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We propose a multi-agent learning approach for designing crowdsourcing contests and All-Pay 
auctions. Prizes in contests incentivise contestants to expend effort on their entries, with different 
prize allocations resulting in different incentives and bidding behaviors. In contrast to auctions 
designed manually by economists, our method searches the possible design space using a simulation 
of the multi-agent learning process, and can thus handle settings where a game-theoretic equilibrium 
analysis is not tractable. Our method simulates agent learning in contests and evaluates the utility 
of the resulting outcome for the auctioneer. Given a large contest design space, we assess through 
simulation many possible contest designs within the space, and fit a neural network to predict 
outcomes for previously untested contest designs. Finally, we apply mirror ascent to optimize the 
design so as to achieve more desirable outcomes. Our empirical analysis shows our approach closely 
matches the optimal outcomes in settings where the equilibrium is known, and can produce high 
quality designs in settings where the equilibrium strategies are not solvable analytically.

Many economic allocation decisions are determined by a competition for a prize based on expending costly 
efforts. For example, multiple political candidates may engage in costly political campaigns, but only one can-
didate wins; though only the winner is rewarded, other candidates cannot recover their expenditure. Similarly, 
Netflix offered a prize of one million dollars in an open competition to improve its recommender system1. Again, 
only the winning entry gets the prize, but other participants incur the cost of their effort.

Such contests are modelled in the economic literature as All-Pay auctions2–5, where players simultaneously 
bid for a fixed prize; the highest bidder receives the prize, and every player, including non-winners, pays their 
bid. A key question regarding All-Pay auctions is how to design them to optimize the utility achieved by the 
auctioneer. For instance, should the auctioneer give all the reward to the top entry, or does it make sense to give 
some of the reward to the top entry, and some to the second entry?

Earlier research has investigated how different auction designs affect the utility of the auctioneer5–8. Such 
work examines a specific model of the All-Pay auction given as a normal-form game and analytically solves for 
the Nash equilibrium of the bidding strategy, expressed as a probability distribution over the possible bids. This 
approach has multiple limitations. First, economists have only managed to solve for the Nash equilibrium under 
very specific auction designs. Secondly, in many settings, participants are likely to adjust their bidding strategy by 
using simple learning behaviors based on their experience9–11, so one cannot always assume the Nash equilibrium 
behaviour as a model of participants’ behavior when designing the auction.

Our Contribution: We propose a machine learning method for designing All-Pay auctions, investigating how the 
auctioneer’s utility is affected by the reward allocation. By simulating the behavior of learning participants, and 
predicting the outcomes of auctions using a neural network, our approach constructs a differentiable model for 
the auctioneer’s utility under various contest designs. Given the model, we then optimize the design by employ-
ing mirror ascent12,13, which allows optimizing the design while adhering to the fixed budget of the auctioneer.

Our approach is flexible: it can be applied to arbitrary mechanism design problems, including analytically 
intractable settings. It allows using various models for the behavior of participants. We apply Fictitious Play 
(FP)14,15 or independent reinforcement learning16–18.

We empirically evaluate our framework on several contest design problems. We study allocating a fixed reward 
budget in auctions with rank-order allocation of prizes, where the utility of a submission has diminishing returns 
in effort. We examine contests with few participants for which earlier research characterized the equilibrium 
behavior19–21.
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We find that simulating participants’ behavior using Fictitious Play closely agrees with the equilibrium pre-
diction. Note that FP is only known to converge to a Nash equilibrium in two-player zero-sum games22, and 
we examine All-Pay auctions, which are not zero-sum and have more than two participants. Nonetheless, we 
empirically show that FP does converge to the Nash equilibrium in the restricted settings where the Nash equi-
librium is known. Furthermore, our framework identifies a design near the optimal design prescribed by the 
economic equilibrium analysis.

We then examine contests where the performance of a participant’s entry is determined by their exerted effort 
perturbed by random noise. Such uncertainty is a more realistic contest model, but the equilibrium behavior is 
unknown, highlighting the advantage of our approach. We show that designs with multiple prizes outperform 
awarding a single first prize in terms of auctioneer utility. As the variance of the random noise grows, we find 
that the optimal designs award larger second prizes, acting to protect bidders against the effect of the noise.

Optimization goal and contest design space.  We consider maximizing the auctioneer’s utility in a 
crowdsourcing contest (or the revenue of the auctioneer in an All-Pay auction). We examine contests that award 
multiple prizes based on the rank ordering of the performance of the participants. For instance, a contest may 
award a large first prize to the best performing contestant, and a smaller runner-up prize to the second best 
performer. Offering more prizes could incentivise more participants to exert effort, however a smaller top prize 
means that the maximum bid possible is also reduced.

Consider a contest with n bidders. The auctioneer decides on a division of a fixed total prize w̄ . The prize 
awarded to the kth ranked player is denoted wk , so 

∑n
k=1 wk = w̄ . We insist that prizes are decreasing with rank, 

i.e. that w1 ≥ w2 ≥ ... ≥ wn . Awarding a last-place prize reduces performance at equilibrium, as it reduces the 
incentive to exert more effort than other bidders, so we set wn = 0 . Bidders each choose a bid (effort level), with 
b denoting the vector of bids. Effort is costly, so the payoff for bidder i is the prize minus the effort:

where xi,j(b) = 1 when player i’s submission is ranked jth in terms of its quality, and 0 otherwise.
In an all-pay auction, the auctioneer’s utility is a function of the winning bid. Hence, the efforts expended by 

the remaining losing bids is wasted. We can measure the inefficiency of an auction in terms of the expected wasted 
bids. In the setting where the auctioneer awards only the winning bidder and bidders play the Nash equilibrium, 
the expected maximum bid in an n-bidder auction is n

2n−1 and the expected bid is 1n
23. Therefore, the expected 

inefficiency is n E[bid] − E[max bid] = n( 1n )−
n

2n−1 = 1− n
2n−1.

