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Understanding the physical 
mechanism of intrinsic noise 
inside viscous isotropic solids
Lin Fa1,2*, Yimei Wang1, Hong Gong1, Dongning Liu1, Jing Jiang1, Lili Li1, Jifeng Liang2, 
Hao Sun2, Yandong Zhang1 & Meishan Zhao3*

We report acoustic impulse-response and system function of particle vibration inside viscous, dense 
solids and explain the physical mechanism of intrinsic-noise generation. With an external disturbance 
of a harmonic force acting on particles inside viscous solid media, the system of particle vibration goes 
through a gradual transition from a static state to a steady harmonic vibrational state. Based on the 
damped oscillator model, the transition frequency spectrum resembles the intrinsic noise generated 
by vibrating particles in viscous isotropic solids, which delivers a crucial understanding for applications 
to invert stratum characteristics around the drilled oil well and its abnormal geological structure.

Different solids are of various degrees of density and viscosity. There is a certain degree of viscosity for all solid 
media in nature. When a harmonic force acts on particles inside the solid media, there is a transition process 
of the particle’s motion from a static state to a steady harmonic vibrational state induced by the inertia of the 
particle and the viscosity of the medium. Naturally, the particles in a solid generate intrinsic noise under external 
disturbance. The frequency spectrum corresponding to the transient process of the particle motion mimics the 
intrinsic noise generated by the particle inside viscous solids.

Intrinsic noise inside solids has been studied extensively for applications in various fields. Huet et al. inves-
tigated the contribution of viscosity to the generation and scattering of entropy noise in  nozzles1. Hoffmann 
et al. studied the effect of damping on mode coupling instability in friction-induced  vibration2. Zhu et al. further 
developed a flow-acoustic splitting method for predicting flow-acoustic noise by introducing a high-order finite-
difference  scheme3. Dragonetti et al. studied the statistical characteristics concerning the parameters of noise 
propagating in a solid medium, considering both the external and internal acoustic fields of a  box4. Based on 
frequency domain analysis, Michael et al. described a frequency domain technique for analyzing intrinsic noise 
within negatively autoregulated gene  circuits5. Ramaswamy et al. studied intrinsic frequency spectrum noise 
affecting mesoscopic oscillatory chemical  reactions6. Alex et al. introduce a mathematical framework that extends 
classical extrinsic–intrinsic noise  analysis7. Jangir et al. studied the effect of stochasticity inherent to biochemical 
reactions (intrinsic noise) and variability in cellular states (extrinsic noise), degrading information transmitted 
through signaling  networks8. Villegas et al. investigated intrinsic noise and deviations from criticality in Boolean 
gene-regulatory  networks9. Hong et al. pointed out that acoustic stress and wave resonance play a crucial role 
in plasma bubbles, and relevant acoustic studies offer new ways to achieve sustainable  chemistry10. Kittmann 
et al. performed analyses of wideband low noise love wave magnetic field sensor  system11. On the piezoelectric 
transient process from a stationary state to a vibration state, Piquette’s theoretical and experimental research 
results showed that when a piezoelectric transducer was excited by a sinusoidal voltage signal, there was indeed 
a radiated acoustic signal transient  process12,13. Fa et al. reported transient responses of radially polarized thin 
spherical shell transducers and radially and tangentially polarized piezoelectric thin circular tubes. They derived 
the analytical expressions of the electrical-acoustic impulse responses and system functions, then concluded that 
the convolution of the excitation voltage signal and electric-acoustic impulse-response would be the acoustic 
signals radiated by the  transducers14–18. Still, there is more work to be done on classifying noises, intrinsic or 
external, and explaining the physical mechanism of generating intrinsic noise inside a viscous, dense solid and 
its application.

The acoustic signal measured by a near-bit noise-logging tool contains intrinsic and external noises. Unlike 
extrinsic noise, intrinsic noise arises from viscous solids’ physical and geometrical properties. In practice, we may 
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extract the intrinsic noise from the measured acoustic signal, then use the intrinsic noise to invert the physical 
characteristics of the formation around the oil well. From there, we may determine whether it is an oil or gas 
reservoir, calculate the oil or gas content, and evaluate the condition of the oil well. The concept of intrinsic 
noise can also be extended to the field of underwater acoustics. The noise generated from underwater targets 
belongs to external noise. In the process of detecting targets, e.g., stealth ships and sunken submarines, it is vital 
to eliminate the intrinsic noise generated by the marine environment, extract the external noise generated by 
the navigation and engine of the ships, and use the measured noise signal to track in real time and accurately 
locate the underwater targets.

