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A unified Gaussian copula 
methodology for spatial regression 
analysis
John Hughes

Spatially referenced data arise in many fields, including imaging, ecology, public health, and 
marketing. Although principled smoothing or interpolation is paramount for many practitioners, 
regression, too, can be an important (or even the only or most important) goal of a spatial analysis. 
When doing spatial regression it is crucial to accommodate spatial variation in the response variable 
that cannot be explained by the spatially patterned explanatory variables included in the model. 
Failure to model both sources of spatial dependence—regression and extra-regression, if you will—
can lead to erroneous inference for the regression coefficients. In this article I highlight an under-
appreciated spatial regression model, namely, the spatial Gaussian copula regression model (SGCRM), 
and describe said model’s advantages. Then I develop an intuitive, unified, and computationally 
efficient approach to inference for the SGCRM. I demonstrate the efficacy of the proposed 
methodology by way of an extensive simulation study along with analyses of a well-known dataset 
from disease mapping.

The aim of a spatial regression analysis is to explain a substantial proportion of the spatial pattern exhibited by 
some dependent variable by appealing to the spatial structure exhibited by one or more independent variables. 
Consider the data shown in Fig. 1, for example. The response (left panel) is stomach cancer incidence for each 
of Slovenia’s municipalities for the period 1995–20011. The explanatory variable (right panel) is socioeconomic 
status. An inverse relationship between the two variables is clearly evident, i.e., higher socioeconomic status 
(tending toward black) is associated with lower stomach cancer incidence (tending toward white), and vice versa.

Since spatially structured data like the Slovenia data are common in many fields, and explanation, as opposed 
to interpolation or smoothing, is often desired, spatial regression methods are important data-analytic tools for 
many practitioners. Unfortunately, the most popular spatial regression model, although intuitive as a posited 
data-generating mechanism, is problematic as a data-analytic tool. In this article I will describe a little-used 
alternative spatial regression model that has an equally satisfying motivation but avoids the challenges faced by 
the more popular model.

Spatial regression models: two roads diverge
A linear spatial regression model for Gaussian outcomes. Both of the spatial regression models 
treated herein have their genesis in the spatial linear mixed-effects regression model (SLMM), which can be 
specified as follows. We have

where Y = (Y1, . . . ,Yn)
′ is the response; Xn×p is the design matrix, the p columns of which are spatially struc-

tured covariates; β = (β1, . . . ,βp)
′ are regression coefficients; γ = (γ1, . . . , γn)

′ are spatially dependent random 
effects, the purpose of which is to accommodate spatial structure in the response that cannot be explained by 
X ; and ε = (ε1, . . . , εn)

′ are iid Gaussian errors, which are independent of γ . Note that each element of Y  , of 
xj (j = 1, . . . , p) , of γ , and of ε is spatially referenced, i.e., Yi = Y(si) , xji = xj(si) , γi = γ (si) , and εi = ε(si) , 
where si is the ith spatial location at which the response and covariates were observed. The locations {si} may be 
points in a continuous domain (e.g., latitude and longitude); or the locations may represent spatial aggregates 
(e.g., Census tracts, states, pixels), which are referred to as areal units. To increase readability I will generally 
omit the locations {si}.

Two characteristics make (1) a spatial regression model. First, the explanatory variables in X exhibit spatially 
patterned variation, as I mentioned above. Indeed, the chief aim of a spatial regression analysis is to explain 
spatially patterned variation in the response Y  as having arisen due to an association between Y  and one or more 

(1)Y = Xβ + γ + ε,
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columns of X . Second, the spatial random effects γ accommodate/induce spatial variation in the response beyond 
that which can be attributed to X . Indeed, one might say γ is a stand-in for covariates that are missing from X.

It is the supposed random nature of γ that makes model (1) a mixed-effects model: β are fixed effects and γ are 
random effects. Typically, γ is assumed to follow a multinormal distribution having mean 0 and spatial covariance 
matrix �n×n . To say that � is a spatial covariance matrix is to say that the ii′ th element ( i  = i′ ) of � accounts for 
the spatial relationship between locations si and si′ . For example, when the spatial domain of interest is continu-
ous, it is common to let �ii′ = cov(γi , γi′) = K(si , si′ | ψ) , where K is a spatial kernel function having parameters 
ψ . For some applications, an appealing choice of K is the powered exponential kernel, which is given by

where |si − si′ | is the distance between locations si and si′ , ν ∈ (0, 2] is a smoothness parameter, and φ > 0 is a 
range parameter.

Note that models of the sort just described are usually referred to as Gaussian process (GP) models. GP meth-
ods are immensely popular not only in spatial statistics but more generally. The above described spatial model 
is referred to as a point-level model since the spatial locations are points in a continuous domain. Point-level 
models are often (less precisely) termed geostatistical models.