Allocation is based on the ranking of the realized performance of the bidders. Some earlier work considers 
the realized performance to be deterministic given the bidder’s effort19, whereas others model the performance 
as a noisy, stochastic, function of the effort24. We also consider the performance qi as a noisy function of the 
effort bi , indicating that participants have uncertainty about the exact effectiveness of their effort in producing 
high quality work. We model this uncertainty as random additive noise on the effort level: qi = εi + bi , where εi 
is a random variable, drawn i.i.d for each contestant. We consider cases where εi ’s distribution is either a zero-
centered uniform or Beta distribution ( α = β = 1

2 ) as well as the noiseless case (i.e. εi = 0).
In this work, we assume a finite number of bid levels. For example, if bids are measured in a currency (e.g., 

dollars), there exists a minimal atomic amount (e.g., cents) and so the space of bids can be reasonably discre-
tized. Similarly, if the bids are represented on a computer as floating point numbers, there also exists a minimal 
atomic amount given by floating point precision. We discuss the limitations of this assumption in the conclusion.

A bidding strategy σi of participant i is a distribution over the bid levels. A set of bidding strategies 
σ = (σ1, . . . , σn) is a Nash equilibrium if for any bidder i and any alternative strategy σ̃i (alternative distribution 
over bid levels) we have si(σ ) ≥ si(σ̃i , σ−i) , i.e. given the bidding strategy of others σ−i , no player i wants to 
unilaterally deviate from their strategy σi to any other strategy σ̃i . It is only known how to derive Nash equilibria 
for specific All-Pay auction domains.

Given the realized performance of each contestant, the auctioneer receives a utility as a function u of the 
maximum performance, i.e. u(maxi qi) . The utility function u describes how the performance of the bidders 
translates into value to the auctioneer. We consider diminishing marginal returns on effort, modelled by a loga-
rithmic utility function. Diminishing returns can also be used to model risk-aversion of the auctioneer. We model 
a fixed entry cost of b that does not contribute to the solution quality. For example, in the Netflix competition, 
contestants had to perform some work just to enter the contest, e.g. downloading data, efforts that provide no 
value to the auctioneer. Finally, we assume that the auctioneer has some existing default solution with a utility 
of 0. If no bid is better, the auctioneer uses the default solution and receives a utility of 0. Hence our auctioneer’s 
utility function is u(q) = max(log(a(q− b)), 0) , where a is a scale factor.

Goal.  we seek the prize allocation w = (w1, . . . ,wn) that maximizes the auctioneers’s expected utility 
Eσ (u(maxi qi)) (given how participants would behave in the resulting contest). Multiple equilibria may exist in 
rank-allocation auctions. We focus on the symmetric case, where all bidders use the same strategy, a distribution 
over bids between 0 and the maximum prize available. In the noiseless case, theoretical analysis of the symmet-
ric Nash is possible; for fewer than 5 bidders the density function of the symmetric equilibrium can be derived 
exactly, while for more bidders it can only be sampled from (see "Analytic results on noiseless auctions" section).

(1)si(b) =

n
∑

j=1

wjxi,j(b)− bi
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Methods
Our approach for automating the contest design process is illustrated in Fig. 1. Shortly, we simulate agent learn-
ing in contests under various designs and record the resulting auctioneer utilities. Next, we generalize from the 
training data by fitting a parameterized mapping from designs to utilities. As the mapping is differentiable, it 
allows gradient based optimization in the continuous space of designs, which we use to identify the optimal 
design under the model. We provide a detailed discussion of our method, given in Algorithm 2.

We begin by investigating a set D of possible contest designs. As discussed in "Optimization goal and contest 
design space" section, a design for n bidders is given by the reward distribution w = (w1, . . . ,wn) , lying on the 
simplex (i.e. 

∑n
i=1 wi = 1 and each wi ≥ 0 ). Given a design d ∈ D , our framework simulates how agents would 

learn to bid under this design. For the simulation, we use Fictitious Play14, one of the most prominent models 
for how an agent may learn and adapt their strategy; we also discuss other alternatives such as independent 
multi-agent reinforcement learning16. Our method is flexible and may use any model for agent learning in our 
simulation.

For a design d ∈ D , the output of the simulation is the set of bidding strategies σd of agents under this design, 
where σd is a distribution over the bid levels. Given the bidding strategies σd and contest simulation, we can also 
determine the expected utility ud for the auctioneer, as given in "Optimization goal and contest design space" sec-
tion (the subscript d indicates the bidding strategies and the auctioneer’s utility depends on the contest design d).

By performing the simulation for many designs d1, . . . , dk chosen from the design space D , we obtain a 
simulation dataset {(di , udi )}ki=1 where di ∈ D is a design and udi is the expected utility the simulation shows it 
would generate for the auctioneer (shown in the left of Fig. 1).