We report, in this paper, the newly derived acoustic impulse-response and system function for the particle 
vibration inside viscous isotropic solids. We classify the noises generated inside viscous solid media (either 
intrinsic or extrinsic), deliver the physical mechanism of generating intrinsic noise, and discuss its application 
in industry.

Based on the harmonic oscillator model, the established time-domain and s-domain equivalent mechanical 
networks provide us with the acoustic-impulse response and system function of the particle vibration from the 
residue theorem and the physical mechanism of intrinsic noise generation.

We selected several types of rocks as samples to show the effect of the physical parameters on the intrinsic 
noise, e.g., viscosity, stiffness coefficient, density, and others. Our results showed that the intrinsic noise extracted 
from the measured acoustic signals was feasible to invert the physical properties of viscous solid and anomalies 
in its internal structure.

Results
We selected Anisotropic shale, Mesaverade sandstone (M-sandstone), and Mesaverade-calcareous sandstone 
(C-sandstone) as the solid samples to perform the  analysis19. Table 1 shows the relevant physical parameters of 
these rocks, and in the following analysis, we perform calculations and consider the isotropic nature of these 
solid samples. Here the symbols for frictional resistance, mass, and equivalent-stubborn coefficient of vibration 
particles inside the solids are Rm = a1η11 , m = a2ρ , kc = a3c11 , respectively; a1 , a2 and a3 are scale factors detailed 
in the Supplemental material.

From Eqs. (12) and (13) (in the “Methods” section), the acoustic impulse-response and the corresponding 
amplitude spectra of particle vibration for the selected rock samples are calculated, as shown in Figs. 1–3.

Figures 1–3 show that for all three rock samples: (i) the amplitude of an acoustic impulse-response decays 
exponentially and periodically with time, and (ii) the corresponding amplitude spectrum increases with fre-
quency until it reaches its maximum and then decreases with increasing frequency.

The frequency corresponding to the maximum amplitude spectrum ( f0 ) is called the center frequency of 
the particle vibration system. The calculation results also show that the viscosity coefficient ( η11 ) does not affect 
the center frequency of the system. However, it affects the magnitudes of the acoustic impulse response and 
corresponding amplitude spectrum: the larger the value of either η11 or a1 , the faster the attenuation of the 
time-domain wave of the acoustic-impulse response and the smaller the corresponding amplitude spectrum. 
The physical parameters ( c11 and a3 ) play a significant role in determining the center frequency, and the center 
frequency increases monotonically as either of these parameters increases. For the applied parameters, the center 
frequencies of shale, M-sandstone, and C-sandstone are 1.382 MHz, 1.695 MHz, and 2.129 MHz, respectively.

Transient response of particle vibration under the influence of a harmonic force. From Eq. (16) 
(in the “Methods” section) and its Fourier transform, applying sinusoidal signals with the selected frequencies 
( f = 0.8f0 , 1.0f0 , and 1.2f0 ), the calculated time-domain waveform and amplitude spectrum for the rock samples 
are shown in Figs. 4–6.

Figures 4–6 show that (i) the time-domain wave of the particle vibration consists of two parts, i.e., a transient 
transition process and a steady harmonic vibration with the sinusoidal signal frequency; (ii) the amplitude spec-
trum also consists of two parts, i.e., a continuous smooth amplitude spectrum curve corresponding the transition 
process and an impulse with the sinusoidal signal frequency, which corresponds to steady-state harmonic vibra-
tion of the particle; (iii) the frequency spectrum corresponding to the transition process of particle vibration is 
the intrinsic-noise generated in viscous solid; (iv) the values of amplitude spectrum and waveform decrease when 
the frequency of harmonic force is far from the center frequency of particle vibration, and for this case, we can 
clearly recognize the intrinsic-noise determined by the physical property and internal structure of the viscous 
solid from the measured acoustic signal; (v) the amplitude spectrum and waveform of the particle vibration reach 
their maxima when the sinusoidal signal frequency is equal to the center frequency of particle vibration, and for 
this case, the frequency of the intrinsic-noise is aliased with the frequency of the harmonic force.

