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An evaluation of how connectopic 
mapping reveals visual field maps 
in V1
David M. Watson * & Timothy J. Andrews 

Functional gradients, in which response properties change gradually across the cortical surface, have 
been proposed as a key organising principle of the brain. However, the presence of these gradients 
remains undetermined in many brain regions. Resting-state neuroimaging studies have suggested 
these gradients can be reconstructed from patterns of functional connectivity. Here we investigate the 
accuracy of these reconstructions and establish whether it is connectivity or the functional properties 
within a region that determine these “connectopic maps”. Different manifold learning techniques 
were used to recover visual field maps while participants were at rest or engaged in natural viewing. 
We benchmarked these reconstructions against maps measured by traditional visual field mapping. 
We report an initial exploratory experiment of a publicly available naturalistic imaging dataset, 
followed by a preregistered replication using larger resting-state and naturalistic imaging datasets 
from the Human Connectome Project. Connectopic mapping accurately predicted visual field maps 
in primary visual cortex, with better predictions for eccentricity than polar angle maps. Non-linear 
manifold learning methods outperformed simpler linear embeddings. We also found more accurate 
predictions during natural viewing compared to resting-state. Varying the source of the connectivity 
estimates had minimal impact on the connectopic maps, suggesting the key factor is the functional 
topography within a brain region. The application of these standardised methods for connectopic 
mapping will allow the discovery of functional gradients across the brain.

Protocol registration The stage 1 protocol for this Registered Report was accepted inprinciple on 19 
April 2022. The protocol, as accepted by the journal, can be found at https:// doi. org/ 10. 6084/ m9. figsh 
are. 19771 717.

Functional gradients are an important organising principle in the  brain1. The key feature underlying these gradi-
ents is a gradual change in preferred stimulus or response parameters that is topographically mapped across brain 
regions. Gradients are well described in primary sensory regions, such as retinotopic maps in visual  cortex2–4, 
somatotopic maps in somatosensory  cortex5,6, and tonotopic maps in auditory  cortex7–9. Functional gradients 
have also been proposed outside of primary sensory regions, including topographic maps of real-world object 
 size10 and  animacy11 in the ventral visual stream, and maps of  numerosity12 and multisensory  integration13 in 
the dorsal visual stream. Nevertheless, the majority of research to date has regarded regions outside of primary 
sensory cortices as comprising distinct parcels or  modules14, and the role of underlying functional gradients 
has been frequently overlooked (although  see15,16). Consequently, functional gradients throughout many brain 
regions are poorly understood, while others yet may remain entirely undiscovered. While there are established 
paradigms for measuring maps in primary sensory regions, such as visual field mapping in visual  cortex17,18, it 
is often unclear what tasks would be required to estimate gradients in other regions.

The function of a brain region is closely tied to its connectivity with other regions, such that functionally 
similar neurons may also be expected to show similar connectivity  patterns19,20. Consequently, the topographic 
organisation of brain functions may be similarly reflected in a topographic organisation of  connectivity21, yielding 
so-called “connectopic”  maps22,23. As such, functionally similar points within a brain region may be represented 
close to one another within the corresponding connectivity space, while functionally dissimilar points may appear 
more distant. Thus, each of these points may be distributed along a manifold within the connectivity space, 
with the principal dimensions of that manifold corresponding to the principal functional gradients underpin-
ning that brain region. This implies that functional gradients may be reconstructed from connectivity patterns 
by extracting the principal dimensions from within the connectivity space. Particular focus has been given to 
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manifold learning techniques that extract non-linear  dimensions24,25. By applying manifold learning to resting-
state functional connectivity patterns, previous studies have identified coarse-scale gradients spanning the whole 
 brain16,25, as well as local gradients within brain regions including the  striatum26,  hippocampus27, and primary 
sensory  regions22,28. The same techniques can also be applied to recover functional gradients from structural 
 connectivity29. Thus, connectopic mapping provides a potential method for characterising functional gradients 
without necessarily requiring prior knowledge of those gradients or a specific task to elicit them.

Nevertheless, there remain a number of open questions regarding the efficacy and practicalities of connec-
topic mapping. Firstly, previous studies have not provided ground-truth estimates of the functional gradients 
to benchmark the connectopic maps against. For instance, while Haak and  colleagues22 demonstrated that con-
nectopic mapping can reconstruct retinotopic maps in primary visual cortex, they did not have access to maps 
estimated directly from traditional visual field mapping techniques to compare these reconstructions against. 
Consequently, it remains unclear how accurately the functional gradients are reconstructed in each individual. 
Secondly, previous connectopic mapping studies have exclusively measured functional connectivity in the brain at 
rest. While resting-state estimates are a common choice, they have also been criticised as representing an unnatu-
ral cognitive state that may not generalise well to more active  states30. An alternative approach is to measure 
functional connectivity during naturalistic stimulation (e.g. movie-watching)31, and indeed such paradigms may 
yield more reliable connectivity patterns in some  circumstances32,33. Finally, many algorithms exist for extract-
ing the principal dimensions of the connectivity space, yet a comprehensive comparison between them remains 
lacking. Previous studies have primarily employed spectral  embedding22,26,28,29 and diffusion  map16,27 manifold 
learning techniques, but many other such techniques exist. Manifold learning techniques will likely outperform 
linear embeddings if the representation is non-linear, but linear techniques are typically simpler and may still 
perform well if the representation is linear.

Here, we provide a comprehensive assessment of connectopic mapping for reconstructing local functional 
gradients, using the retinotopic maps in primary visual cortex as a test case. We compare the performance of 
multiple commonly used dimensionality reduction techniques by benchmarking the reconstructions against 
retinotopic maps derived from traditional visual field mapping techniques. We give particular focus to spectral 
embedding as this has previously been applied to reconstructing gradients in sensory  regions22,28, though we also 
consider a number of other linear embeddings and manifold learning algorithms. In an initial experiment, we 
perform exploratory analyses of a publicly available naturalistic-imaging  dataset34. We then provide a preregis-
tered replication experiment using both resting-state and naturalistic-imaging data obtained from the Human 
Connectome  Project35. If connectopic mapping provides a robust reconstruction of the underlying functional 
gradients, we would expect a high degree of correspondence between the maps estimated from connectivity and 
those-measured directly by visual field mapping. By developing standardised connectivity methods, it will be 
possible to determine whether topographic maps are a ubiquitous organising principle across the brain.

Results
Experiment 1. We first performed exploratory analyses of 15 subjects obtained from the publicly available 
StudyForrest naturalistic-imaging MRI  dataset34,36,37 (https:// www. study forre st. org/). This includes approxi-
mately 2 h of movie-watching data plus retinotopic mapping scans for each subject. We first extracted visual field 
maps in each subject via a travelling-wave  analysis17 of the retinotopy data. These were used to define individu-
alised V1 regions of interest (ROIs) on the cortical surface, identified by tracing along the phase reversals in the 
polar angle map. The eccentricity and polar angle phase maps within V1 also served as ground-truth estimates 
of the visual field maps, which the connectopic maps could be compared against.

Next, we performed connectopic mapping within each V1 ROI in each subject, adapting the methods of Haak 
and  colleagues22. The analysis pipeline is illustrated in Fig. 1. First, the movie-watching data were split into odd 
and even scan runs to allow cross-validated parameter selection for the dimensionality reduction algorithms 
(where necessary). For each data split, timeseries were concatenated over scan runs yielding approximately 1 h 
of data per split. We extracted the timeseries within all subcortical voxels and cortical surface vertices. These 
were then split into those surface vertices within the V1 ROI versus all surface vertices and subcortical voxels 
outside the ROI. Because the number of the non-ROI vertices and voxels exceeds the number of timepoints, 
we losslessly compressed this data via principal component analysis, retaining one fewer components than the 
number of timepoints so that 100% of the variance remained explained. This amounts to rotating the samples 
within the feature space and removing the unused dimensions, and aids the computational tractability of later 
processing stages. The timeseries were then correlated between all pairwise combinations of V1 vertices and 
non-V1 principal components. This yielded a matrix of connectivity fingerprints representing the functional 
connectivity profile of each V1 vertex.

