-difluorobenzene motif and imidazolidine-2,4-dione core were 
noticed (Fig. 4b). Figure 4c demonstrates majority of mixed regions for Hydrophobic substitutions (HS). We 
have observed red contours around methyl attached to imidazolidine-2,4-dione core indicating negative partici-
pations for negative ionic substitutions (Fig. 4d). The contours associated with other substitutions are depicted 
in Fig. 5. We have tabulated PLS parameters and atom type fractions in tables.

Analysis of field based‑3D QSAR contour maps. For effective analysis of contour maps produced for 3D-QSAR, 
we selected molecule 1. We noticed that Gaussian Electrostatic field contour maps (Fig. 5a) surrounding (2,4-dif-
luorobenzene –C=O–) attached to 2,4-dioxoimidazolidin core showed red contours indicating disfavoured elec-
tronegative regions. While, blue contour maps around 2,4-dioxoimidazolidin suggested favoured electropositive 

Figure 11.  Graphical presentation of Actual versus (X-axis) Predicted pIC50 (Y-axis) of (a) training set 
molecules and (b) test set molecules for (1) Atom based, (2) Field based-3D QSAR models (this figure has been 
visualized from ‘Phase module’ Schrodinger, LLC, NY, V.2020, Available at: https:// www. schro dinger. com/).

https://www.schrodinger.com/


18

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16368  | https://doi.org/10.1038/s41598-022-20325-1

www.nature.com/scientificreports/

substitutions. Gaussian Hydrogen bond acceptor field contours (Fig. 5b) around 2,4-difluorobenzene showed 
disfavoured (magenta) regions. Red occlusion maps around (Ar–C=O-2,4-dioxoimidazolidin core depicted 
favoured Gaussian Hydrogen bond acceptor fields. Gaussian Hydrogen bond donor occlusion maps (Fig. 5c) 
near to 2,4-difluorobenzene demonstrated disfavoured (cyan) regions, while occlusion maps near to nitrile 
attached arene motif showed favoured purple coloured maps. Gaussian Steric field occlusion maps (Fig. 5d) at 
2,4-difluorobenzene depicting both favored (green) unfavorable (yellow) regions for substitutions. White occlu-
sion maps surrounding the entire (2,4-difluorobenzene –C=O–) attached to 2,4-dioxoimidazolidin core indi-
cates disfavoured regions for Gaussian Hydrophobic fields (Fig. 5e). All software generated occlusion maps are 
shown in the figure. Tables, depicts field fractions and statistical parameters for generated field-based 3D-QSAR 
models.

Relevance of obtained validation parameters with reliability of 3D‑QSAR models. The Modeling statistical 
parameters of the selected model have passed the acceptability criteria proposed by Golbraikh and Tropsha as 
depicted with  Q2 > 0.5,  R2

train > 0.6,  R2
test > 0.6, ∣r2

0 −  r2
0′∣∣ < 0.3, 0.85 < k < 1.15, 0.85 < k′ < 1.15,  (r2 −  r0

2)/r2 < 0.1 and 
 (r2 − r′02)/r250.  r2 is the fraction of the total variation in the dependent variables that is explained by the regression 
equation. Higher  r2 closer to 0.9 but 0.6, is considered as good indication of QSAR model. In case of atom-based 
3D-QSAR model we obtained lower RMSE 0.86. It has been widely accepted that a low RMSE value indicates 
that the simulated and observed data are close to each other showing a better accuracy. Thus lower the RMSE 
better is model performance. Further, SD is the standard deviation about the regression line. This is a measure 
of how well the function derived by the QSAR analysis predicts the observed biological activity. The smaller the 
value of SD the better is the QSAR. In cases of our developed 3D-QSAR models, the best models retained with 
lower values of SD (SD for atom-based 3D-QSAR: 0.419; SD for field-based 3D-QSAR: 0.6865). The statistical 
significance of the regression model can be assessed by means of the Fisher statistic (F). The F-value or variance 
ratio is the ratio between explained and unexplained variance for a given number of degrees of freedom, respec-
tively p and (n = p = 1), where n are the chemicals and p the model descriptors. For our set of developed models in 
atom-based 3D-QSAR, the one we selected as best model retained with F value of 119.7. Similarly, one can ana-
lyse the relevance of such statistical significances using the description attached in the supporting information.

Evaluation of QSARINS based MLR models. The top most model with higher statistical significance, 
as demonstrated by internal and external validations calculations, was further analysed for its interpretations. 
The developed model-1 is represented by the below MLR equation:

Multivariate models. Model 1 (70% training: 30% test set, 6 parametric)