Table 1.  Parameters of the selected isotropic rocks. *vp is the phase velocity of a longitudinal wave of VTI rock 
in symmetric-axis direction, measured by  Thomsen19, i.e., short of VTI rock media’s anisotropy; ρ, c11 and η11 
are density, stiffness coefficient, and viscosity coefficient of rock, respectively.

Rock medium vp (m/s) ρ (g/cm3) c11(N/m)

A-shale 2745 2.340 1.76 ×  1010

M-Sandstone 3368 2.500 2.84 ×  1010

C-Sandstone 4231 2.370 4.24 ×  1010
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Figure 1.  Acoustic impulse-response and amplitude spectrum of particle vibration in A-shale for three values 
of viscosity coefficient: η11=2× 10

4 , 5× 10
4 and 8× 10

4 N s/m2 ) from top to bottom. (a), (c) and (e) are the 
time-domain waveforms, and (b), (d) and (f) are the corresponding amplitude spectra.

Figure 2.  Acoustic impulse response and amplitude spectrum of particle vibration in M-sandstone for three 
values of viscosity coefficient: η11=2× 10

4 , 5× 10
4 and 8× 10

4 (N s/m2 ) from top to bottom. (a), (c) and (e) 
are the time-domain waveforms, and (b), (d) and (f) are the corresponding amplitude spectra.
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Figure 3.  Acoustic impulse response and amplitude spectrum of particle vibration in C-sandstone for three 
values of viscosity coefficient: η11= 4× 10

4 , 7× 10
4 and 1× 10

5 (N s/m2 ) from top to bottom. (a), (c) and (e) 
are the time-domain waveforms, and (b), (d) and (f) are the corresponding amplitude spectra.

Figure 4.  Time-domain waveform and amplitude spectrum of particle vibration for A-shale under the action 
of sinusoidal signal with selected frequencies ( f = 0.8f0 , 1.0f0 and 1.2f0 ) from top to bottom. (a), (c) and (d) are 
the time-domain waveforms of particle vibration, respectively; (b), (e) and (f) are the corresponding amplitude 
spectra.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15878  | https://doi.org/10.1038/s41598-022-20228-1

www.nature.com/scientificreports/

Figure 5.  Time-domain waveform and amplitude spectrum of particle vibration for M-sandstone under the 
action of sinusoidal signal with selected frequencies ( f = 0.8f0 , 1.0f0 and 1.2f0 ) from top to bottom. (a), (c) and 
(d) are the time-domain waveforms of particle vibration, respectively; (b), (e) and (f) are the corresponding 
amplitude spectra.

Figure 6.  Time-domain waveform and amplitude spectrum of particle vibration system for C-sandstone under 
the action of a sinusoidal signal with selected frequencies ( f = 0.8f0 , 1.0f0 and 1.2f0 ) from top to bottom. (a), (c) 
and (d) are the time-domain waveforms of particle vibration, respectively; (b), (e) and (f) are the corresponding 
amplitude spectra.
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Transient response of particle vibration under the action of a sinusoidal signal with muti-fre-
quencies. In practice, the force acting on a system of particles in a viscous solid is usually a signal wavelet 
containing many frequency components. Let us select a gated sinusoidal signal wavelet for applications in the 
sample  rocks18. The amplitude and window-width of the signal are 1.0 and 3.0 T, respectively, where "1.0" indi-
cates that the amplitude of the gated harmonic force is 1, and T is a sine-cycle of a sinusoidal signal whose cor-
responding frequency can be 0.8f0 , 1.0f0 , and 1.2f0 , respectively.

Figures 7–9 illustrate the time-domain waves and amplitude spectra normalized by the corresponding maxima 
of the gated sinusoidal frequencies, which is also the center frequency ( f0).