The intuition of connectopic mapping is that functional gradients within the ROI correspond to principal 
dimensions of variation within the connectivity space. Gradients can be reconstructed by embedding the high-
dimensional connectivity fingerprints into a lower-dimensional space and extracting the initial components. 
Here, we retained the first two components, which are expected to correspond to the eccentricity and polar 
angle maps. Where necessary, parameter selection for a given algorithm was performed via cross-validation 
using a Bayesian optimisation routine to maximise the prediction accuracy. Figure 2 illustrates retinotopic and 
connectopic maps in an example subject. All of the dimensionality reduction techniques captured a component 
following an anterior–posterior gradient which corresponded well to the retinotopic eccentricity map (Fig. 2a), 
as well as a component following an inferior-superior gradient which corresponded to the retinotopic polar 
angle map (Fig. 2b).

We next tested the prediction accuracies of each algorithm by correlating the connectopic maps estimated 
from the movie-watching with the ground-truth retinotopic maps estimated from the visual field mapping 
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(Fig. 3). Because there is a sign ambiguity in the connectopic maps we took the absolute correlation values. We 
first considered the spectral embedding algorithm, which has previously been shown to reconstruct gradients in 
sensory regions including primary visual  cortex22. We ran variants based on both weighted and unweighted ver-
sions of both radius and nearest neighbours (kNN) graphs, as well as a weighted fully-connected graph (see Meth-
ods). The resulting prediction accuracies for each variant are illustrated in Fig. 3a. Accuracies appeared highest 
for the nearest neighbour approach, and did not appear substantially different between weighted and unweighted 
variants. In all cases, correlations were significantly greater than zero (one-sample t-tests; all p < 0.001). To com-
pare between the variants, we entered the correlations into a two-way repeated-measures ANOVA with factors of 
map (eccentricity, polar angle) and graph type. This revealed a significant main effect of map type due to overall 
higher correlations for eccentricity than polar angle (F(1, 14) = 8.20, p = 0.013, η2P = 0.37, η2G = 0.18). There was 
also a significant main effect of graph type (F(1.59, 22.20) = 16.18, p < 0.001, η2P = 0.54, η2G = 0.11); post-hoc Tukey 
contrasts revealed that correlations for the nearest neighbour variants were significantly higher than the radius 
and fully-connected variants (all p < 0.001), while there were no significant differences between the radius and 
fully-connected variants (all p > 0.05), nor between weighted and unweighted variants (all p > 0.05). Finally, there 
was no significant interaction (F(1.94, 27.19) = 2.43, p = 0.108, η2P = 0.15, η2G = 0.01). Thus, all variants of spectral 
embedding predicted the retinotopic maps above chance, but the nearest neighbour approach performed best, 
and there was no clear benefit to weighting the graphs.

We next considered a number of other commonly used dimensionality reduction techniques (Fig. 3b), includ-
ing linear embeddings (PCA and ICA) and various other manifold learning approaches: kernel PCA, locally 
linear embedding (LLE), local tangent space alignment (LTSA), diffusion maps, Isomap, and t-distributed sto-
chastic neighbourhood embedding (t-SNE). For the kernel PCA, we employed two commonly used kernels: a 
second-order polynomial kernel, and a radial basis function (RBF) kernel. Again, one-sample t-tests revealed 
that correlations with the retinotopic maps were significantly greater than zero in all cases (one-sample t-tests; 
all p < 0.001). Furthermore, paired-samples t-tests revealed significantly higher correlations for the eccentric-
ity than the polar angle maps for all algorithms (all p < 0.05) except Isomap (t(14) = 1.27, p = 0.225) and t-SNE 
(t(14) = 1.66, p = 0.119).

Prediction accuracies generally appeared higher for the manifold learning than the linear embedding meth-
ods. To compare accuracies between algorithms, we entered the correlations into a two-way repeated measures 
ANOVA with factors of map and algorithm type. For spectral embedding, we selected the unweighted nearest 
neighbour approach as one of the better performing variants. The main effect of map type was significant (F(1, 
14) = 11.00, p = 0.005, η2P = 0.44, η2G = 0.24) due to higher correlations for eccentricity than polar angle maps. There 
was also a significant main effect of the algorithm type (F(3.01, 42.08) = 25.23, p < 0.001, η2P = 0.64, η2G = 0.16); 

Figure 1.  Connectopic mapping pipeline. Functional MRI timeseries, comprising T timepoints, are split 
between the N vertices within V1 versus the M cortical vertices and subcortical voxels outside V1. The 
non-V1 timeseries are reduced in dimensionality via a lossless principal component analysis, retaining one 
fewer components than the number of timepoints (T-1). The V1 and compressed non-V1 timeseries are 
then correlated to derive the connectivity space. Dimensionality reduction is applied to this space and two 
components are retained, yielding the connectopic maps which are expected to correspond to the eccentricity 
and polar angle maps respectively. Prediction accuracy is assessed by correlating the connectopic maps with 
retinotopic maps estimated by traditional visual field mapping.
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post-hoc Tukey contrasts (Fig. 3c) revealed that prediction accuracies were significantly lower for the PCA, ICA, 
and kernel PCA algorithms than for the other manifold learning techniques (all p < 0.001). There was also an 
interaction between the map and algorithm type (F(2.47, 34.61) = 6.61, p = 0.002, η2P = 0.32, η2G = 0.05) reflecting 
a greater difference between algorithms for the polar angle than for the eccentricity maps. We also assessed the 
relative similarities of the algorithms by correlating the connectopic maps between them (Fig. 3d). Similar to the 
prediction accuracies, this indicated that the algorithms fell into two broad groups: the linear embeddings and 
kernel PCAs produced relatively similar gradients to one another, and the remaining manifold learning methods 
also appeared similar to one another, but gradients were less similar between the two groups. In summary, the 
manifold learning approaches generally outperformed the linear approaches (PCA and ICA), especially when 
predicting the polar angle maps. Both variants of the kernel PCA (polynomial and RBF) performed more poorly 
and did not differ significantly from the linear PCA, suggesting that neither of these kernels were able to suf-
ficiently capture the non-linearities in the data.

In all of the previous analyses, the connectivity fingerprints were estimated between V1 vertices and all 
cortical vertices plus subcortical voxels throughout the rest of the brain. To test how the source of connectivity 
information affects the estimated connectopic maps, we recalculated the connectivity fingerprints by correlat-
ing the V1 timeseries with the timeseries from either just the cortical vertices or just the subcortical voxels. We 
repeated our analyses with the spectral embedding (unweighted nearest neighbour), diffusion map, and Isomap 
algorithms based on these new fingerprints (Fig. 3e). Prediction accuracies remained high (one-sample t-tests: all 
p < 0.001) and did not appear substantially different to the original analyses. This was surprising as we expected 
the connectopic map with the cortical vertices to be a better predictor of the functional organisation.

A possible explanation for this result is that the key factor in the connectopic mapping is the topographic 
organisation of the functional responses within the region of interest, rather than connectivity with the rest of 
the brain. To test this possibility, we performed two further variants of our analyses. Firstly, we estimated con-
nectivity fingerprints using signals from all cortical vertices plus subcortical voxels (as per the main analyses), 
but first substituted the non-V1 timeseries with normally distributed noise matched in mean and variance to 
the original timeseries. Secondly, we estimated within-ROI fingerprints by correlating each of the V1 timeseries 
with each other, entirely omitting timeseries outside of V1. Again, both variants produced similar results to the 
original analyses (Fig. 3e). In both cases, prediction accuracies remained high (one-sample t-tests: all p < 0.001). 