Should the spatial domain comprise aggregates (as for the Slovenia stomach cancer data presented above), 
� is typically constructed from the undirected graph G = (V ,E) that represents the adjacency structure among 
the areal units (for Slovenia, municipalities; see Fig. 2). Here each areal unit corresponds to exactly one vertex 
in V = {1, 2, . . . , n} , and edge (i, i′) ∈ E if and only if areal units i and i′ are adjacent. A popular form of � in this 
case is the proper conditional autoregressive (CAR)  model2, for which

K(si , si′ | ν,φ) = exp

{

−

(

|si − si′ |

φ

)ν}

,

� = [τ(D− ρA)]−1,

Stomach Cancer Incidence Socioeconomic Status

Figure 1.  Stomach cancer incidence and socioeconomic status for the municipalities of Slovenia. Figure created 
using R version 4.1.2 (https:// www.r- proje ct. org).

Figure 2.  The adjacency structure G = (V ,E) for the municipalities of Slovenia. Figure created using R version 
4.1.2 (https:// www.r- proje ct. org).
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where τ > 0 is a smoothing parameter, Dn×n is diagonal with the degrees of the vertices of G as its diagonal ele-
ments, ρ ∈ [0, 1) is a range parameter, and An×n is the adjacency matrix for G, i.e., Aii′ = 1{(i, i′) ∈ E}.

Note that the proper CAR and similar models are Gaussian Markov random field (GMRF) models, which 
is to say that, conditional on its neighbors, each outcome is independent of the remaining outcomes (spatial 
Markov property). The dependence structure for a GMRF model is specified in terms of a precision matrix 
rather than a covariance matrix. It is the form of the precision matrix that implies the conditional independ-
ency structure. Moreover, the precision matrix is sparse, and so fast sparse-matrix routines can often be used 
to speed computation.

The curious reader may desire more information on the methods I just touched on. An excellent book-length 
presentation of GP methods can be found in Williams and  Rasmussen3. A seminal book in the field of spatial 
models, which also discusses GP methods but is more wide ranging, is Banerjee et al.4. See Rue and  Held5 for a 
seminal book-length treatment of GMRF models. For a concise treatment of Gaussian random field models for 
spatial data, see  Haran6. For a survey of Markov random field models and their applications, see Kindermann 
and  Snell7. The seminal paper on geostatistical models is Diggle et al.8. And the pathbreaking paper on spatial 
Markov random field models is  Besag9. Of course many other excellent sources exist.

In any case, there are many possibilities for � , and each of the many spatial linear mixed-effects regression 
models is distinguished by the manner in which said model constructs � from s1, . . . , sn . For each model � is 
structured so that γi and γi′—and hence Yi and Yi′—exhibit stronger positive correlation the closer si and si′ are 
to one another, and cor(γi , γi′) decays towards 0 as the distance between si and si′ increases.

Finally, properties of the multinormal distribution imply that the response, too, is multinormal:

where σ 2 ∈ R
+ is the common variance of the εi and I denotes the n× n identity matrix. Thus the SLMM can 

be viewed as a linear regression model having spatially correlated multinormal errors as well as the iid Gauss-
ian errors of the ordinary linear model, the latter of which represent extra-spatial dispersion, i.e., variation that 
cannot be attributed to the spatial process.

Extending the linear spatial regression model. Should we desire to accommodate non-Gaussian 
response variables, the two formulations of the SLMM, (1) and (2), suggest two different approaches. The first 
form of the SLMM suggests that we model a non-Gaussian response as

where g is a suitable link function and the linear predictor Xβ + γ is the same as above. We pair (3) with an 
appropriate distribution for the response. The resulting model is called the spatial generalized linear mixed 
model (SGLMM) since it can be viewed as a generalized linear  model10,11 that induces spatial dependence in the 
response variable by augmenting the ordinary linear predictor Xβ with spatially dependent random effects γ . 
(Conditional on γ , the outcomes are assumed to be independent).

The SGLMM is immensely popular—so popular, in fact, that alternatives receive little attention, despite the 
fact that the SGLMM poses a number of formidable challenges (to be described shortly).

The second form of the SLMM suggests an alternative to the SGLMM, namely, the spatial direct Gaussian 
copula regression model (SGCRM). The SGCRM can be specified as

where � is a spatial correlation matrix, Fi and xi = (xi1, . . . , xip)
′ are the cdf and covariates, respectively, for the 

response variable Yi , and F−1
i  is the quantile function for Fi . Note that the Ui are marginally standard uniform 

owing to the probability integral transform, and Yi follows distribution Fi owing to the inverse probability inte-
gral  transform12.

In this scheme we have

for an appropriate choice of F1, . . . , Fn . Thus we see that the SGCRM induces “extra” spatial dependence “from 
below,” if you will, as opposed to augmenting the ordinary linear predictor. This extra spatial structure is produced 
by a Gaussian spatial copula, of which U = (U1, . . . ,Un)

′ is a realization: the Ui are marginally standard uniform 
and jointly carry the dependence structure encoded in � . (For book-length treatments of copula methods see 
 Nelsen13 and/or  Joe14. And excellent papers on the subject are Kolev and  Paiva15 and Xue-Kun  Song16).