From Figs. 4–9, we find that different sinusoidal signals acting on the particle may lead to distinct vibration 
states in each rock sample. The nature of the force would not influence the physical property of intrinsic noise, 
e.g., the center frequency. A harmonic force would yield more accurate information regarding intrinsic noise 
generated from the measured acoustic signals than using other external disturbances. Additionally, the ampli-
tude spectrum in Figs. 4–6 includes an impulse due purely to the frequency of a harmonic force acting on the 
particle. Figures 7–9 contain continuous amplitude spectra corresponding to an external gated sinusoidal signal.

The measured acoustic signal from practical applications contains the frequency components of external 
disturbances, e.g., the force applied to the system of the particle vibration, external noise from the environment, 
and the intrinsic-noise corresponding to the transient process of particle vibration. The noise signal measured 
by a near-bit noise-logging tool contains the external noise generated by the drilling rig and includes the induced 
intrinsic noise. The characteristics of the intrinsic noise depend on the solid medium’s physical properties, such 
as viscosity, stiffness coefficient, density, and more. We can invert the rocks’ physical properties and internal 
structure from the intrinsic noise generated by particle vibration. For example, we may apply specific algorithms 
to extract the intrinsic noise from the measured noise signal and use its time and frequency domain properties 
to invert the physical and mechanical properties of the formation around the drilled oil well.

Discussion
From calculation and analysis, we make the following concluding remarks. (i) The convolution of the sinusoidal 
signal acting on the system with the acoustic impulse response is suitable to describe the vibrational state of the 
particle. The acoustic-impulse response and system function reflect the inherent physical properties of viscous 
solid media, which helps analyze the physical phenomena generated by acoustic waves propagating inside the 
medium, e.g., the generation of intrinsic noise, acoustic attenuation, and dispersion.

(ii) Under the action of the harmonic force, the particle inside a solid medium has a transient process from a 
static state to a stable harmonic vibrational state. The vibrational spectrum corresponding to this transient process 
is the same as the spectrum of the intrinsic noise generated in the viscous solid. The physical parameters of the 

Figure 7.  Time-domain waveform and amplitude spectrum of the particle vibration in A-shale. (a), (c) and 
(e) are for the cases of gated sinusoidal signal frequencies 0.8f0 , f0 and 1.2f0 , respectively; (b), (e), and (f) are the 
corresponding amplitude spectra.
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Figure 8.  Time-domain waveform and amplitude spectrum of the particle vibration in the M-sandstone. (a), 
(c) and (e) are for the cases of gated sinusoidal signal frequencies 0.8f0 , f0 and 1.2f0 respectively; (b), (e), and (f) 
are the corresponding amplitude spectra.

Figure 9.  Time-domain waveform and amplitude spectrum of the particle vibration in the C-sandstone. (a), (c) 
and (e) are for the cases of gated sinusoidal signal frequencies 0.8f0 , f0 and 1.2f0 , respectively; (b), (e), and (f) are 
the corresponding amplitude spectra.
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solid determine its inherent noise. Then, we can obtain the solid’s physical properties and internal anomalies 
from its intrinsic noise.

(iii) Compared to the multi-frequency wavelet acting on the system of the viscous solid, a sinusoidal signal 
can separate the frequency spectrum of the intrinsic noise more accurately and efficiently from the measured 
acoustic signal.

(iv) The center frequency of the vibrational motion of particles inside a solid is related to the stiffness coeffi-
cient ( c11 ) and a scale factor ( a3 ). It is irrelevant to the viscosity coefficient ( η11 ), which only affects the duration of 
the transient process. The larger the viscosity coefficient (or the scale factor a3 ), the shorter the transient process.

(v) With different external forces acting on a solid, the vibrational motion of the particle has a different tran-
sient process. The closer the sinusoidal signal frequency is to the center frequency, the greater the amplitude of 
the particle vibration.

(vi) The characteristics of the intrinsic noise in a measured acoustic signal are closely related to the physical 
characteristics of a solid sample, e.g., viscosity, stiffness coefficient, density, internal geometric structure (e.g., 
the existence of fractures), and more. By applying acoustic logging while drilling, we can use the intrinsic noise 
to obtain the physical properties of the formation around a drilled oil well and evaluate oil-well conditions. i.e., 
determine whether it contains fractures and if it is an oil or gas reservoir.