Figure 2.  Experiment 1: Retinotopic and connectopic maps of (a) eccentricity and (b) polar angle in the left 
hemisphere of an example subject. The top-left plot in each panel illustrates retinotopic maps measured by 
traditional visual field mapping techniques. The remaining plots illustrate maps reconstructed from connectivity 
patterns measured during movie-watching. Spectral embedding is illustrated for the unweighted nearest 
neighbour variant.
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We entered the correlations into a three-way repeated-measures ANOVA with factors of map and algorithm 
type, and connectivity source (cortex + subcortex, cortex, subcortex, noise, and within-V1). This revealed sig-
nificant main effects of map type (F(1, 14) = 6.06, p = 0.027, η2P = 0.30, η2G = 0.13) and algorithm type (F(1.14, 
16.01) = 8.31, p = 0.008, η2P = 0.37, η2G = 0.01); post-hoc Tukey contrasts revealed overall higher correlations for 
Isomap than spectral embedding (p = 0.001) and diffusion maps (p = 0.028). However, the main effect of the 
connectivity source was not significant (F(1.20, 16.87) = 3.01, p = 0.095, η2P = 0.18, η2G < 0.01). Finally, there were 
significant interactions between the map and algorithm type (F(1.20, 16.79) = 6.35, p = 0.018, η2P = 0.31, η2G = 0.01) 
and between the algorithm type and connectivity source (F(2.72, 38.04) = 5.92, p = 0.003, η2P = 0.30, η2G < 0.01). 
In summary, varying the source of the connectivity information had minimal impact on the connectopic maps 
and in all cases prediction accuracies remained high. This suggests the principal source of information in ‘con-
nectopic’ mapping is the functional topography within the ROI.

Figure 3.  Experiment 1 results. (a) Prediction accuracies for all variants of spectral embedding, measured 
by absolute correlations between retinotopic and connectopic maps. Dot markers indicate per-subject means 
and bars indicate group means. (b) Prediction accuracies for other algorithms. (c) Post-hoc Tukey contrasts of 
prediction accuracies between algorithms. For spectral embedding, the unweighted nearest neighbour variant 
is selected. Dot markers indicate significant contrasts (p < 0.05). (d) Correlations of connectopic maps between 
algorithms. (e) Prediction accuracies for unweighted nearest neighbour variant of spectral embedding, diffusion 
map, and Isomap algorithms when varying the source of the connectivity estimates: V1 timeseries are correlated 
with timeseries taken from just non-V1 cortical vertices, just subcortical voxels, non-V1 cortical vertices plus 
subcortical voxels substituted with Gaussian noise, or the same V1 timeseries.
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Finally, we tested the stability of the connectopic mapping algorithms by correlating the connectopic maps 
between the two cross-validation splits (Supplementary Fig. S1). The split-half correlations appeared high in all 
cases, indicating good internal reliability within each algorithm and suggesting that the connectopic maps are 
at least partially independent from the precise content of the movie stimulus.

Experiment 2. Our first experiment reported exploratory analyses of one naturalistic imaging dataset. To 
determine the robustness of these results we next conducted a preregistered replication experiment using a 
larger 7T MRI dataset obtained from the Human Connectome  Project35. This additionally allowed us to com-
pare connectopic mapping between connectivity measured during both rest and movie watching. The dataset 
comprised 174 subjects each with approximately one hour of resting-state and movie-watching data in addition 
to visual field mapping scans.

We first extracted visual field maps in each subject via population receptive field  modelling18. As before, 
these maps were used to define individualised V1 ROIs as well as forming ground-truth estimates to compare 
the connectopic maps against. We then performed connectopic mapping in each subject, following the same 
methods as for Experiment 1. Retinotopic and connectopic maps of eccentricity (Fig. 4) and polar angle (Fig. 5) 
are shown for an example subject during the resting-state and movie-watching tasks. All of the dimensional-
ity reduction techniques captured an anterior–posterior gradient which corresponded well to the retinotopic 
eccentricity map (Fig. 4), and most captured an inferior-superior gradient corresponding to the retinotopic 
polar angle map (Fig. 5).

We next tested the prediction accuracies of each algorithm by taking the absolute correlations between the 
retinotopic and connectopic maps (Fig. 6). We first considered the spectral embedding algorithm (Fig. 6a). As 
per Experiment 1, accuracies appeared highest for the nearest neighbour approach and were minimally affected 
by weighting the graphs. In addition, accuracies appeared higher for movie-watching than resting-state estimates, 
particularly for polar angle maps. In all cases, correlations were significantly greater than zero (one-sample t-tests; 
all p < 0.001). To compare between the variants, we entered the correlations into a three-way repeated-measures 
ANOVA with factors of map type (eccentricity, polar angle), graph type, and task (resting-state, movie-watching). 
This revealed a significant main effect of map type reflecting overall higher correlations for eccentricity than polar 

Figure 4.  Experiment 2: Retinotopic and connectopic eccentricity maps in the left hemisphere of an example 
subject. (a) Retinotopic maps (top-left plot) and connectopic maps reconstructed from resting-state data 
(remaining plots). (b) Connectopic maps reconstructed from movie-watching data. Spectral embedding is 
illustrated for the unweighted nearest neighbour variant.
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angle maps (F(1, 173) = 883.07, p < 0.001, η2P = 0.84,  η2G = 0.52). There was also a significant main effect of graph 
type (F(1.96, 339.30) = 1068.47, p < 0.001, η2P = 0.86, η2G = 0.50); post-hoc Tukey contrasts revealed that correlations 
were significantly higher for the nearest neighbour than the radius or fully-connected variants (all p < 0.001), and 
the fully-connected variant also outperformed both the weighted (p = 0.049) and unweighted (p = 0.035) radius 
neighbour variants, while there were no significant differences between weighted and unweighted radius neigh-
bourhood or nearest neighbour variants (all p > 0.05). The main effect of task was also significant, reflecting higher 
correlations for movie-watching than resting-state datasets (F(1, 173) = 55.89, p < 0.001, η2P = 0.24, η2G = 0.03). 
There were significant two-way interactions of map by graph type (F(2.14, 369.87) = 441.75,   p < 0.001,  η2P = 0.72, 
η
2
G = 0.16) and map type by task (F(1, 173) = 14.81, p < 0.001, η2P = 0.08, η2G < 0.01) reflecting greater differences 

between both graph types and tasks for polar angle than eccentricity maps. The graph type by task interaction 
was not significant (F(1.76, 304.31) = 1.34, p = 0.263,  η2P = 0.01, η2G < 0.01). Finally, there was also a significant 
three-way map type by graph type by task interaction (F(2.02, 349.57) = 38.02, p < 0.001, η2P = 0.18, η2G = 0.01).

We next considered the other connectopic mapping algorithms (Fig. 6b). As before, prediction accuracies 
appeared higher for the manifold learning than the linear embedding methods, and higher for movie-watching 
than resting-state estimates. One-sample t-tests revealed that correlations with the retinotopic maps were sig-
nificantly greater than zero in all cases (one-sample t-tests; all p < 0.001). We further entered the correlations for 
each algorithm into a series of two-way repeated-measures ANOVAs with factors of map type and task ‒ the 
results of these analyses are listed in Table 1. All algorithms showed a significant main effect of map type due 
to higher correlations for eccentricity than polar angle maps, as well as a significant main effect of task due to 
higher correlations for movie-watching than resting-state datasets. Additionally, all algorithms except LLE and 
LTSA showed a significant map type by task interaction.

To compare prediction accuracies between algorithms, we further entered the correlations into a three-
way repeated measures ANOVA with factors of map type, task, and algorithm type. For spectral embedding, 
we selected the unweighted nearest neighbour approach as one of the better performing variants. There were 
significant main effects of map type (F(1, 173) = 1614.28, p < 0.001, η2P = 0.90, η2G = 0.65) reflecting higher correla-
tions for eccentricity than polar angle maps, of task (F(1, 173) = 87.33, p < 0.001, η2P = 0.34, η2G = 0.03) reflecting 
higher correlations for movie-watching than resting-state, and of algorithm type (F(3.40, 587.99) = 1084.96, 

Figure 5.  Experiment 2: Retinotopic and connectopic polar angle maps in the left hemisphere of an example 
subject. (a) Retinotopic maps (top-left plot) and connectopic maps reconstructed from resting-state data 
(remaining plots). (b) Connectopic maps reconstructed from movie-watching data. Spectral embedding is 
illustrated for the unweighted nearest neighbour variant.
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p < 0.001, η2P = 0.86, η2G = 0.55). Post-hoc Tukey contrasts (Fig. 6c) revealed that Isomap and t-SNE outperformed 
spectral embedding and diffusion maps, which in turn outperformed LLE and LTSA, which in turn outper-
formed PCA, ICA, and the kernel PCAs (all p < 0.001). There were no significant differences between Isomap 
and t-SNE, or between spectral embedding and diffusion maps, or between LLE and LTSA, or between PCA, 
ICA, and the kernel PCAs (all p > 0.05). There were significant two-way interactions of map type by task (F(1, 
173) = 111.59, p < 0.001, η2P = 0.39, η2G = 0.03) and of map by algorithm type (F(3.95, 682.74) = 502.74, p < 0.001, 
η
2
P = 0.74, η2G = 0.23) because the difference between both tasks and algorithms was greater for polar angle than 

eccentricity maps, and a significant task by algorithm type interaction (F(5.23, 905.24) = 8.84, p < 0.001, η2P = 0.05, 