Using the simulation dataset, we train a differentiable model to predict the auctioneer’s utility ud under a 
contest design d ∈ D (including designs not observed during training). In other words, the true model for the 
auctioneer’s utility is a function m : D → R , mapping any possible contest design in D to the utility it would 
provide to the auctioneer. We approximate m using a neural network, trained on simulation data, yielding the 
approximate function mθ : D → R ( θ are model parameters). We use a simple feedforward network trained 
on many auction designs, depicted in the middle of Fig. 1.

Given mθ , we aim to identify designs resulting in high utility for the auctioneer; our goal is thus to “reverse 
engineer” the model, seeking inputs causing the model to output a high value reflecting high utility to the 
auctioneer. The model is differentiable, so we can calculate the gradient of the output with regard to the inputs 
∇wmθ (w) , allowing gradient-based optimization.

A key challenge here is that the input design (w1, . . . ,wn) must respect the auctioneer’s budget, i.e. 
∑n

i=1 wi = w̄ and each wi ≥ 0 . As illustrated on the right of Fig. 1, we perform the optimization while adhering 
to the auctioneer’s budget by employing a form of Entropic Mirror Ascent12, given in Algorithm 1 below. We 
now describe the data generation (Step 1) and design optimization (Step 3) in more detail.

Data generation.  We generate data to train the model mθ by simulating the learning process of agents in 
auctions of a given design. The simulated auction receives bids as input and returns the rewards earned by the 
participants, as well as the auctioneer’s revenue. We use Fictitious Play (FP)14 as a model of agent learning. In 
FP, each agent adjusts a distribution over discrete bid levels by computing the best response to historical play.

We use FP as it is a well-established model of agent learning in strategic settings. However, there are alternative 
algorithms that can be used as the simulation method in our framework. Independent multi-agent RL (MARL) 
is a possible simulation alternative discussed in "Simulations using fictitious play and independent multi-agent 
reinforcement learning" section. See surveys for a detailed comparison of FP, MARL and other methods25–27.

Design optimization.  As discussed in "Optimization goal and contest design space" section, the design 
space is a convex set, the simplex: 

∑n
i=1 wi = w̄ and each wi ≥ 0 . In experiments, we let w̄ = 1 without loss of gen-

erality. Entropic Mirror Ascent12 is a non-euclidean gradient ascent method for convex optimization, designed 
for simplex constraints. The optimizer update rule for a design w is: w ← softmax(log(w)+ η∇mθ (w)) 
where mθ (w) represents the neural model’s predicted utility for input design w . By inspection, w remains on 
the simplex after the update and log(w) is defined as long as w = w0 is initialized to the interior of the simplex.

The simplex constraint for w = (w1, . . . ,wn) is insufficient. Having prizes that are not monotonically decreas-
ing in rank gives participants an incentive to attempt to obtain a lower rank (they get a higher prize for less effort). 
Hence, we want designs with strictly monotonically decreasing prizes and zero last prize (giving a prize to the 

Figure 1.   Diagram of the contest design process (Algorithm 2). Step (1) Simulate contests and agent learning 
to determine the utility of possible designs. Each data point represents a (contest design, auctioneer utility) 
pair. Step (2) Fit a deep network to predict auctioneer utility given contest design. Step (3) Optimize the output 
(utility) over the input (contest design) of the deep network to find the optimal design.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16937  | https://doi.org/10.1038/s41598-022-20234-3

www.nature.com/scientificreports/

lowest quality submission is wasteful, causing lower efforts). We propose a modified Entropic Mirror Ascent 
procedure to constrain iterates to this region of the simplex with a transformation.

For example, in a ( n = 4 ) four bidder contest, let w = [z1 + z2 + z3, z2 + z3, z3, 0] where zi > 0 . zi denotes the 
marginal increase of the prize from that of rank i − 1 to that of rank i. This sequence w is strictly monotonically 
decreasing. The simplex constraint implies z1 + 2z2 + 3z3 = 1 . Let e be the vector of coefficients, e.g., e = [1, 2, 3] , 
and define z̃i = eizi . Then z̃ lives on a simplex. We can run Entropic Mirror Ascent on z̃ and transform back to 
z with z = z̃/e . The update for z̃ is

We can rewrite this update in terms of z through a change of variables:

where Jz̃(z) = diag(e)−1 is the diagonal Jacobian matrix of derivatives of z w.r.t. z̃ , i.e., Jij = ∂zi
∂ z̃j

.
We formally express this idea in the transformation given in Algorithm 1 where ⊙ and ⊘ denote element-wise 

multiplication and division respectively, �n−1
int  denotes the interior of the simplex in n− 1 dimensional ambient 

space, w[i : j] = [wi , . . . ,wj−1] , softmax(y) = eyi
∑

j e
yj  , rev reverses an array, and cumsum(y) denotes the cumu-

lative sum, i.e., [y1, y1 + y2, . . . ,
∑

j yj].

Contest design using simulation, learning and optimization.  Algorithm 2 is the overall auction 
design method, given informally in "Methods" section. It samples designs (we use a Dirichlet distribution 
Dirn−1(α = 1) ), uses FP to simulate agent learning on each design, trains a neural network for predicting the 
auctioneers’s revenue and finally uses Algorithm 1 to optimize the design.