The physical mechanism of generating intrinsic noise in viscous solids described in this paper enhances our 
understanding of the new physical phenomena in acoustics. It provides us with the tools to deduce or simulate 
the intrinsic noise in viscous solids. In the subsequent process, we describe the experimentation methods, verify 
the physical mechanism of the intrinsic-noise generation, and develop the corresponding inversion interpreta-
tion processing software for the intrinsic noise. The theoretical results would lay the foundation for establishing 
new intrinsic-noise logging tools and provide us with a new scheme to convert academic research into industrial 
applications and products. Still, we would appreciate more practical experimental verification.

Methods
Physical model of particle vibration system in viscous solid medium. An electromagnetic wave 
is a substance without mass but energy and has propagation attenuation only if propagating in a medium with 
non-zero conductivity. However, a vibrating particle inside a viscous solid has both mass and energy. Due to the 
inertia of the particle and the resulting frictional force, there is a transient process for the particle from a static 
state to a stable harmonic vibration state when a harmonic force acts it. Therefore, the particle vibration con-
tains the frequency component of the steady-state harmonic vibration and some frequency components of the 
transient process corresponding to the particle vibration. These are the frequency components of intrinsic noise 
generated in viscous solids. In the following, we analyze and discuss the vibration state of the particle in viscous 
solid and provide a new and insightful explanation of the physical mechanism of intrinsic-noise generation.

When a particle moves in a viscous fluid, it is subject to frictional resistance. The magnitude of this frictional 
force is related to the viscosity of the medium and its shape, size, and movement speed. For example, the frictional 
force of a small ball moving at a uniform speed in a viscous liquid  is20.

There are several important parameters: r and v are the radius and the moving speed, respectively; η is the 
viscosity coefficient of the medium; R0 = 6πrη is frictional resistance. The frictional force experienced by the 
particle is proportional to the movement speed of the small ball, the geometric (shape and size) parameters 6πr 
and the viscosity η of the liquid.

Analog to a small moving ball in a viscous fluid, we assume that the vibration particles in viscous, dense 
solids act like tiny balls. The frictional force experienced by a vibrating particle is proportional to its vibration 
velocity and the viscous coefficient of the solid. The direction of the frictional force is opposite to the moving 
direction of the particle.

Elastic damping is quite complex, related to the type of strain of the solid caused by the particle vibration. 
The compressive strain corresponding to the longitudinal wave differs from the shear strain corresponding to the 
shear wave. For compressive strain, the size and density of the volume element will change. Figure 10(a) shows 
the compression deformation of a uniform rod. The compressive strain of the rod is equivalent to a spring oscil-
lator for particle vibration corresponding to the longitudinal wave, as shown in Fig. 10(b). We assume that the 
spring’s length ( l0 ) corresponds to the particle’s equilibrium position, and the spring oscillator’s instantaneous 
length is l during the vibration process. Also, the particle displacement is u, and its direction corresponds to the 
longitudinal wave, which is parallel to the horizontal direction.

It can be seen from Fig. 10 that the vibrating particles inside viscous solids are not only affected by the ideal 
microscopic "spring force" but also affected by frictional force. Assume that the frictional resistance of the particle 
with a spherical shape inside viscous solids is Rm . By analogy to the frictional resistance R0 of the ball moving 
inside the viscous fluid described in formula (1), we can think that the magnitude Rm is also proportional to the 
viscosity of the solid. The frictional force direction is always opposite to the moving direction of the particle,

And the particle displacement corresponding to the longitudinal wave is

From Hooke’s theorem, we can express the elastic force acting on the vibrating particle as

(1)f = 6πrηv = R0v

(2)ff = −Rm
du

dt

(3)u = x = l − l0
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The elastic constant kc is the stubbornness coefficient of the spring oscillator.

Impulse response and system function of particle vibration inside viscous solid media. When 
a harmonic force ( fa ) acts on a particle inside viscous solid media, the equation of motion is given by

The physical quantities and physical parameters involved in Eq. (5) are the particle displacement (u(t)), 
particle displacement velocity (v(t) = du(t)/dt), mass (m) of the particle, the reciprocal of the stubbornness coef-
ficient ( Cm = 1/kc ), friction resistance (Rm), the force fa (t) in mechanical network, and they are analogized to 
the charge (Q(t)), the current (I(t)), the inductance (L), the capacitance (C), the resistance (R), and the voltage 
(U(t)) in the electrical network, respectively.