Figure 6.  Experiment 2 main results. (a) Prediction accuracies for all variants of spectral embedding, measured 
by absolute correlations between retinotopic and connectopic maps. Dot markers indicate per-subject means, 
and bars indicate group means. Resting-state and movie-watching results are illustrated on top and bottom 
rows respectively. (b) Prediction accuracies for other algorithms. (c) Post-hoc Tukey contrasts of prediction 
accuracies between algorithms. For spectral embedding, the unweighted nearest neighbour variant is selected. 
Dot markers indicate significant contrasts (p < 0.05). (d) Correlations of connectopic maps between algorithms.
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η
2
G = 0.01) because the difference between tasks was reduced for better performing algorithms. Finally, there 

was a significant three-way map type by task by algorithm type interaction (F(4.30, 744.17) = 39.58, p < 0.001, 
η
2
P = 0.19, η2G = 0.02).

We also tested the consistency of the connectopic maps between algorithms by correlating the maps (Fig. 6d). 
As before, the linear embeddings and kernel PCAs produced relatively similar gradients, and the remaining 
manifold learning methods also yielded similar gradients, but gradients appeared less similar between these two 
groups. Additionally, gradients appeared more consistent when based on movie-watching than on resting-state 
data. In summary, the manifold learning algorithms outperformed the linear embeddings and both kernel PCAs 
(especially when predicting the polar angle maps), with Isomap and t-SNE performing best, and performance 
was better when connectivity was estimated from movie-watching than resting-state data.

We next tested how the source of the connectivity information affects the connectopic mapping. We recalcu-
lated the connectivity fingerprints by correlating the V1 timeseries with the timeseries from either just the cortical 
vertices, just the subcortical voxels, the cortical vertices and subcortical voxels substituted with Gaussian noise, or 
the same V1 timeseries. We repeated the connectopic mapping with the spectral embedding (unweighted nearest 
neighbour), diffusion map, and Isomap algorithms using these new fingerprints (Fig. 7). Similar to Experiment 1, 
the pattern of results appeared largely similar across the different connectivity sources. As before, all prediction 
accuracies remained high (one-sample t-tests: all p < 0.001). We entered the correlations into a four-way repeated-
measures ANOVA with factors of map type, task, algorithm type, and connectivity source (cortex + subcortex, 
cortex, subcortex, noise, and within-V1). This revealed significant main effects of map type (F(1, 173) = 745.28, 
p < 0.001, η2P = 0.81, η2G = 0.47), task (F(1, 173) = 132.43, p < 0.001, η2P = 0.43, η2G = 0.05), and algorithm type (F(1.42, 
245.83) = 190.49, p < 0.001, η2P = 0.52, η2G = 0.04); post-hoc Tukey contrasts indicated correlations were significantly 
higher for Isomap than diffusion maps, and both were higher than spectral embedding (all p < 0.001). Unlike 
Experiment 1, the main effect of connectivity source was now also significant (F(1.22, 211.02) = 597.45, p < 0.001, 
η
2
P = 0.78, η2G = 0.20); post-hoc Tukey contrasts indicated this was due to significantly lower correlations for the 

within-V1 analyses than the other sources (all p < 0.001), while the remaining sources did not differ significantly 
(all p > 0.05). Note that this result may reflect differences in the pre-processing pipeline for the within-V1 analyses 
compared to other sources (see Unregistered Analyses). Finally, all interactions were significant (all p < 0.001) 

Table 1.  Experiment 2: Two-way repeated-measures ANOVAs of prediction accuracies with factors for map 
type (eccentricity, polar angle) and task (rest, movie-watching) for all connectopic mapping algorithms except 
spectral embedding. Significant p-values are highlighted in bold.

Algorithm Factor F DoF p η
2

P
η
2

G

PCA

Map type 2381.73 1, 173  < 0.001 0.93 0.84

Task 27.91 1, 173  < 0.001 0.14 0.02

Interaction 129.24 1, 173  < 0.001 0.43 0.11

ICA

Map type 2522.95 1, 173  < 0.001 0.94 0.84

Task 16.13 1, 173  < 0.001 0.09 0.01

Interaction 133.63 1, 173  < 0.001 0.44 0.13

KPCA (Poly)

Map type 2553.89 1, 173  < 0.001 0.94 0.84

Task 16.48 1, 173  < 0.001 0.09 0.01

Interaction 113.19 1, 173  < 0.001 0.40 0.11

KPCA (RBF)

Map type 2516.78 1, 173  < 0.001 0.94 0.83

Task 32.93 1, 173  < 0.001 0.16 0.03

Interaction 97.49 1, 173  < 0.001 0.36 0.10

LLE

Map type 686.93 1, 173  < 0.001 0.80 0.53

Task 6.51 1, 173 0.012 0.04 0.01

Interaction 0.07 1, 173 0.797  < 0.01  < 0.01

LTSA

Map type 544.03 1, 173  < 0.001 0.76 0.51

Task 36.86 1, 173  < 0.001 0.18 0.03

Interaction 3.39 1, 173 0.067 0.02  < 0.01

Diffusion Map

Map type 451.98 1, 173  < 0.001 0.72 0.41

Task 12.56 1, 173  < 0.001 0.07 0.01

Interaction 9.63 1, 173 0.002 0.05  < 0.01

Isomap

Map type 424.30 1, 173  < 0.001 0.71 0.38

Task 50.07 1, 173  < 0.001 0.22 0.05

Interaction 64.41 1, 173  < 0.001 0.27 0.02

t-SNE

Map type 373.70 1, 173  < 0.001 0.68 0.35

Task 57.68 1, 173  < 0.001 0.25 0.07

Interaction 27.38 1, 173  < 0.001 0.14 0.02
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except for the two-way map type by task interaction (p = 0.443) and the four-way map type by task by algorithm 
type by connectivity source interaction (p = 0.392).

Finally, we conducted two further analyses to examine the stability of the connectopic mapping algorithms. 
Firstly, we investigated the split-half reliability by correlating the connectopic maps between the two cross-
validation splits. The correlations appeared high in all cases (Supplementary Fig. S2). Secondly, we correlated 
the connectopic maps between the cross-validation splits and tasks (e.g. correlating maps for odd resting-state 
runs with even movie-watching runs). Again, the correlations appeared high in all cases (Supplementary Fig. S3). 
This indicates good internal reliability within each algorithm, that the connectopic maps are partially independ-
ent of the precise content of the movie stimulus, and that the maps generalise well between resting-state and 
movie-watching tasks.

Unregistered analyses. In our preregistered analyses, we observed an apparent reduction in prediction accura-
cies for the within-V1 analyses compared to those of other connectivity sources. One key difference between 
the within-V1 analyses and those of the other sources is that we omit the PCA transformation of the timeseries 
prior to calculating the connectivity fingerprints (Fig.  1). This is because the number of timepoints already 
exceeds the number of vertices within the ROI and hence the dimensionality cannot be reduced further with-
out losing information. Nevertheless, it is possible that the reduction in prediction accuracy for the within-V1 
analyses relative to other sources reflects the omission of this processing stage rather than the connectivity 
information represented within the region. To test this possibility, we conducted exploratory analyses repeating 
the within-V1 analyses but including the PCA transformation stage, such that the V1 timeseries were now cor-
related with principal components derived from those same timeseries. The results of these analyses are shown 
in Fig. 8. While the inclusion of the PCA transformation had minimal effect on the StudyForrest data (Experi-
ment 1), including it for the HCP data (Experiment 2) recovered performance to levels comparable with the 
main analyses. This suggests the apparent reduction in performance for the within-V1 analyses mostly reflects 
methodological differences in the processing pipeline compared to the other neural sources. In general, as per 
Experiment 1, varying the connectivity source had minimal effect on the connectopic mapping, suggesting that 
the functional topography within the region is the key factor.