Analytic results on noiseless auctions
We now very briefly discuss how one can solve for the closed form bidding strategies in crowdsourcing contests. 
A more detailed discussion of this can be found in contest theory textbooks2 and All-Pay auction papers3–5,19,28–31. 
Some prior work, such as24, has made progress analytically for specific noise models, but not for the models 
considered in this work.

We are interested in finding the symmetric Nash equilibrium for an All-Pay auction, as discussed in "Optimi-
zation goal and contest design space" section. In a symmetric Nash equilibrium, all bidders use the same bidding 
strategy σ , which is simply a distribution over the bid levels. In a symmetric Nash equilibrium, no bidder i wants 

(2)z̃ ← softmax(log(z̃)+ η∇z̃f (z̃)).

(3)z ← softmax(log(z̃)+ ηJz̃(z)∇zf (z̃))⊘ e

(4)= softmax(log(e⊙ z)+ η∇zf (z)⊘ e)⊘ e
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to unilaterally deviate from σ to an alternative bidding strategy σ̃i . We write the CDF of a bidding strategy as 
B(b), and attempt to identify the symmetric Nash equilibrium.

First note that this equilibrium strategy is atomless. If it weren’t, agents bidding at the atom could achieve non-
infinitesimal increases in their expected prize money by increasing their bid infinitesimally so as to outperform 
all other bids at the atom, therefore B would not be Nash. The expected prize money from bidding b when all 
bidders are following the bidding strategy B is given by:

Each term of the sum is simply the value of the jth prize wj times the probability Gj(B(b)) that a bid of percentile 
B(b) achieves rank j against a set of n− 1 independent bids drawn from B.

Proposition  The symmetric equilibrium has expected value of 0 for participants.

Proof  B(0) = 0 and B is continuous because B is atomless.
We write the expected utility when bidding b against opponents bidding according to B as s(b; B). Choose 

δ > 0 . The value s(b; B) of bids b < B−1(δ) is bounded by the expected prize money under those bids, i.e. 
s(b;B) ≤

∑n
j=1 wjGj(B(b)) ≤

∑n
j=1 wjGj(δ).

Since Gj(δ) tends to 0 as δ tends to 0, for any ε > 0 , ∃δ > 0 s.t. bids b ≤ B−1(δ) have an expected value 
s(b;B) ≤ ε . Furthermore, because δ > 0 , some such bids are in the support of B. Therefore there are bids in the 
Nash with value arbitrarily close to 0. Therefore no bid b̃ can have s(b̃;B) > 0 , since this would imply that there 
were bids that outperformed bids in the support of the Nash. A bid of 0 cannot win a prize, but also incurs no 
cost, so has a value of 0, so the value to bidders of the symmetric Nash must also be at least 0. 	�  �

The proposition tells us that the symmetric Nash equilibrium B(b) satisfies:

This is a polynomial of order n− 1 in B(b) for each value of b. Polynomials of up to order 4 can be solved analyti-
cally, therefore the CDF of the symmetric Nash can be expressed analytically for auctions with 5 or fewer bidders.

For any number of bidders, we can easily express the inverse-CDF using Eq. (5) as follows. We have 
∑n

j=1 wjGj(B(b))− b so b =
∑n

j=1 wjGj(B(b)) , and hence: B−1(y) =
∑n

j=1 wjGj(y) This allows sampling directly 
from the symmetric Nash equilibrium bid distribution in the noiseless setting, but relies on the fact that the 
probability of winning with a bid of b depends on B only through the value of B(b), which is not true in a noisy 
auction.

In the special case where the auction is noiseless and the auctioneer’s utility function u : R+ �→ R is strictly 
increasing, continuously differentiable and its inverse u−1 is log-concave, Vojnović2 found that E[u(max bi)] 
under the symmetric Nash equilibrium is maximized by allocating the entire prize budget to the first prize.

Note however, that the inverse of log(a(x − b)) is nowhere log-concave for b > 0 . Therefore the utility function 
considered in this work is not covered by this theorem. Indeed, we often found superior designs that awarded 
prizes to multiple places.

Experiments
In "Optimization goal and contest design space" section describes assumptions one can make regarding the 
performance noise model and the utility of the auctioneer in crowdsourcing contests. We applied our proposed 
framework to optimize the design of crowdsourcing contests under various such assumptions. In all our experi-
ments, we consider the auctioneer’s utility function to be the one given in "Optimization goal and contest design 
space" section, u(q) = max(log(a(q− b)), 0) , which reflects a risk averse auctioneer, with a minimal quality bar. 
We set a = 500 , b = 0.1 , and then rescale the utility to have a maximimum of 1 without loss of generality; see 
Fig. 2 for the shape of this utility.

In "Models with known equilibrium behaviour" section shows empirical results for a domain with three or 
four bidders, and noiseless performance. As shown in "Optimization goal and contest design space" section, in 
this model the symmetric equilibrium strategy is known. Our analysis shows that the FP simulation results in 
agent behavior that is extremely close to the Nash equilibrium prediction. After fitting a differentiable model and 
optimizing the design using Algorithm 2 we obtain the same optimal design as the equilibrium based analysis.