From Eq. (5), we may obtain a time-domain network, as shown in Fig. 11(a), and the corresponding s-domain 
network in Fig. 11(b), where V(s) and Fa(s) are the expressions of the particle displacement velocity and the force 
acting on the particle in the s-domain, respectively.

The particle displacement velocity, shown in Fig. 11(b), is in the s-domain,

From Eq. (6), the system function of the mechanical network, i.e., the ratio of V(s) to Fa(s) ), is

Based on the residue theorem, the impulse response of the mechanical network in the time domain is given by

(4)fk = −kc�l = −kcx = −ku

(5)fa = m
d2u

dt2
+ Rm

du

dt
+ kcu

(6)V(s) =
Fa(s)

Rm +ms + 1/Cms

(7)H(s) =
V(s)

Fa(s)
=

1

Rm +ms + 1/Cms
=

Cms

mCms2 + RmCms + 1

(8)h(t) =

N
∑

j=1

Res
[

H(sj)e
sjt
]

Figure 10.  A model mechanical analog of particle damping vibrations corresponding to a longitudinal wave: 
(a) compression deformation of a uniform rod and (b) equivalent spring oscillator.

Figure 11.  Equivalent mechanical network of the vibrational motion of the particle inside viscous solids. (a) 
time-domain; (b) s-domain.
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where N is the number of singularities, the number of roots of the denominator of Eq. (7), and sj is the jth sin-
gularity. The roots of the denominator of Eq. 7 are

The three cases of (RmCm)
2 > 4mCm , (RmCm)

2 = 4mCm , and (RmCm)
2 < 4mCm are the following.

i) (RmCm)
2 > 4mCm : s1,2 are the two different real roots. Solving Eq. (8) yields the solution.

In which,β = Rm/2m,α =
(

(RmCm)
2 − 4mCm

)1/2
/2mCmA1 = Cmβ/(β − α) , A2 = −Cmα/(β − α) , and 

ε(t) are unit step functions. Equation 10 indicates that the particle is in an overdamped state and is, obviously, 
not a reasonable solution for particle vibration.

ii) (RmCm)
2 = 4mCm : s1,2 are two identical real roots with an equation of motion

where α = 0,A1 = Cmβ and A2 = Cm . Equation (11) indicates that the system is in a critical damped state and 
is not a reasonable solution.

iii) For (RmCm)
2 < 4mCm : s1,2 are a pair of complex conjugate roots, and the impulse response is

where A = Cm

(

1+ (β/α)2
)1/2,ωd =

(

4mCm − (RmCm)
2
)1/2

/2mCm,θ = tan−1 (β/ωd) . We define β as the 
damping coefficient of particle vibration. The amplitude Ae−βt of the impulse response decays exponentially 
with time.

Equation (12) indicates that the particle system is in an under-damped mode with a solution corresponding to 
the actual physical meaning of "particle vibration." The absolute integrability of h (t) results in s = iω , so Eq. (7) 
is the system function of the particle vibration inside viscous solids, and we may revise it as

Equations (12) and (13) show that the solid medium’s physical properties determine the particle vibration’s 
impulse response within the system. We infer that the physical properties of a viscous solid and its structural 
abnormity can be inverted by the intrinsic noise generated inside viscous solid media.

Equation (5) is the equation of the vibrational motion of the particle inside viscous solids when applying 
an external force fa to the particle. As a second-order differential equation with constant coefficients, its com-
plete solution includes a general solution of the corresponding homogeneous equation and a special solution 
( u = Cmfa ) of an inhomogeneous equation.

From Eq. (5), its eigenequation is then

which yields a general solution of the homogeneous equation

The coefficient (A) and phase angle ( θ ) in Eq. (15) will be determined by the initial conditions. If the force fa 
acting on the particle inside viscous solids is a harmonic force, the general solution is then

The first term describes the steady-state harmonic vibration of the particle. The second term does the transient 
process of particle vibration jointly determined by the harmonic force fa and the inherent physical properties 
of the particle system.

Data availability
The data supporting the findings presented in this work are available from the corresponding author upon 
reasonable request.
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