Discussion
This study aimed to determine how connectopic mapping predicts functional gradients in primary visual cortex 
by benchmarking reconstructions against ground-truth estimates of retinotopic maps measured by visual field 
mapping. We reported results from an exploratory analysis using data from natural viewing (movie-watch-
ing), followed by a preregistered replication experiment using both resting-state and natural viewing data. 
In both experiments, connectopic mapping accurately reconstructed retinotopic maps across subjects. More 
advanced manifold learning methods outperformed simpler methods including linear embeddings (especially 
for polar angle maps), with Isomap and t-SNE performing best. Additionally, prediction accuracy was better for 

Figure 7.  Experiment 2: Prediction accuracies for unweighted nearest neighbour variant of spectral 
embedding, diffusion map, and Isomap algorithms when varying the source of the connectivity fingerprints. 
V1 timeseries are correlated with timeseries taken from just non-V1 cortical grayordinates, just subcortical 
grayordinates, non-V1 cortical plus subcortical grayordinates substituted with Gaussian noise, or the same V1 
timeseries. Resting-state and movie-watching results are illustrated on top and bottom rows respectively.
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eccentricity than polar angle maps, and better when using connectivity estimated during natural viewing than 
during rest. Varying the neural source of the connectivity estimates had minimal impact on the connectopic 
mapping, suggesting the key factor is the functional topography within the region of interest.

Previously, Haak and colleagues demonstrated that connectopic mapping (via spectral embedding) using 
resting-state data reconstructed gradients resembling retinotopic maps in primary visual  cortex22. We replicated 
these findings, and further compared the connectopic maps against ground-truth estimates of the retinotopic 
maps measured by traditional visual field mapping techniques. We confirmed that connectopic maps recon-
structed from both resting-state and movie-watching data accurately predicted retinotopic maps across sub-
jects. The significance of these findings is that they provide validated methods for exploring gradients in other 
brain regions, and indeed connectopic mapping techniques have been applied to other regions including motor 
 cortex22, the  striatum26, and the  hippocampus27. Such approaches require that a region of interest is first defined 
to perform the connectopic mapping within. This could, for instance, be done functionally (e.g. via visual field 
mapping or a functional localiser), or by using an atlas- or parcellation-based approach. Connectopic mapping 
has also been used to recover coarser scale gradients over the whole  brain16,25, although ascertaining the accu-
racy of such gradients may be more challenging as the ground-truth is often unknown. We obtained remarkably 
consistent results between both experiments, suggesting that connectopic mapping is robust to differences in 
stimuli and tasks (e.g. continuous movie sequences in Experiment 1, compared to rest or compilations of short 

Figure 8.  Exploratory analyses testing effect of applying lossless PCA compression to timeseries prior to 
calculating connectivity fingerprints for within-V1 analyses. Plots illustrate prediction accuracies, measured by 
absolute correlations between retinotopic and connectopic maps, for the unweighted nearest neighbour variant 
of spectral embedding, diffusion map, and Isomap algorithms. Results are illustrated for (a) Experiment 1 and 
(b) Experiment 2: resting-state and movie-watching results are illustrated on top and bottom rows respectively. 
Left and middle bar groups duplicate results from Figs. 3, 6, and 7: V1 timeseries are correlated with timeseries 
taken from non-V1 cortical vertices and subcortical voxels (following PCA compression) or the same V1 
timeseries (without PCA compression). Right bar groups illustrate accuracies when V1 timeseries are correlated 
with principal components derived from the same V1 timeseries.
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movie clips in Experiment 2), data acquisition parameters (e.g. 3T vs. 7T, single- vs. multi-band, etc.), and pre-
processing pipelines. This approach offers the possibility of deriving functional gradients throughout the brain, 
including in regions where the organising principles are currently poorly understood or unknown. In regions 
where functional gradients have previously been described, they are typically observed to be topographically 
organised such that there is a gradual change in response properties which is mapped smoothly across a brain 
region. Using connectopic mapping, it will therefore be possible to determine if topographic maps are a ubiqui-
tous organising principle throughout the  brain1,15.

Previous studies employing connectopic mapping have exclusively measured connectivity in the brain at rest. 
Although resting-state is a common choice, it has been criticised as an unnatural cognitive  state30. Here, we com-
pared the performance of connectopic mapping when estimating connectivity at rest or during natural viewing 
(movie-watching). Not only did connectopic mapping perform well using movie-watching data, but prediction 
accuracies exceeded those obtained from resting-state. Previous studies have indicated movie-watching elicits 
functional connectivity that is less widespread and reduced in magnitude compared to resting-state38–40, likely 
due to stimulus driven responses disrupting spontaneous or intrinsic brain activity. However, connectivity from 
movie-watching may be more predictive of function in some brain regions including visual  cortex32,41, and our 
results are consistent with this conclusion. Movie-watching may also offer other advantages such as improved 
reliability of connectivity  estimates39,42, reproducibility of brain activity across participants and data acquisition 
 sites43, and suitability for studying developmental  populations44,45. Nevertheless, the gradients could still be 
accurately reconstructed from connectivity at rest, and there may be scenarios where resting-state data would 
be advantageous, for instance if studying visually impaired populations. Furthermore, resting-state data may 
be better predictive of function in non-sensory regions such as within the default mode  network32. The spatial 
topography of connectivity is typically similar between rest and movie-watching38,40 (but  see46), and resting-state 
connectivity is predictive of brain activity during movie-watching47, thus both approaches are likely to reveal 
similar aspects of functional connectivity.

One key question is the extent to which the neural source of the connectivity signals affects connectopic 
mapping within the region of interest. To test this, we repeated our analyses while varying the source of the con-
nectivity signals. We first measured connectivity between vertices in V1 and either just the cortical vertices or 
just the subcortical voxels (as opposed to the combination of both in the main analyses). Surprisingly, this had 
minimal effect on the connectopic maps: prediction accuracies remained comparable to those of the main analy-
ses. This suggests that the main driver of connectopic mapping is the functional topography within the region 
itself. For instance, two functionally similar voxels within the region displaying relatively similar timecourses 
of activation will produce relatively similar patterns of connectivity with the rest of the brain. Conversely, two 
functionally dissimilar voxels within the region will yield dissimilar connectivity fingerprints. Consequently, the 
functional topography within the region alone may prove sufficient to drive connectopic mapping. Indeed, we 
also found that performance was minimally affected when measuring connectivity purely within V1 or when 
substituting the non-V1 timeseries with random noise. A slight decrement in performance was observed for the 
within-V1 analyses in Experiment 2, however exploratory analyses indicated this likely resulted from omitting 
the lossless PCA transformation of the source timeseries prior to calculating the connectivity fingerprints. The 
PCA transformation generally reduces the magnitude of correlations in the connectivity fingerprints and biases 
the fingerprints to have stronger correlations along earlier than later dimensions, and potentially these proper-
ties may prove beneficial to the manifold learning. Regardless, our analyses tentatively suggest that a lossless 
PCA transformation of the source timeseries may be a useful standard processing step to include in connectopic 
mapping pipelines.

Previous studies have interpreted connectopic mapping as reflecting a topographic organisation of the con-
nectivity  itself21,22. In contrast, our results suggest a different interpretation in which the key factor is the func-
tional topography within the target region, and the connectivity provides an index into this topography but the 
source of that connectivity is relatively unimportant. This is not to say that connectivity is not topographically 
organised, but rather that such organisation is not necessary for connectopic mapping to accurately predict 
functional gradients. Further investigations will be required to determine if this principle holds for other brain 
regions ‒ for instance, whether the source of the connectivity would be more important for mapping higher-
level and/or non-sensory regions, or whether the within-region functional topography would remain sufficient.

A key aim of this study was to compare the efficacy of different dimensionality reduction techniques in 
performing connectopic mapping. We tested a number of commonly used and widely implemented algorithms 
including both non-linear manifold learning and linear embedding methods. We found that Isomap and t-SNE 
achieved the best prediction accuracies; there was no significant difference between these algorithms, although 
Isomap may be preferable as t-SNE is considerably more computationally expensive. Spectral embedding and 
diffusion maps (both of which have previously been applied to connectopic  mapping16,22) performed next best 
and only slightly behind Isomap and t-SNE. Within spectral embedding, we observed best performance using 
a nearest-neighbourhood graph (as opposed to a radius-neighbourhood or fully-connected graph) and found 
little benefit to weighting the graph. Locally linear embedding and local tangent space alignment performed 
next best, and the linear embeddings (PCA and ICA) and kernel PCAs (with polynomial and radial basis func-
tion kernels) performed the worst. Thus, more advanced manifold learning methods outperformed the simpler 
linear embeddings suggesting some degree of non-linearity to the connectivity manifold—particularly in the 
case of polar angle maps.