In "Models with unknown equilibrium behaviour" section considers settings where the equilibrium behav-
ior is not known, so standard economic techniques struggle to recommend an optimal design. We consider 10 
participants and various performance noise models, and apply our framework to identify the optimal design. 
We show that our designs award money to a few top entrants. As the variance of performance noise increases, 
optimal designs award more prizes, and larger prizes to the runner-up in the contest.

Method details.  We ran FP for 100, 000 iterations with a discretization of 1001 effort levels for the bid inter-
val [0, 1]. We are searching for a symmetric equilibrium so all bidders played using the same bid distributions, 
i.e. using Fictitious Self-Play.

n
∑

j=1

wjGj(B(b)), where Gj(z) =

(

n− 1

j − 1

)

zn−j(1− z)j−1

(5)s(b;B) =

n
∑

j=1

wjGj(B(b))− b = 0
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For our neural network mθ , we have used a simple feedforward network with 2 hidden layers, 256 neurons 
per layer, and ReLU nonlinearities. We trained the network for 10, 000 iterations using the Adam optimizer32 
with a learning rate of 10−3 and default hyperparameters β1 = 0.9 , β2 = 0.999 . We optimize using mini-batches 
of size 50 for the three and four bidder auctions and 1, 000 for the 10 bidder auction.

We initialized designs such that the first prize was given 0.9 and all remaining marginals were given a constant 
zi>1 = c such that the prizes sum to 1. We performed 100, 000 iterations of E-EMA with a learning rate of 0.1 for 
the 3 bidder auction and 200, 000 iterations with a learning rate of 0.001 for the 10 bidder auctions.

All experiments were written in Python+numpy33 and run on a single CPU selected from a heterogeneous 
cluster of CPUs. An Intel(R) Xeon(R) W-2135 CPU @ 3.70GHz was representative CPU (6-core).

Models with known equilibrium behaviour.  Consider a setting with three or four bidders, and with no 
performance noise. The first step in our framework is simulating agents who learn from repeated interaction in 
the contest, by applying FP. We first investigate whether the predictions of FP agree with the Nash equilibrium 
strategies. In general FP may not converge to a Nash equilibrium as an All-Pay auction is not a constant-sum or 
dominance solveable game34,35. Furthermore, the solution found with Fictitious Play is to a discrete version of 
the auction (where bids take one of a discrete set of values), whereas the analytic solution is for the case where 
bids can take any real value.

Figure 3a shows the symmetric Nash equilibrium bidding strategy, as the cummulative distribution func-
tion (CDF) of the distribution over bid levels, under multiple three bidder contest designs, characterized by the 
prize for the top rank (the remainder prize goes to the second rank, and the prize for the third rank is zero). 
The remaining plots of Fig. 3 each examine one design (characterized by the first rank prize), and plot the bid 
CDFs of the Nash equilibrium versus those outputted by FP. Figure 3 shows that the FP output closely matches 
the Nash equilibrium.

We estimate inefficiency of the auction empirically for the approximate equilibrium strategy returned by FP 
for using 10, 000 Monte-Carlo simulations for the 3-bidder auction with varying prize structures and report 
them in Table 1.

Table 1 confirms that the approximate equilibrium strategy returned by FP in Fig. 3 (f) closely matches the 
first prize only auction inefficiency of 0.4 as predicted by the formula discussed in "Optimization goal and contest 
design space" section: 1− 3

6−1 = 2
5 = 0.4 . Recall that giving all prize money to the max bid maximizes auctioneer 

revenue in the noiseless setting. So it is interesting to note from this table that a reduction in inefficiency cor-
relates with an increase in auctioneer revenue.

The next phase in our pipeline takes the dataset of simulation outcomes under various designs, and trains 
a neural network to predict the auctioneer’s utility in any given contest design (attempting to generalize to 
unsimulated designs). Figure 4 compares the auctioneer’s utility under Nash bidding against the prediction of our 
trained model for various designs (characterized by the first rank reward, shown on the x-axis). We observe that 

Figure 2.   The auctioneer’s utility function: max(log(a(q− b)), 0).

Table 1.   Inefficiency of Noiseless 3-Bidder Auctions.

First prize Inefficiency

0.6 0.520

0.7 0.491

0.8 0.460

0.9 0.430

1.0 0.399
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the simulation results for the auctioneer’s utility are consistently very slightly below the Nash-based analytical 
solution. The model has an almost perfect fit to the simulation results.

The final step of our method is optimizing the contest design given the model (Algorithm 1). The optimal 
design is marked in Fig. 4, for both the Nash-based curve and our method. These match almost perfectly (the 
location on the x-axis is almost identical), indicating our method finds the same optimal design as prescribed 
by the Nash equilibrium analysis.

Finally, we explore a four bidder contest to investigate the effect of possible designs on the auctioneer’s utility. 
Figure 5a shows a heatmap for the auctioneer’s utility for possible designs. The x-axis is the reward w1 , the prize 
for the first rank, and the y-axis is the reward w2 for the second rank (the lowest rank gets no reward w4 = 0 , 
and the third rank reward is w3 = w − w1 − w2 ). Figure 5a shows that the utility is fairly robust to designs with 
a high first prize, i.e., w1 ∈ [0.7− 0.9] and third prizes w3 < 0.1 . However, good designs with a low first prize 
(e.g. w1 < 0.7 ) offer no reward to the third rank. This indicates that in settings with many participants we might 
expect a greater distribution of reward across top prizes, but the auctioneer’s utility may be fairly robust around 
the optimal design.