QSAR model interpretation. In currently developed 6 parametric model-1 (1) from QSARINS, the descrip-
tor ATSC7m represents Centred Broto-Moreau autocorrelation of lag 7 weighted by mass. This descriptor has 
negative correlations with the biological activity (BA) as denoted by examples such as [141  (pIC50 = 4.1), 142 
 (pIC50 = 6.0)] and [183  (pIC50 = 7.2), 185  (pIC50 = 6.2)]. The descriptor, AATSC4v denotes Average centered 
Broto-Moreau autocorrelation—lag 4/weighted by van der Waals volumes and found to have negative correla-
tions with BA, which can be seen with examples such as [112  (pIC50 = 6.9), 118  (pIC50 = 6.6)], [122  (pIC50 = 4), 
123  (pIC50 = 4.5)], etc. Descriptors, Geary autocorrelation of lag 4 weighted by ionization potential (GATS4i) 
and Sum of E-State descriptors of strength for potential hydrogen bonds of path length 6 (SHBint6) were rep-
resented decreasing trends with the decrease in the values of descriptors. Further, we noticed that descriptors 
SpMax5_Bhe (Largest absolute eigenvalue of Burden modified matrix—n 5/weighted by relative Sanderson elec-
tronegativities) and minHBint5 were positively correlated with the BA. The model also contained 2D atom type 
electro-topological state descriptor minHBint5 which is defined as Minimum E-State descriptors of strength 
for potential Hydrogen Bonds of path length 5 (minHBint5). These descriptors indicated the importance of 
hydrogen bonds of path length 5. Examples of compounds following this trend includes, [114  (pIC50 = 7.4), 115 
 (pIC50 = 6.5)], [116  (pIC50 = 7.3), 122  (pIC50 = 4)], etc.

Full details of statistical analysis, graphs of experimental vs predicted  pIC50 values for model 1 (b) Wil-
liam’s plot for model 1; (c) Insubria plot for model 1 (d) Y-scrambling plot for model 1 have been enclosed in 
the supporting information (please refer online Supplementary Fig. S13). Furthermore, values for the various 
cross-validation properties supported statistical robustness of GA-MLR QSAR model with  (R2

cv,  RMSEcv,  MAEcv, 
CCC cv, and  Q2

LMO). Higher values for  R2
ex,  Q2F1,  Q2F2,  Q2F3, Golbraikh and Tropsha criteria and CCC ex depicted 

the external predictive power of the developed models 1 (please refer online Supplementary, Tables S12–14)51.
Therefore, creating QSAR models with various molecular descriptors and broad chemical spaces will undoubt-

edly offer insightful information on the causes of variations in the anti-DPRE1 activity of hydantoin-based inhibi-
tors. We acknowledge the limits of the QSAR models that have been established so far, but better models would 
result from having more descriptor calculation data, accurate modelling, and fewer statistical  interferences36. 
Consequently, each model generated here demonstrates the integration of all chosen chemical descriptors and 
thus forecasts potential  pIC50 values for the aforementioned analogues.

(1)

pIC50 = −10.5590(±7.1202)− 0.0005(±0.3267) ∗ ATSC7m

− 0.1252(±0.2216) ∗ AATSC4v − 4.4124(±0.2212) ∗ GATS4i

+ 5.7006(±0.4025) ∗ SpMax5_Bhe − 0.1334(±0.4632) ∗ SHBint6

+ 0.2850(±0.5919) ∗minHBint5
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Conclusion
To conclusion, we have developed statistically robust QSARINS based GA-MLR, atom-based as well as field 
based-3D-QSAR models with robust training set,  R2 > 0.69 and test set,  Q2 > 0.50 parameters. Our generated top 
ranked 5 point hypothesis AAAHR_1, which had 3 hydrogen bond acceptors (A), 1 hydrophobic group (H), and 
1 aromatic ring (R) features depicted best survival score among 14 developed hypotheses as generated by Phase 
utility. Our dataset best docked molecule, 151 had goo docking scores (XP mode) of -9.068 kcal/mol; while that 
of standards isoniazid (INH = − 6.24 kcal/mol) and ethambutol (ETH = − 6.173 kcal/mol) had lesser docking 
scores than it. The molecule 151 had interactions with key amino acids in binding pockets of enzyme DPRE1 
(4P8C). These were found to be LYS418— –(N–C=O–NH) (hydrogen bond), GLY117—(–C=O–)(hydrogen 
bond) and non-polar interactions with THR118,PRO116,LEU115,PHE313 amino acid residues. Finally, our best 
docked 151was queried for identifications of new hits using “SiwssSimilarity”. Among the top 9 ASINEX hits, 
the hit molecule ZINC12196803 had best binding energies and docking score (docking score = − 9.437 kcal/mol, 
MMGBSA dgBind = − 70.508 kcal/mol). We observed that RMSD plots for 151:4P8C and ZINC12196803:4P8C 
complexes demonstrated good stabilities throughout the simulation timings of 1200 ps to 10,000 ps (1.2–100 ns). 
Our pharmacokinetic studies carried out using SwissADME, QikProp, pred-hERG and admetSAR demonstrated 
that all our newly searched hits had mixed profiling for BBB and p-gp substrate. All hits were found to be non-
inhibitors for CYP1A2, CYP2D6 and CYP2C9 (except one). Finally, we can say that our different combinations 
of computational techniques for identifications of new DPRE1 inhibitors may pave new way towards future 
developments.

Data availability
The dataset used in the manuscript is publicly available from below repositories. (1) Repository Name: Protein 
Database Bank; Deposited Date by source authors: 2014-03-31; Released Date: 2014-12-10; Accession Number: 
https:// doi. org/ 10. 2210/ pdb4P 8C/ pdb; Deposition by original Author(s): Neres, J., Pojer, F., Cole, S.T. Macro-
molecular structure: 4p8c [link to the repository: https:// www. rcsb. org/ struc ture/ 4p8c] and originally deposited 
from article, https:// pubmed. ncbi. nlm. nih. gov/ 25427 196/. (2) Other Data can be made available from authors 
with reasonable request.
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