Contrary to our findings, Haak and colleagues found relatively poor performance of the Isomap  algorithm22. 
One possible reason for this discrepancy may be the selection of the neighbourhood parameter for the algorithm: 
we optimised this parameter to maximise the prediction accuracy, whereas Haak and colleagues set it to the 
minimum value that permitted a connected graph. Thus, appropriate parameter selection may be important to the 
success of connectopic mapping in deriving accurate gradients. Most manifold learning algorithms require some 
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form of parameter selection. In our case the parameters were optimised based on the ground-truth estimates pro-
vided by the visual field mapping. However, if the ground-truth is unknown then appropriate parameter selection 
may be more challenging. Nevertheless, some heuristics may aid parameter selection. For example, one proposal 
for Isomap is to set the parameter to maximise the correlation between geodesic distances in the original space 
and Euclidean distances in the embedded  space48. However, such heuristics may not be available or appropriate 
in all cases. If no better options are available, it may be preferable to simply observe how robust the connectopic 
maps are to changes in the parameter(s) over a range of values. An additional issue is that the connectopic maps 
may not emerge consistently or discretely along each component. For instance, the maps may emerge across 
different components over subjects, or could load on more than one component. One solution may be to apply 
a further linear transformation (e.g. Procrustes) after the manifold learning to optimise the alignment between 
the connectopic maps and some other reference maps (such as ground-truth estimates, or connectopic maps 
derived from a different participant or at the group level)49. We did not apply such an approach here as further 
transformation of the maps could have obscured differences between the dimensionality reduction algorithms.

In conclusion, we provide an appraisal of connectopic mapping methods for reconstructing functional gradi-
ents in primary visual cortex. We find that connectopic mapping can accurately predict retinotopic maps across 
subjects, with better performance for eccentricity than polar angle maps. We find that non-linear manifold 
learning algorithms outperform linear dimensionality reduction techniques, with Isomap and t-SNE perform-
ing especially well. Performance was best when using connectivity estimated during natural viewing, although 
prediction accuracies remained high using resting-state estimates too. The neural source of the connectivity 
estimates had minimal effect on the performance of the connectopic mapping suggesting that the key factor is the 
functional topography within the region of interest rather than a topography embedded within the connectivity 
itself. Developing standardised methods for performing connectopic mapping opens the possibility of applying 
this technique to explore topographic maps throughout the brain.

Methods
Experiment 1. Our first experiment presents exploratory analyses of movie-watching data obtained from a 
publicly available MRI dataset.

Dataset. We obtained movie-watching 3T MRI data from the publicly available StudyForrest  dataset34,36 
(https:// www. study forre st. org/). We used a subset comprising 15 participants who also have visual field map-
ping  data37: S1–S6, S9, S10, and S14-S20. In brief, functional data were acquired on a 3 T Philips Achieva MRI 
scanner via an EPI sequence (TR = 2  s, TE = 30  ms, voxel resolution = 3  mm isotropic). The movie-watching 
stimulus comprised approximately 2  h of the “Forrest Gump” movie, and the visual field mapping stimulus 
comprised a flickering chequerboard presented within an aperture displaying expanding/contracting rings or 
rotating wedges. Full details are provided  in37.

Pre-processing. Movie-watching and visual field mapping data were subjected to the same pre-processing pipe-
line. Some light pre-processing had already been applied by the StudyForrest project: this included motion cor-
rection using FSL’s MCFLIRT  tool50, and aligning each volume to a common subject-specific reference volume 
shared across all runs. We then applied additional pre-processing using FSL’s FEAT v6.051,52 (https:// fsl. fmrib. ox. 
ac. uk/ fsl/ fslwi ki/): slice-timing correction using Fourier-space time-series phase-shifting, non-brain  removal53, 
grand-mean intensity normalisation of the entire 4D dataset by a single multiplicative factor, and high-pass 
temporal filtering (Gaussian-weighted least-squares straight line fitting with σ = 50 s). Spatial smoothing was not 
applied at this stage. The functional timeseries were then normalised by first converting to units of percentage 
signal change, and then finally regressing out both the mean ventricular and white-matter timeseries and motion 
parameters.

The pre-processed timeseries were co-registered to anatomical spaces. Cortical surfaces in each subject were 
reconstructed from T1- and T2-weighted anatomical images using Freesurfer v6.054 (https:// surfer. nmr. mgh. 
harva rd. edu/). Cortical data were co-registered to each subject’s native surface via boundary based  registration55, 
then further transformed to the fsaverage6 surface via a surface-based  registration56,57. Surface-based spatial 
smoothing was then applied at FWHM = 6 mm (twice the voxel resolution). For the movie-watching runs only, 
volumetric data were also co-registered to each subject’s anatomical T1 image via boundary based registration 
and then onto the MNI152 standard brain via FSL’s FNIRT  tool58. Volume-based spatial smoothing was then 
applied at FWHM = 6 mm. The volumetric data were finally restricted to a subcortical grey-matter mask gener-
ated from Freesurfer’s Aseg  atlas59 comprising the following labels: cerebellum grey matter, thalamus, caudate, 
putamen, pallidum, hippocampus, amygdala, accumbens area, and ventral diencephalon.

Visual field mapping. We performed a travelling wave  analysis17 of the retinotopy data registered to the cortical 
surface using the 3dRetinoPhase60 command in  AFNI61 (https:// afni. nimh. nih. gov/). This yielded phase maps 
representing the eccentricity and polar angle tunings of each surface vertex. The polar angle map was used to 
define individualised V1 regions of interest (ROIs) by tracing along the phase reversals. The eccentricity and 
polar angle maps restricted to the V1 ROIs also provided a ground-truth estimate of the retinotopic maps against 
which the connectopic maps could be benchmarked.

Experiment 2. Our second experiment presents preregistered analyses of a larger dataset comprising both 
movie-watching and resting-state data obtained from the Human Connectome Project.

https://www.studyforrest.org/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
https://afni.nimh.nih.gov/
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Dataset. We obtained visual field mapping, resting-state, and movie-watching 7T MRI data from the Human 
Connectome  Project35. We used a subset of 176 subjects from the S1200 release who have fully completed all 
three tasks. Two subjects (126,931 and 745,555) were removed as MSMAll-aligned versions of their datasets 
were unavailable, leaving a total of 174 subjects; note that this represents a deviation from our preregistration. A 
list of the subject IDs is provided in Supplementary Table S1. In brief, functional data were acquired on a 7T Sie-
mens Magnetom MRI scanner via a multiband EPI sequence (TR = 1 s, TE = 22.2 ms, voxel resolution = 1.6 mm 
isotropic). The visual field mapping stimuli comprised a flickering “mashfast” texture of objects superimposed 
on an amplitude mask  background62 presented within apertures displaying rotating wedges, expanding/con-
tracting rings, or drifting bars. Resting-state data were acquired in four scan runs each approximately 16 min in 
duration. The movie-watching stimuli comprised approximately 1 h of short clips, taken from independent films 
and Hollywood  movies63, presented across four scan runs. See the WU-Minn HCP S1200 Data Release reference 
manual for full details.

We performed a series of power analyses using G*Power v3.164 to ensure the sample size would be appropri-
ate. A basic test of our hypotheses is whether the connectopic mapping can accurately predict the retinotopic 
maps. This can be tested by measuring the prediction accuracies as the absolute correlation between retinotopic 
and connectopic maps and using a one-sample t-test to compare the values over subjects against zero (see 
“Methods”—“Statistical Analyses” section below). The smallest effect size obtained from these tests within our 
exploratory analyses (see “Results”—“Experiment 1”) was Cohen’s dz = 1.76 (for the prediction of polar angle 
maps by the RBF kernel PCA). Entering this effect size into G*Power, with a sample size of 174, and an alpha 
criterion of 0.05, indicated a power of 100% (to within numerical precision) would be achieved. A further critical 
test is the ability to discriminate prediction accuracies between the different connectopic mapping algorithms. 
To test this in our exploratory analyses we conducted a two-way repeated-measures ANOVA on the retinotopy 
correlations with factors for the map and algorithm type. This revealed an effect size of η2P = 0.64 (Cohen’s f = 1.33) 
for the main effect of algorithm type. We entered this effect size into G*Power, listing the effect size specification 
“as in SPSS”, with 10 measurements (factor levels—the number of algorithms), an alpha criterion of 0.05, and 
a sample size of 174. This again indicated a power of 100% (to within numerical precision) would be achieved.