Figure 3.   Bidding strategy CDFs. (a) shows the CDFs for each of five different contest designs assuming the 
bidder plays the Nash distribution. The first prize is listed in the legend; the second prize equals one minus 
the first; no prize is given to the third bidder. The remaining plots (b–f) compare the Nash CDF with the CDF 
learned by Fictitious Self-Play for different first prize amounts.

Figure 4.   Auctioneer utility as a function of the first rank prize, given by the analytical Nash CDFs, the 
simulation data, and the trained network. Markers denote maxima.
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We also empirically estimate the exploitability of the strategy FP learns in the 4-bidder setting under the pre-
dicted optimal auction design (see Fig. 5a, w∗ = [0.77, 0.23, 0.00] ). Exploitability of a strategy set σ is measured 
as the maximum expected amount a single bidder can gain by deviating to another bidding strategy. To measure 
exploitability, we first simulate the auction where all bidders deploy the learned FP strategy and record the average 
bidder payoff. We run 10, 000 Monte-Carlo simulations to estimate this value. We then consider every possible 
deviation to a pure bidding strategy a bidder can make. As before, we consider 1, 001 bid levels. For each of the 
1, 001 bid levels, we let one bidder play that pure bid strategy while the remaining play the learned FP strategy. 
We then calculate the gain a player can expect by deviating to one of these pure bid strategies by subtracting off 
the expected payoff of the learned FP strategy. We estimate the exploitability to be 0.0003, which means a bidder 
can expect to gain at most 0.0003 if they attempt to deviate.

Models with unknown equilibrium behaviour.  We explore contests where each participant’s bid is per-
turbed by random noise to yield their performance. We consider noise following either a uniform or a Beta(12 ,

1
2 ) 

distribution. Due to the noise distribution, the Nash equilibrium bidding strategy is not known for this setting. 
We apply our method on such contests, and investigate how the optimal design is affected by the noise distribu-
tion.

Figures 5b and c show heatmaps of the auctioneer’s utility in the noisy setting (uniform noise on the left 
and Beta noise on the right), under different contest designs. Similarly to Fig. 5a the axes are w1 and w2 , the last 
prize is w4 = 0 , and w3 = 1− w1 − w2 . Figure 5b and c show that as more noise is introduced to the bids, the 
optimal designs tighten around more evenly distributing reward across the top two bids (in both cases, w3 = 0 
in the optimal design). In other words, as the noise increases, the optimal design transfers more reward from the 
top rank to the one below it. An exploitability analysis suggests bidders can expect to gain at most 0.02 if they 
choose to deviate from the learned FP strategy under the predicted optimal auction design for uniform noise 
with d = 0.06 (see Fig. 5b, w∗ = [0.67, 0.33, 0.00]).

We now investigate contests with more participants, showing how performance noise affects the optimal 
design. Figure 6 shows the optimal design for n = 10 participants, for different performance noise levels. We only 

Figure 5.   (a) Heatmap for the auctioneer’s utility for various four bidder contest designs. The star marks the 
optimal design. (b) Heatmap with realized bids drawn from an interval [bid−d,bid+d] uniformly. Plotted on top 
of the heatmap are arrows to the optimal designs for different values of d annotated on the map. (c) Heatmap 
with realized bids drawn from an interval [bid−d,   bid+d] according to Beta(12 ,

1
2 ), d = 0.06.

Figure 6.   First three prizes of the optimized ten bidder contest plotted on top of a simplex for reference. Each 
point denotes the optimal design for a different noise level. The square marks zero noise with the trajectory 
ending at the star with realized bids drawn uniformly from bid ±0.06.
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illustrate the top 3 prizes in a 3D plot (lower ranks typically get very little or no reward in the optimal design). 
Figure 6 shows that increasing the noise makes the optimal design spread the reward more evenly among the 
top ranks. Table 2 shows this as a table, giving the optimal design and inequality in prize levels. An exploitability 
analysis suggests bidders can expect to gain at most 0.002 and 0.09 if they choose to deviate from the learned 
FP strategy in the noiseless and uniform noise setting ( d = 0.06 ) respectively under the predicted optimal auc-
tion design (see first and last rows of Table 2 for optimal designs). Note that in the noisy setting, realized bids 
are drawn from an interval of size 0.12 ( 2× d ). Therefore, we consider 0.09 to still be a relatively low level of 
exploitability for the noisy 10-bidder auction.

Finally, we investigate the limitations of our approach. Our framework may suggest a sub-optimal design due 
to multiple issues. First, the simulation of how participants learn may not be an accurate model of their behavior. 
Second, the differentiable model learned for predicting the auctioneer’s utility may an inaccurate approximation 
of the true function (i.e. we may have neural network generalization error). Third, the optimization procedure 
(Algorithm 1) may converge on a local rather than global optimum.