Note that the SGLMM is equivalent to the SLMM if g is the identity function and the response distributions 
are Gaussian and have covariance matrix σ 2I . Likewise, the SGCRM is equivalent to the SLMM if � is the cor-
relation matrix corresponding to � and the response distributions are Gaussian with means x′iβ and variances 
�ii + σ 2 . Thus the SLMM and the SGCRM are the same model in this case.

When the response is non-Gaussian, the SGLMM and the SGCRM are usually not  equivalent17, and so for a 
non-Gaussian SGLMM we must consider the joint distribution f (Y , γ ) = f (Y | γ )f (γ ) , while the SGCRM is 
a marginal model irrespective of the response distribution. This implies that β has a conditional interpretation 
for non-Gaussian SGLMMs, i.e., β has its usual interpretation only conditional on the spatial random effects γ 

(2)Y ∼ Normal(Xβ ,� + σ 2I),

(3)E(Y | X, γ ) = g−1(Xβ + γ ),

(4)

Z = (Z1, . . . ,Zn)
′ ∼ Normal(0,�)

Ui = �(Zi) ∼ Uniform(0, 1) (i = 1, . . . , n)

Yi = F−1
i (Ui) ∼ Fi(· | xi),

E(Y | X) = g−1(Xβ)
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since the random vector γ is essentially an additional, but unobserved, covariate. By contrast, the SGCRM and 
the ordinary generalized linear model share the same intuitive marginal interpretation of β because both models 
employ the “bare” linear predictor Xβ instead of Xβ + γ.

And the problem of interpretation does not end there, for the SGLMM exhibits spatial confounding, a type 
of perfect collinearity between γ and X that can lead to a rather different value for β̂ and inflate β̂ ’s standard 
errors so dramatically as to conceal important associations between Y  and X18,19. To see why the SGLMM is 
spatially confounded, first let P be the orthogonal projection onto C(X) (the column space of X ), so that I− P is 
the orthogonal projection onto C(X)⊥ . Now eigendecompose P and I− P to obtain orthogonal bases ( Kn×p and 
Ln×(n−p) , say) for C(X) and C(X)⊥ . Then the augmented linear predictor can be rewritten as

where δp×1 and η(n−p)×1 are random coefficients. This form shows that K is the source of the confounding, for 
K and X have the same column space.

So troubling is spatial confounding that a considerable literature devoted to the problem now exists. Yet no 
proposed remedy appears to be satisfactory, and it may be safe to conclude that no proper remedy will ever be 
found within the standard mixed-effects  paradigm20. It is fortunate that the SGCRM does not suffer from spatial 
confounding (because the SGCRM’s linear predictor does not contain spatial random effects).

Clayton et al.18 discovered spatial confounding. Reich et al.19 and  Paciorek21 then sparked renewed (and 
sustained) interest in spatial confounding, and offered means of alleviating or remedying the problem. Since 
then many articles have appeared on the subject. Many of those articles propose some remedy or other within 
the mixed-effects paradigm. Instead, I recommend avoiding the problem altogether by setting aside the mixed-
effects paradigm (for regression).

Some spatial modelers might contend that we simply must work within the mixed-effects paradigm if we 
aim to do both spatial regression and spatial smoothing. But the literature on spatial confounding suggests that 
regression and smoothing are cross purposes. Perhaps we should consider spatial regression and spatial smooth-
ing to be distinct tasks, and treat them as such. In the remainder of this article I will put forth the SGCRM as a 
compelling solution to the spatial regression problem. I will address spatial smoothing in future work.

Finally, I would be remiss if I did not mention an additional, and important, potential pathology of the 
SGLMM, namely, that the conclusions implied by an SGLMM fit can be implausible not only for the regression 
but also for the dependence model. In a later section I will demonstrate by applying an SGLMM to the Slovenia 
data. For those data, results for both the regression part of the model and the dependence part of the model are 
implausible.

Approaches to inference for the SGCRM
If one aims to estimate simultaneously the marginal parameters and the copula parameters, doing inference 
for the SGCRM does not permit a unified approach. For continuous outcomes the SGCRM likelihood is meta-
Gaussian, and so likelihood-based inference (i.e., maximum likelihood or Bayesian inference) is straightfor-
ward—but potentially burdensome computationally owing to repeated computation of |�| and �−1 along with 
simultaneous estimation of the marginal parameters. For discrete outcomes the SGCRM likelihood comprises 
on the order of 2n terms and is thus intractable for realistic sample sizes. Consequently, a number of tractable 
alternative objective functions have been proposed for discrete  data22–28. Although these alternatives are com-
pelling and well-studied, I recommend a simple, flexible, unified (i.e., suitable for both continuous and discrete 
outcomes) two-stage approach to inference, as follows.