Pre-processing. Visual field mapping, resting-state, and movie-watching datasets all followed the HCP minimal 
pre-processing pipeline including FIX-denoising. In brief, this includes gradient distortion correction, motion 
correction, high-pass temporal filtering with a cutoff of FWHM = 2355 s, and ICA denoising via FSL’s MELODIC 
tool. No slice timing correction was applied due to the relatively fast TR. Cortical data were registered to the 
HCP’s fsLR32k standard  surface65, while subcortical data were registered to the MNI brain. Surface registra-
tion was performed via a multimodal alignment procedure (MSMAll) which aligns surfaces based on cortical 
folding plus additional areal features derived from myelin maps, resting-state network maps, and resting-state 
visuo-topic  maps66,67. Full details of the HCP pre-processing can be found  in68,69. We then applied the following 
further pre-processing steps: timeseries were converted to percentage signal change, and the data were spatially 
smoothed at FWHM = 3.2 mm (twice the voxel resolution; surface-based for cortical grayordinates and volume-
based for subcortical grayordinates). Unlike with the StudyForrest dataset, we did not regress out the mean 
white-matter and ventricular timeseries as these structures are not included within the grayordinates.

Visual field mapping. We fit a population receptive field model to the retinotopy data using the MATLAB ana-
lyzePRF toolbox (https:// github. com/ cvnlab/ analy zePRF) and code adapted  from70. Phase maps were extracted 
representing the eccentricity and polar angle tunings of each surface vertex, and the polar angle maps were used 
to define individualised V1 ROIs by tracing along the phase reversals. As before, the eccentricity and polar angle 
maps also served as ground-truth estimates to benchmark the connectopic maps against.

Deviations from preregistration. We note the following deviations from our pre-registered protocol:

• We intended to use all 176 subjects who fully completed the resting-state, movie-watching, and visual field 
mapping scans. However, we removed two subjects (126,931, 745,555) because MSMAll-aligned versions of 
their datasets were unavailable, leaving a total of 174 subjects.

• We include additional exploratory analyses of the within-V1 connectopic mapping analyses (Fig. 8; see Unreg-
istered Analyses). These explore the effect of including or omitting a PCA transformation of the timeseries 
prior to calculating the connectivity fingerprints.

Estimating functional connectivity. Further connectivity analyses followed the same procedures for 
both experiments. A schematic illustration of the connectivity analysis pipeline is shown in Fig. 1. Movie-watch-
ing data (and resting-state data for the HCP dataset) were partitioned into odd and even scan runs to allow 
cross-validated parameter selection for the dimensionality reduction algorithms (where applicable). Within 
each data split, the normalised and spatially smoothed timeseries were concatenated over scan runs. Connectiv-
ity fingerprints were estimated for each data split following the methods  of22. The timeseries were split between 
surface vertices within the V1 ROI versus all surface vertices and subcortical voxels outside the ROI. For the 
non-V1 timeseries, the number of dimensions (surface vertices plus subcortical voxels) exceeds the number of 
samples (timepoints). We therefore reduced the dimensionality via a lossless PCA, retaining all available com-
ponents (one fewer than the number of timepoints) to explain 100% of the variance. This operation amounts 
to rotating the samples within the feature space and removing the unused dimensions—this aids the computa-
tional tractability of later processing stages, but does not incur any loss of information from the non-V1 data. 
The timeseries were correlated between the V1 vertices and non-V1 principal components, and the correlations 

https://github.com/cvnlab/analyzePRF
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were Fisher transformed. This yielded a set of connectivity fingerprints describing the pattern of functional 
connectivity between each V1 vertex and the rest of the brain. Within this connectivity space V1 vertices are 
represented as samples and non-V1 principal components as dimensions. The dimensionality of this space was 
then reduced to extract the connectopic maps (see below).

We also generated further connectivity estimates to test the influence of the source of connectivity signals. 
In the first two variants, we derived non-V1 timeseries from only the cortical surface vertices or from only the 
subcortical voxels. In a further two variants, we tested if the functional topography within V1 alone is sufficient 
to drive the connectopic mapping. Firstly, we repeated the main analyses with non-V1 timeseries derived from 
surface vertices and subcortical voxels together, but we replaced the timeseries with normally distributed random 
noise matched in mean and variance to the real timeseries. These noise timeseries will reproduce any global 
amplitude differences over vertices/voxels but will not contain any consistent temporal variation. Secondly, 
we conducted a purely within-ROI analysis by correlating timeseries between pairwise combinations of V1 
vertices, disregarding the non-V1 timeseries entirely. Note that the lossless PCA compression stage was omit-
ted for this analysis as the number of vertices within V1 is already less than the number of timepoints. Because 
each V1 vertex is trivially connected to itself (and the resulting perfect correlation would invalidate the Fisher 
transformation), the diagonal elements of this connectivity matrix were instead set to zero. For all variants, we 
then repeated our connectopic mapping with the spectral embedding (nearest-neighbour, unweighted), diffu-
sion map, and Isomap algorithms.

Connectopic mapping. The connectivity fingerprints were reduced in dimensionality to extract the con-
nectopic maps. We always retained the first two components, which are expected to correspond to the eccen-
tricity and polar angle retinotopic maps. Prediction accuracy was assessed by taking the absolute correlation 
between the retinotopic and connectopic maps—the absolute value was used to account for the sign ambiguity 
inherent in the connectopic maps. The order of the components is not guaranteed to be consistent over different 
analyses, so we re-ordered the first two components according to their correlations with the retinotopic maps. 
Specifically, we calculated the 2 × 2 pairwise correlations between both retinotopic and connectopic maps, then 
matched the retinotopic/connectopic map pair with the largest absolute correlation, then further matched the 
remaining map pair. Note that if both connectopic maps are maximally correlated with the same retinotopic 
map (or vice versa) then the first match will be based on whichever pairing yields the highest correlation—this 
ensures that only one connectopic map is matched to each retinotopic map.

We employed a number of dimensionality reduction algorithms, including both linear embeddings and 
non-linear manifold learning techniques. We provide more detail on each of these algorithms in the sections 
below. Although not an exhaustive list, we have included some of the most commonly used and widely imple-
mented manifold learning algorithms, including those previously used for connectopic mapping such as spectral 
 embedding22 and diffusion  maps16. In the case of spectral embedding, we also considered a number of variants 
of the algorithm that have been variously employed in the  literature22,24,49.

All algorithms were implemented using the scikit-learn Python  module71 (https:// scikit- learn. org/ stable/ 
index. html), except for the diffusion maps algorithm which was implemented using the pydiffmap Python mod-
ule (https:// github. com/ Diffu sionM apsAc ademi cs/ pyDiff Map). Where necessary, parameter selection was per-
formed via cross-validation: a Bayesian optimisation algorithm, implemented using the scikit-optimize Python 
module (https:// scikit- optim ize. github. io/ stable/), selected the parameter value(s) that maximised the absolute 
correlation between retinotopic and connectopic maps (averaged over maps) within one of the data splits. The 
selected parameters were then applied to connectopic mapping of the other data split. The Bayesian optimisation 
performed 100 iterations (including 10 random starts) per parameter to be optimised.