Figure 7 illustrates the generalization error contrasting the auctioneer’s utility when running the FP simula-
tion and when predicting it using the trained model on previously unobserved designs. We note that the neural 

Table 2.   First three prizes of the optimal ten bidder auction of Algorithm 2. Prizes of fifth rank and higher are 
all zero. Width of the uniform distribution around bidder bids given in column d; Gini index of the design is in 
the last column.

w w
∗

1
w
∗

2
w
∗

3
Gini

0.000 1.000 0.000 0.000 0.900

0.002 0.916 0.084 0.000 0.883

0.004 0.850 0.075 0.075 0.855

0.006 0.848 0.152 0.000 0.870

0.008 0.733 0.260 0.004 0.844

0.010 0.500 0.500 0.000 0.800

0.020 0.500 0.500 0.000 0.800

0.030 0.500 0.500 0.000 0.800

0.040 0.471 0.325 0.204 0.753

0.050 0.461 0.319 0.209 0.746

0.060 0.443 0.319 0.152 0.724

Figure 7.   Utility for ten bidder contest vs the top four prizes with realized bids drawn uniformly from bid ±.06 . 
Plots shown on different scales and slices of the design space.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16937  | https://doi.org/10.1038/s41598-022-20234-3

www.nature.com/scientificreports/

network’s predictions are slightly different from the simulation data, though they follow similar trends. Further, 
Fig. 7 also marks the location of the optimized design suggested by Algorithm 2 with a star, showing errors may 
occur due to convergence to a local rather than global optimum (e.g., Fig. 7c).

As discussed above, the variability in the final design output by the neural network can attributed to both the 
training data and the local learning rule (gradient ascent) that we use to search for the optimal design. Our local 
learning rule is not immune to local optima and so it may return a different output on each run. In an effort to 
quantify that variability, we repeat the search for an optimal design using varying proportions of the training 
data. For each training set size, we measure the average pairwise Jensen-Shannon distance between the optimal 
designs generated from 10 differnt trials. We focus on the 10-bidder auction with uniform noise ( d = 0.06 ). In 
Table 3, we find that the variability in the output does indeed drop as the size of the training dataset increases.

Simulations using fictitious play and independent multi‑agent reinforcement 
learning
Our simulation phase used Fictitious Play (FP)14,15. An alternative is using independent multi-agent reinforce-
ment learning16–18. We provide empirical evidence showing that FP better matches equilibrium based analysis.

In FP each agent assumes the opponents play a stationary (mixed) strategy, and in each round every player 
chooses the best response to the empirical frequency of play of their opponents. Figure 8 investigates the impact 
of the number of rounds on the learned bidding strategies (distribution over bid levels), contrasting it with the 

Table 3.   Variability in auction design predicted by neural network vs training set size.

Proportion of training data used (%) Average pairwise Jensen-Shannon distance between designs

10 0.329

50 0.212

75 0.105

100 0.081

Figure 8.   Bidder CDF comparison. (a) shows the CDFs for each of five different auction designs assuming 
the bidder plays the Nash distribution. The first prize is listed in the legend; the second prize equals one minus 
the first; no prize is given to the third bidder. The remaining plots compare the Nash CDF with the CDF 
learned by Fictitious Self-Play for different first prize amounts. (b)–(f) Show the effect of training iterations 
and discretization granularity on the final CDF. The arrow in (c) highlights a common trend where the CDF 
converges to Nash from above as a finer discretization is introduced: coarser discretizations lead to under 
bidding and, in turn, underestimates of the auctioneer utility. (d) Shows that increasing training iterations 
reduces error, but in a less structured manner than bid granularity.
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Nash equilibrium for the game. It shows the same results as Fig. 3 but for varying number of FP rounds and 
discretization granularities for bid levels.

Figure 8 indicates that the number of FP rounds and the granularity of discretization of bid levels have an 
impact on the learned bidding strategies. However, the results are somewhat robust to the choice of these param-
eters, yielding similar bidding strategies under many settings.

We examine independent multi-agent reinforcement learning (MARL) for the simulation phase. MARL 
methods have recently become popular for modeling agent behavior in multi-agent environments. The n-bidder 
All-Pay auction can be formulated as a multi-agent reinforcement learning problem as follows. The environ-
ment contains only a single state s, where every episode begins. Each bidder i then simultaneously makes a bid 
bi . Finally, the environment calculates and distributes rewards to the agents according to the payoff function in 
Eq. (1). Formally, this is a one state Markov game16, i.e., a multi-agent bandit, with the relevant details given in 
Table 4.

We use independent REINFORCE36, and investigate the bidding strategies learned by the agents. Bidding 
strategies learned using MARL are shown in Fig. 9, contrasted with the equilibrium and strategies learned via FP 
(similarly to Figs. 3 and  8). For large first prizes (0.8 or higher), all methods yield a similar distribution. However, 
there is a deviation for lower top prizes, where the RL distribution has a step function curve.

Figure 9 indicates that the model for agent learning may impact the assumed bidding strategies (and hence 
on the choice of a design). Ultimately, we feel like this is a modelling decision on the user’s side: in order to 
choose a good design, one must first determine what is a reasonable model of the learning behavior of agents.

For All-Pay auctions, using FP yields results that are more similar to those of traditional Nash equilibrium 
analysis. In contrast, if one believes agents are more likely to be reinforcement learners, an alternative bidding 
strategy is a likely outcome. One possible choice is a conservative approach, where one only considers designs 

Table 4.   All-pay auction as a multi-agent reinforcement learning problem.

State-space (S) one “pre-bid” state, i.e., S = {s} is a set with a single state

Bidder i Action-space ( Bi) Bi = {0, . . . , 1} bid effort levels, let bi be the effort level selected by player i

Joint action-space (B) B = B1 × . . .× Bn , let b be the vector of all players’ selected bid levels

Bidder i Reward Ri(s, b) = si(b) as defined in Eq. (1).