Recall that the standardized residuals for an ordinary GLM fit are given by

or

where ei is the Pearson residual for the ith outcome Yi , di is the corresponding deviance residual, and ĥi is the 
estimated leverage of Yi . Since these residuals are asymptotically standard normal for most forms of the  GLM11,29, 
it is quite natural in a multivariate setting to regard r = (r1, . . . , rn)

′ as a realization of Z from (4). (In fact, it is 
advantageous to regard r as a realization of Z even when the residuals appear to depart markedly from standard 
normality—more on this later.) This suggests that we can fit an SGCRM by first fitting an ordinary GLM having 
linear predictor Xβ , and then using standardized residuals to estimate the parameters of � . Specifically, we can 
estimate � by optimizing

Finally, armed with β̂ and �̂ , we can do parametric  bootstrap30,31 inference for β , as follows. 

1. Fit an ordinary GLM to Y  to estimate the marginal parameters β (and perhaps additional, nuisance, param-
eters).

Xβ + γ = Xβ + Kδ + Lη,

ri =
ei

√

1− ĥi

ri =
di

√

1− ĥi

,

ℓ(� | r) = −
1

2
log |�| −

1

2
r
′�−1

r.
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2. Use the standardized residuals from Step 1 to estimate the parameters of �.
3. Produce a bootstrap sample β̂

∗

1, . . . , β̂
∗

nb
 for β̂ , where nb is the bootstrap sample size, as follows. For 

k ∈ {1, . . . , nb} , 

(a) simulate Z∗
k ∼ Normal(0, �̂);

(b) compute U∗
k by applying the probability integral transform—as in (4) above—to Z∗

k;
(c) produce Y∗

k by applying the inverse probability integral transform—as in (4) above—to U∗
k , where the 

ith quantile function has parameters β̂ (and perhaps estimates of nuisance marginal parameters);
(d) obtain β̂

∗

k by fitting the above mentioned ordinary regression model to Y∗
k.

The resulting bootstrap sample reflects the more dispersed—that is, more variable due to reduced effective sample 
size—sampling distribution of β̂ under dependence and so can be used to do much improved inference for β.

Application of the SGCRM to simulated data
For any topic as broad as spatial regression, many satisfactory simulation study designs exist. I feel that the study 
design I used for this article more than accomplishes my goal, namely, to exercise broadly my proposed meth-
odology by applying the methodology in a variety of realistic scenarios. To that end, I considered both areal and 
continuous-domain data; the most common response types; various realistic sample sizes; common forms of the 
spatial Gaussian copula; both strong and weaker spatial dependence; and intuitive spatially patterned covariates 
(which permit easy visualization). I considered six scenarios (see Table 1).

The first three scenarios were for areal (i.e., spatially aggregated) versions of the SGCRM. For Scenarios 1 
and 2 I used a proper CAR copula and Poisson marginal distributions. For both scenarios the underlying graph 
was the 30× 30 square lattice (sample size n = 900 ). Recall that the proper CAR model has precision matrix 
proportional to D− ρA , where parameter ρ ∈ [0, 1) is a range parameter. I used two values for ρ , namely, 0.99 
in Scenario 1 and 0.8 in Scenario 2. These values represent strong spatial dependence and somewhat weaker (but 
still consequential) dependence, respectively.

I assigned to the lattice points locations in the unit square centered at the origin, so that both the x and y 
coordinates range from −0.5 to 0.5. I used these coordinates as the spatial explanatory variables by using Pois-
son rates exp(β1xi + β2yi) (i = 1, . . . , 900) , where β1 is an east–west effect and β2 is a north–south effect. For 
both scenarios I used β1 = 3 (strong effect) and β2 = 1 (weaker effect). The resulting mean structure is shown 
in the left panel of Fig. 3.

Scenario 3 increased the sample size to n = 1,600 by using the 40× 40 lattice. And I used the Leroux GMRF 
 specification32 for the copula in Scenario 3. The Leroux precision matrix is a mixture of the n× n identity matrix 

Table 1.  Scenarios for the simulation study.

Scenario Response Copula Sample size Copula parameter(s) β

1
Poisson Proper CAR 30× 30

ρ = 0.99 (strong)
β1 = 3,β2 = 1

2 ρ = 0.8 (weaker)