Spectral embedding. Spectral embedding, also referred to as Laplacian eigenmaps, is a manifold learning tech-
nique that finds a lower dimensional embedding preserving local neighbourhood relationships from the original 
feature  space72. This technique has previously been used for connectopic mapping in a number of sensory brain 
 regions22,24,26,28, including primary visual cortex, and we provide particular focus to it here. First, a neighbour-
hood graph was constructed denoting which samples fall within the local neighbourhoods of each other sample. 
This can be performed using a radius approach, in which each neighbourhood is defined by a fixed distance 
from each sample (denoted by the parameter ε). However, it may be challenging to find an appropriate radius to 
apply to all neighbourhoods if samples are not evenly distributed throughout the feature  space73. Alternatively, 
a nearest-neighbours approach can be used in which each neighbourhood comprises the k nearest samples to a 
given sample—this has the advantage that the neighbourhood extent can vary with the density of the samples. 
Here, we construct both radius and nearest neighbour graphs based on the squared Euclidean distance between 
samples in the connectivity space. The neighbourhood parameter (ε or k) was selected via cross-validation. 
Nearest neighbour graphs were made undirected by considering a pair of samples as being within each other’s 
neighbourhood if either sample is within the k nearest neighbours of the other. This produces unweighted graphs, 
in which each sample is discretely labelled as being inside or outside a given neighbourhood. The graph may 
also be made weighted by setting the non-zero elements of the unweighted graph to some measure of similarity 
between the samples. Many metrics are available for weighting, though values must be non-negative. Here, we 
simply use a Pearson’s correlation between samples, rescaled to a zero to one range (i.e., zero represents a perfect 
negative correlation). We also include a fully-connected version of the weighted graph in which connections 
are not first restricted to local neighbourhoods and instead all samples are considered connected to all other 
samples and are only differentiated by the  weights74. For reference, Haak and colleagues employed weighted 
radius-neighbourhood  graphs22,28. Once the neighbourhood graph has been constructed, it is converted to a 

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://github.com/DiffusionMapsAcademics/pyDiffMap
https://scikit-optimize.github.io/stable/
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graph Laplacian, which is then decomposed into its eigenvectors and eigenvalues. Selecting the eigenvectors 
corresponding to the smallest m non-zero eigenvalues yields the connectopic maps (here m = 2).

Linear embeddings. We employed two linear embeddings: principal and independent components analysis 
(PCA and ICA). Neither of these algorithms required any parameter selection.

Kernel PCA. Kernel PCA provides a non-linear extension of linear PCA using the kernel  trick75. Many kernels 
are available, but we employed two of the more commonly used ones. Firstly, we used a second-order polynomial 
kernel: k

(

x, y
)

=
(

xTy + 1
)2 , where x and y are a given pair of feature vectors; this kernel had no free parame-

ters. Secondly, we used a radial basis function (RBF) kernel: k
(

x, y
)

= exp
(

−γ

∥

∥x − y
∥

∥

2
)

 , where γ is a free 
parameter that determines the spread of the kernel.

Locally linear embedding. Locally linear embedding (LLE) derives a series of linear decompositions within 
local neighbourhoods of the feature  space76. Provided the manifold is approximately linear within local neigh-
bourhoods, the technique may recover a non-linear embedding over the manifold as a whole. We used a modi-
fied variant of the algorithm (MLLE) that is proposed to produce solutions which are more stable and less prone 
to  distortions77. The algorithm takes a single free parameter (k) determining the neighbourhood size.

Local tangent space alignment. Local tangent space alignment (LTSA) is closely related to LLE, and follows 
the intuition that local hyperplanes drawn at a tangent to the manifold should become aligned relative to one 
another if the manifold is appropriately  unfolded78. As with LLE, it requires a free parameter (k) determining 
the neighbourhood size.

Isomap. Isomap is a form of multidimensional scaling using a geodesic distance  metric79. This respects the 
topology of the manifold and may allow more accurate reconstructions than multidimensional scaling using a 
standard Euclidean distance metric. First, a nearest neighbour graph was constructed (taking a free parameter 
k) and weighted according to the Euclidean distances between samples. Pairwise geodesic distances between all 
samples were then calculated from the local Euclidean distances via Dijkstra’s  algorithm80. Finally, the geodesic 
distance matrix was submitted to multidimensional scaling.

Diffusion maps. Diffusion maps consider the diffusion distances between samples, defined by the transition 
probabilities between samples on a random walk over the manifold. This algorithm has previously been applied 
to connectopic mapping both within local regions and over the whole  brain16,27. First, a nearest neighbour graph 
is constructed (taking a free parameter k). This graph is then weighted by a Gaussian heat kernel: 

k
(

x, y
)

= exp

(

�x−y�
2

ε

)

 , where x and y are a given pair of samples, and ε is a free parameter determining the 

spread of the kernel (not to be confused with the radius parameter of the same name in spectral embedding). 
From this, a transition matrix can be defined representing the probability of encountering one sample from 
another on a random walk over the manifold. In this stage, a free parameter (α) can be used to control the influ-
ence of the sampling density on the estimation, with values typically set between 0 (maximal influence) and 1 
(no influence). Finally, diffusion distances between samples may be derived using the eigenvalues and associated 
eigenvectors of the transition matrix. Taking the first m eigenvectors (here, m = 2) yields the embedded space. 
Euclidean distances in this space approximate the diffusion distances in the original feature space. The diffusion 
distance reflects the connectivity of samples over the manifold, such that two samples have a small diffusion 
distance if they are strongly connected. We optimised all three parameters (k, ε, and α) via cross-validation.

t-SNE. t-distributed stochastic neighbourhood embedding (t-SNE) represents similarities between samples in 
terms of probabilities, and aims to derive a lower dimensional embedding in which the probabilities are opti-
mally matched to those in the original feature  space81. Euclidean distances are converted to probability scores 
via a Gaussian distribution in the original space and a Student t-distribution in the embedded space. t-SNE often 
provides good reconstructions of the local manifold structure, though may be less sensitive to the global struc-
ture. We optimised two parameters: the perplexity (which determines the number of effective nearest neigh-
bours) and the learning rate (which controls the step size of the gradient descent). We initialised the t-SNE with 
the PCA embedding as this has been suggested to improve reconstruction  quality82. Because the algorithm is 
stochastic, a different solution may be obtained each time the algorithm is run; we therefore fit the algorithm five 
times and selected the one with the smallest Kullback–Leibler divergence.

Statistical analyses. Prediction accuracy was assessed by taking the absolute correlation between cor-
responding retinotopic and connectopic maps. As a basic test of performance, we compared the correlations 
against zero via a series of one-sample t-tests; a Holm-Bonferroni  correction83 was applied over multiple com-
parisons within each algorithm (eccentricity and polar angle maps, variants of the algorithm where applicable, 
and resting-state and movie-watching tasks for Experiment 2).

Further statistical tests employed the same procedures in both experiments, with the exception that tests 
for Experiment 2 included an additional factor denoting the task (rest, movie-watching). First, we compared 
correlations within each algorithm. For the spectral embedding algorithm, correlations were entered into 
repeated-measures ANOVAs with factors for the map type (eccentricity, polar angle), graph type (weighted 
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fully-connected, unweighted radius, weighted radius, unweighted kNN, weighted kNN), and task (Experiment 
2 only). For the remaining embeddings, correlations were compared between the map types with paired-samples 
t-tests in Experiment 1, and with two-way ANOVAs with factors of map type and task in Experiment 2. To com-
pare between algorithms, we entered correlations from each algorithm into further repeated-measures ANOVAs 
with factors for the map type, algorithm type, and task (Experiment 2 only). For spectral embedding, only the 
unweighted nearest-neighbour variant was entered into this analysis as an example of a better performing variant.

Finally, the spectral embedding (unweighted kNN), diffusion map, and Isomap algorithms were applied to 
fingerprints derived from different connectivity sources. To compare between sources, these correlations were 
entered into repeated-measures ANOVAs with factors for the map type, algorithm type, connectivity source 
(cortex + subcortex, cortex, subcortex, noise, and within-V1), and task (Experiment 2 only).

In all ANOVAs, effect sizes are reported in units of partial and generalised eta-squared84,85. A Green-
house–Geisser sphericity  correction86 was applied to all effects. Where necessary, post-hoc analyses were per-
formed via Tukey  contrasts87. All statistical tests employed an alpha criterion of 0.05 for determining significance.

Data availability
All MRI data were obtained from already publicly available repositories: the StudyForrest project (https:// www. 
study forre st. org/) and Human Connectome Project (https:// db. human conne ctome. org/).

Code availability
All analysis code is available on the OSF (https:// osf. io/ 5vupk/).
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