Figure 9.   Bidder CDFs with reinforcement learning simulation. (a) shows the CDFs for each of five different 
auction designs assuming the bidder plays the Nash distribution. The first prize is listed in the legend; the 
second prize equals one minus the first; no prize is given to the third bidder. The remaining plots (b–f) compare 
the Nash CDF with the CDFs learned by Fictitious Self-Play and REINFORCE respectively using their optimal 
hyperparameter configurations (iterations, bid levels, learning rate, batch size). Both REINFORCE and Fictitious 
Self-Play agree closely with the Nash equilibrium when the first prize ≥ 0.8 . For smaller prizes, there is a larger 
discrepancy. FP is consistently closer to the equilibrium than REINFORCE.
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where there is a consensus between simulation learning rules (e.g. FP or MARL). In this case, one may opt for a 
large top prize, as in this case, the different models for agent learning behaviour agree with each other.

Related work
All-Pay auctions have received significant attention in the economic literature, including recently published 
surveys and books focusing on the topic2,37. We propose a neural approach to designing crowdsourcing contests.

Earlier work has carried out equilibrium analysis for restricted models of All-Pay auctions3,4,19,24,28,29, includ-
ing the impact of risk-aversion7,38. Such an equilibrium analysis can potentially be viewed as a model of how 
“rational” participants may bid in such settings, reflecting specific assumptions on how people are likely to 
engage in strategic situations.

However, the actual behavior of human participants may significantly deviate from the predicted equilibrium 
in many games or strategic settings39,40. Empirical evaluation of how people actually bid in such settings has 
revealed discrepancies with the predictions of the equilibrium based analysis9,41,42. Such empirical work suggests 
that people employ simple learning heuristics37,41. In particular, the best-response heuristic has been analyzed 
in the auction setting43. In fact, other work has defined alternative equilibrium behaviour in terms of the sta-
tionary distribution of evolutionary learning dynamics observed in nature44. Given this evidence, we focus on a 
learning-based model of bidding behavior.

We examine an auctioneer deciding on a rank reward allocation, in order to maximize its utility. This broadly 
falls within the field of mechanism design or auction design45–47, a subfield in economics, seeking to decide the 
“rules of the game” so as to achieve desired outcomes.

Typically, auctions are designed manually by economists seeking to maximize revenue45,48,49. In contrast, 
we automate the process, similarly to work on automated mechanism design50–58. In other words, we design a 
process that allows machines to take on the burden of the work of analyzing potential rules of an auction or a 
game and selecting ones that are likely to lead to desired outcomes. In contrast to much of the work in the space 
of automated mechanism design, which deal with first-price and second price auctions59 or extensions such as 
Vickrey-Clarke-Groves mechanisms60,61 we focus on All-Pay auctions, where all participants have an identical 
value for the prize.

We use machine learning to search the design space, akin to recent deep-learning mechanism design frame-
works for other auction or mechanism types62–70. Much of this earlier work considers a family of auction rules 
for which one can analytically compute the equilibrium behavior of agents (in some cases a dominant strategy 
equilibrium, and in others refinements of a Nash equilibrium); when the equilibrium behavior is known, it can 
serve as a model of how participants are likely to behave under a design of an auction. We consider domains 
where the equilibrium of the game is unknown, and must thus employ other means to predict the behavior of 
participants. Hence, in contrast to the above work, we leverage agent learning of the auction71,72. Learning agents 
are increasingly capable of solving complex problems; using such capable agents for mechanism design holds the 
promise of optimizing the design of mechanisms in more complex settings than previously possible.

Conclusion
Our empirical analysis shows the promise of automated mechanism design based on deep learning. However, 
our technique has several limitations, such as the dependence on a good model for the learning of agents, and 
errors introduced by inaccurate function approximation and converging on local optima.

Broadly, our technique is a form of automated mechanism design51,73 that combines deep learning and multi-
agent simulation. We hope that these results would trigger further research on using neural networks to design 
mechanisms. For example one could identify mechanisms that are more robust to false-name attacks74–78 or 
collusion23,79–84. While we have focused on all-pay auctions, but we believe similar techniques could be used 
in broader settings, such as pricing crowdsourcing markets, effort prediction85, or principal-agent settings86.

Several questions are open for future research. We assume a finite number of bid levels. If the discretization 
used by bidders is heterogeneous, a coarse discretization could leave one bidder vulnerable if other bidders are 
using a more fine-grained discretization. For example, a bidder bidding in cents could undercut a bidder bidding 
in dollar increments only. In order to approximately counter such arbitrage, bidders may want to randomize 
over two adjacent bid levels (coarse discretization) to effectively achieve bidding in between two levels (finer 
discretization). How can we best model the continuous setting and how can be design auctions for settings where 
bidders might be using different discretization levels?

In addition, can our methods generalize well to other mechanism design domains such as other types of 
auctions? What are good models of agent learning in other strategic settings? Do such models do a good job in 
characterizing the bidding behavior of human participants? Finally, can better methods be devised to optimize 
over designs?

Data availibility
All data and information necessary for replicating these experiments is contained in the manuscript. No addi-
tional external datasets were used.
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