3 Binomial (N = 20) Leroux 40× 40 � = 0.95 (strong) β1 = 2,β2 = 0.5

4 Bernoulli Exponential 30× 30 φ = 0.3 (strong) β1 = 2,β2 = 0.5

5
Negative binomial Matérn 20× 20

φ = 0.1, ν = 1 (strong)
β1 = 3,β2 = 1

6 φ = 0.03, ν = 1 (weaker)

x

y

0.4

0.2

0.0

0.2

0.4

0.4 0.2 0.0 0.2 0.4

0

1

2

3

4

5

6

7

x

y

0.4

0.2

0.0

0.2

0.4

0.4 0.2 0.0 0.2 0.4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3.  Left panel: the mean structure for the Poisson (Scenarios 1 and 2) and negative binomial (Scenarios 5 
and 6) simulation studies. Right panel: the mean structure for the binomial (Scenario 3) and ungrouped binary 
(Scenario 4) simulation studies. Figure created using R version 4.1.2 (https:// www.r- proje ct. org).
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and the intrinsic CAR precision matrix, which is proportional to D− A . (The intrinsic CAR is obtained by 
setting ρ equal to 1 in the proper CAR model. The intrinsic CAR is widely considered to be an appealing prior 
distribution in Bayesian spatial modeling, but we cannot use the intrinsic CAR in the SGCRM because D− A 
is singular.) Specifically, the Leroux precision matrix is proportional to

where I is the identity matrix and � ∈ [0, 1) is a spatial dependence parameter. This specification yields the inde-
pendence case if � = 0 , and approaches the intrinsic autoregression as � → 1 . I used � = 0.95 , which implies 
strong dependence. (See Waller and  Carlin33,  Lee34, and/or LeSage and  Pace35 for more information regarding 
the proper CAR, Leroux, and similar models).

As for response distribution and mean structure, I used binomial marginals for Scenario 3, where the sub-
sample size was N = 20 and the “success” probabilities were

I let β1 = 2 and β2 = 0.5 , which produced πi over the range 0.2 to 0.8, approximately. This mean structure is 
shown in the right panel of Fig. 3.

The final three scenarios employed Gaussian process specifications for their copulas. For Scenarios 5 and 6 I 
used a two-parameter Matérn spatial correlation  function36,37. This correlation function is given by

where φ > 0 is a range parameter, ν > 0 is a smoothness parameter, Ŵ denotes the gamma function, and Kν 
denotes the modified Bessel function of the third kind of order ν . This kernel is immensely popular not only in 
spatial statistics but also in machine learning, computer  experiments38, and elsewhere. I set ν equal to 1 for both 
of Scenarios 5 and 6, and I let φ = 0.1 for Scenario 5 and φ = 0.03 for Scenario 6. These parameter settings cor-
respond to strong dependence and weaker (yet consequential) dependence, respectively.

For simulation Scenarios 5 and 6 I once again used the mean structure shown in the left panel of Fig. 3, 
but I used a less dense lattice ( 20× 20 ), and I chose negative binomial marginal distributions. The negative 
binomial is an important model for spatial counts because the negative binomial distribution accommodates 
overdispersion, i.e., variance larger than the mean, which is commonly exhibited by count data in many contexts 
but cannot be handled by the equi-dispersed Poisson distribution. I used the parameterization of the negative 
binomial distribution that provides variance function v(µ) = µ+ µ2/θ , where µ is the mean and θ > 0 is the 
dispersion parameter. For θ close to 0 the variance is much larger than the mean, and as θ → ∞ the negative 
binomial distribution converges to the Poisson distribution. I used θ = 3 for both scenarios. This value of θ 
produces moderate overdispersion.

Finally, for simulation Scenario 4 I employed a special case of the Matérn correlation function, namely, the 
exponential correlation function:

This kernel is suitable for ungrouped binary data since it fixes the smoothness ν (at 0.5), leaving only the range 
parameter φ to be estimated. Learning the smoothness is hopeless for binary data, and so it makes sense to 
assume a rough (merely continuous in the mean-squared sense) process. I used φ = 0.3 , which implies strong 
dependence. Note that I included 3 in the exponential kernel because doing so lends an intuitive interpretation 
to the range parameter: φ is the so-called effective range of the process, i.e., the distance between locations si and 
si′ at which cor(Zi ,Zi′) has fallen to 0.05.

Because my simulation study design melds areal methodology and point-level methodology, it may seem as if 
my design employs the same spatial domain for both areal data and point-level data. This is not the case, however. 
For areal data, the underlying graph—in this case a square grid graph—is the spatial domain. For point-level data, 
the outcomes are observed on a square grid of locations covering the unit square centered at the origin, and so 
said square is the spatial domain. Because these two notions of spatial domain (discrete domain versus continu-
ous domain) are rather different, areal copulas and point-level copulas are specified in rather different ways.

Note that I did not consider continuous response distributions in the simulation. Results for continuous 
outcomes are predictable because residuals are very well behaved for continuous-response GLMs. And so I 
chose to focus on discrete spatial data, which are common and pose more of a challenge for any spatial method.

Also note that I used a bootstrap sample size of 1,000 and a simulation sample size (i.e., number of simulated 
datasets) of 1,000 for all simulations described in this article.

The regression results from the simulation study are given in Table 2. For Scenario 1 (Poisson marginals, 
proper CAR copula, strong dependence) and 95% intervals we see that the coverage rates for ordinary GLM inter-
vals was very poor (27%, 32%) while the coverage rates for the spatial methodology were much better (84%, 88%).

It is unfortunate but not surprising that the spatial method did not provide the desired 95% coverage; this 
scenario is challenging due to the quite strong dependence ( ρ = 0.99 ). This can be remedied, however, by using 
99% intervals instead (second row of Table 2): we see that 99% intervals gave 95% coverage for both regression 
coefficients. This could be seen as a weakness of the proposed methodology, but at least the deficiency can be 
remedied, and the use of similar remedies is commonplace in other statistical contexts. For example, when 

(1− �)I+ �(D− A),

πi =
exp(β1xi + β2yi)

1+ exp(β1xi + β2yi)
(i = 1, . . . , 1,600).

K(si , si′ | φ, ν) =
21−ν

Ŵ(ν)

(

|si − si′ |

φ

)ν

Kν

(

|si − si′ |

φ

)

,

K(si , si′ | φ) = exp

(

−3
|si − si′ |

φ

)

.
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applying local polynomial methods it is good practice to intentionally undersmooth since the bandwidth chosen 
by cross-validation tends to be a bit too large. Using a slightly smaller bandwidth yields more accurate pointwise 
confidence bands.

For Scenario 2 (Poisson marginals, proper CAR copula, moderate dependence) the spatial methodology 
produced 95% intervals having the desired coverage rate. This shows just how challenging Scenario 1 was.

The results for Scenario 3 (binomial marginals, Leroux copula, strong dependence) were similar to the results 
for Scenario 1. The ordinary GLM intervals had very poor coverage rates while the spatial intervals performed 
much better. Once again the 95% spatial intervals did not have the desired coverage rate (91%, 90%), but 99% 
intervals offered better than 95% coverage (98%, 98%).

For Scenario 4 (ungrouped binary outcomes, exponential copula, strong dependence), which is certainly the 
most challenging scenario, the spatial methodology performed rather poorly. This is what I expected. I included 
this scenario in the study in the interest of completeness and also to show just how bleak are our prospects for 
revealing the data-generating mechanism behind dependent ungrouped binary data. I plan to make dependent 
ungrouped binary data the focus of a future study.

For the final two simulation scenarios, Scenarios 5 and 6, (negative binomial marginals, Matérn copula, strong 
and moderate dependence, respectively) we see that once again the spatial methodology performed much better 
than the ordinary GLM methodology. And once again 99% confidence intervals were required in the case of 
strong dependence (Scenario 5). For Scenario 6, 95% intervals performed well (97% coverage for β1 and 95% 
coverage for β2 ) owing to weaker, but still consequential, spatial dependence.

For all scenarios the findings for type II error rates (type II error defined as interval contains 0) were predict-
able. Specifically, type II error rates are higher for the spatial method than for the ordinary GLM. This is because 
my proposed method yields wider confidence intervals, reflecting the reduced effective sample size caused by 
positive spatial dependence.

Average running times were short—considerably shorter than the running times for competing Bayesian 
procedures or for frequentist approaches that estimate the marginal parameters and the copula parameters 
simultaneously. Note that the reported average running times were for the full approach as outlined above (esti-
mation of marginal parameters, followed by estimation of copula parameters, followed by bootstrapping). I did 
not parallelize the bootstrap sampling, however. An embarrassingly  parallelized39 bootstrap procedure would 
of course lead to even shorter running times.

Simulation results for the nuisance parameters—ρ , � , φ , ν , and θ—are shown in Table 3. For Scenarios 1 and 2, 
the proper CAR scenarios, we see that the copula range parameter ρ can be recovered with little bias despite the 
fact that the outcomes for those scenarios were discrete (Poisson). For Scenario 2 the estimator ρ̂ is approximately 
normally distributed because the value of the parameter, ρ = 0.8 , is sufficiently far from 1 and the sample size was 
on the large side for areal data. For Scenario 1 the estimator ρ̂ is left-skewed because the value of the parameter, 
ρ = 0.99 , is rather close to 1. If desired, an approximately Gaussian estimator can be obtained as �−1(ρ̂) , where 
�−1 is the standard normal quantile function. This is useful for obtaining a symmetric confidence interval for 
�−1(ρ̂) , the endpoints of which can be transformed back to the scale of ρ to obtain an interval for ρ.

For the Leroux copula in Scenarion 3, where the response distribution was binomial, once again the depend-
ence parameter � can be estimated with only a small bias. And �̂ ’s left-skewed distribution can be transformed to 
approximate Gaussianity by applying the standard normal quantile function, if necessary.

Table 2.  Regression results for the simulation scenarios described in Table 1.

Scenario Interval (%) Parameter
Ordinary 
coverage rate (%)

Spatial coverage 
rate (%)

Ordinary type II 
rate (%)

Spatial type II 
rate (%) Running time (s)

1

95
β1 27 84 0 0

11 
β2 32 88 3 29

99
β1 – 95 – 0

β2 – 95 – 50

2 95
β1 70 94 0 0

10 
β2 69 94 0 0

3

95
β1 29 91 0 0

48 
β2 31 90 2 26

99
β1 – 98 – 0

β2 – 98 – 48

4 95
β1 31 59 6 13

16 
β2 36 63 30 58

5

95
β1 31 89 0 7

101 
β2 31 88 16 68

99
β1 – 95 – 12

β2 – 94 – 80

6 95
β1 72 97 0 0

90 
β2 70 95 2 19
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The first Matérn scenario, Scenario 4, yielded a poor result, as expected. For ungrouped binary data, nei-
ther marginal parameters nor dependence parameters can be recovered reliably. Specifically, in Scenario 4 the 
median estimate of the Matérn range parameter φ was biased downward by 63%. That is, the underlying spatial 
dependence appears to be much weaker than it is. This implies that the effective sample size is overestimated, 
which leads to very optimistic inference for the regression coefficients. In a future project I will further explore 
dependent ungrouped binary data.

For the negative binomial outcomes in simulation Scenario 5, the range parameter can be recovered with 
only a small positive bias. But ν̂ is substantially biased downward because information about spatial smoothness 
is lost to discretization. Also note that θ̂ exhibited a large upward bias for this scenario. This can be attributed 
to the dependence structure: strong positive dependence reduces the variance of the outcomes, working against 
the overdispersion induced by the marginal distributions.

In Scenario 6 smoothness parameter ν was once again substantially underestimated, on average. And φ̂ 
again exhibited positive bias, which was small in magnitude but large as a percentage of the true parameter 
value. Finally, because the dependence was considerably weaker for Scenario 6, dispersion estimator θ̂ was only 
slightly biased upward.

Model assessment and choice
Although standardized residuals are quite useful for estimating copula parameters, standardized residuals are 
often not terribly useful for assessing model appropriateness when the response variable is discrete. Specifically, 
standardized residuals for discrete outcomes may be far from Gaussian and exhibit banding. Consequently, I 
recommend that standardized residuals be used only for estimating copula parameters. For assessing model fit 
I strongly recommend the use of randomized quantile residuals (RQR)40 since Feng et al.41 recently showed that 
RQRs are powerful for detecting many forms of misspecification (e.g., nonlinear effects of covariates, overdis-
persion, zero inflation) for discrete regression models. Note, however, that RQRs should not be used in place of 
standardized residuals when estimating copula parameters, for the production of RQRs somewhat obscures the 
dependence structure, leading to poor estimation of � . I discovered this fact through simulation.

Akaike’s information criterion (AIC)42 for ordinary GLMs—which is given by

where p is the number of marginal parameters and ℓ̂glm denotes the maximum value of the ordinary GLM log-
likelihood—is very useful for choosing the right response family, despite the fact that ordinary AIC neglects 
dependence. For example, in a large simulation study where the true response distributions were negative bino-
mial and dependence was strong (Scenario 1 from Table 1, but with negative binomial outcomes according to 
Scenarios 5 and 6), AICglm selected the true model over a Poisson model for every simulated dataset. In fact, 
the minimum difference in AIC values for said study was 23, and the average difference was 104. These are huge 
differences and so left little doubt that the negative binomial model was superior to the Poisson model.

Selecting the best copula model from a collection of candidates is more challenging. An approach that is 
analogous to using AICglm to select a response model, one can use a version of AIC (or some other suitable 
information  criterion43) to select a copula model. Specifically, one can compute

where q is the number of copula parameters, �̂ is the estimated copula correlation matrix, and r are the standard-
ized residuals for the first-stage fit selected using AICglm.

In the simulation study mentioned above, I used the CAR copula as the true copula and used AICcop to choose 
between the CAR copula and the Leroux copula. Although a paired t test with unequal variances found a statisti-
cally significant difference ( α = 0.05 ) between AICcop for the true copula and AICcop for the Leroux copula, the 
difference in means was very small and AICcop selected the true copula for only 59% of the simulated datasets.

AICglm = 2p− 2ℓ̂glm,

AICcop = 2q− 2ℓ̂cop = 2q+ log |�̂| + r
′�̂

−1
r,

Table 3.  Results for nuisance parameters for the simulation scenarios described in Table 1.

Scenario Parameter Median estimate Remarks

1 ρ = 0.99 0.976 Small negative bias; ρ̂ has left-skewed distribution

2 ρ = 0.8 0.763 Small negative bias; ρ̂ is approximately normally distributed

3 � = 0.95 0.931 Small negative bias; �̂ has slightly left-skewed distribution

4 φ = 0.3 0.109 Large negative bias (63%); φ̂ has slightly right-skewed distribution

5

φ = 0.1 0.114 Small bias; φ̂ has strongly right-skewed distribution

ν = 1 0.654 Substantial negative bias; ν̂ has right-skewed distribution

θ = 3 5.533 Positive bias; distribution of θ̂ has a heavy right tail; many values larger than 10; some 
extreme values

6

φ = 0.03 0.047 Positive bias; φ̂ has a right-skewed distribution; a few extreme values

ν = 1 0.509 Large negative bias; ν̂ has a strongly right-skewed distribution (range 0–6)

θ = 3 3.286 Small positive bias; θ̂ has a right-skewed distribution
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To determine whether these poor results should be taken as an indictment of AICcop or of the CAR and Leroux 
copulas, I carried out a follow-up simulation study (for Scenarios 1 and 2) in which I computed AICcop using 
simulated realizations of Z (according to (4)) instead of using standardized residuals from GLM fits to simulated 
Y  . The follow-up study yielded comparable results, and so we must conclude not that AICcop loses information 
to discretization for areal models but that the CAR and Leroux models are practically indistinguishable. To my 
knowledge, this is a new finding.

Selecting a Gaussian process copula is more complicated. In a simulation study that employed negative 
binomial marginals and a Matérn copula with smoothness ν = 1 and range φ = 0.1 , AICcop chose the true 
copula over a powered exponential copula for only 30% of the simulated datasets. The percentage rose to 65% 
(considerably better but still far from outstanding performance) when I used simulated Z instead of simulated 
outcomes. This shows that we do lose to discretization a substantial amount of information about the smooth-
ness of a Matérn copula. This is not surprising and agrees with the results for Scenarios 5 and 6 from Table 3. I 
obtained comparable results when I simulated data according to a powered exponential copula and compared 
AICcop for the true copula and a Matérn copula, and so it seems that the methodology described in this paper is 
fairly insensitive to the choice of GP copula, at least for rougher spatial processes.

A thoughtful reviewer suggested that I should also investigate the effect of copula misspecification on regres-
sion inference. I did so by simulating data according to Scenarios 1 and 2 (CAR copula), and fitting the Leroux 
copula. Both coverage rates and type II rates were unaffected. Specifically, for ρ = 0.8 the coverage rates were 
95% and 93%, and the type II rates were 0%. For ρ = 0.99 the coverage rates were 86% and 88%, and the type II 
rates were 0% and 31%. I obtained very similar results for data simulated according to Scenarios 5 and 6. That 
is, regression inference was little affected by GP copula misspecification.

For smoother GP processes the Matérn model is preferred to the powered exponential model because the 
former is more flexible. (Note that the powered exponential and the Matérn coincide when the powered expo-
nential has smoothness 1 and the Matérn has smoothness 0.5 (this is the exponential correlation function), and 
when the powered exponential has smoothness 2 and the Matérn has smoothness ∞ (this is the Gaussian or 
squared exponential correlation function).) Specifically, the process for the powered exponential kernel is not 
mean-squared differentiable except for smoothness ν = 2 (when the process is infinitely mean-squared differ-
entiable). A Matérn process, on the other hand, is m times mean-squared differentiable iff ν > m . In any case, 
Williams and  Rasmussen3 pointed out that it is very difficult or even infeasible to distinguish between Matérn 
smoothness values larger than, say, 7/2. It is even difficult to distinguish between finite values of ν and ν → ∞ 
for the Matérn! And of course these difficulties are exacerbated when the response is discrete.

Additional computing concerns
Naive computation of |�| and �−1 is burdensome and does not scale well. Thus it may be advantageous, or 
even necessary, to consider approaches for optimizing ℓ(� | r) = − 1

2 log |�| − 1
2 r

′�−1
r more efficiently. I will 

discuss efficient computing for areal models first, and then turn to continuous-domain variants of the SGCRM.

Efficient computing for areal copulas. Recall that Gaussian copulas for areal data are typically Gauss-
ian Markov random fields, which are parameterized in terms of their precision matrices. I considered two such 
models above, namely, the proper CAR model and the Leroux model. These models have precision matrices that 
are proportional to Q = D− ρA and Q = (1− �)I+ �(D− A) , respectively. Efficient computing for these and 
similar models can be done as follows. I will use the proper CAR model as an example.

Note that Q is not an inverse correlation matrix because the variances vecdiag(Q−1) are not equal to 1. But 
of course we can rescale Q so its inverse is a correlation matrix, i.e., we can construct a Gaussian copula using 
�−1 = V1/2QV1/2 , where V = diag(vecdiag(Q−1)) . This leads to objective function

where w = V1/2
r =

√

vecdiag(Q−1) ◦ r , with ◦ denoting the Hadamard product.
Now, numerical methods for sparse matrices can be used to compute |Q| quickly. Let C be the lower Cholesky 

triangle of Q , so that Q = CC′ . Then |Q| = |C||C′| = |C|2 , which implies that

The righthand side of (5) can be computed efficiently because C can be computed efficiently after Q has been 
reordered to reduce its bandwidth. Also note that C needs to be computed just once—the structure of C depends 
on the sparsity structure of Q and not on ρ , and so C can simply be updated to reflect a change in ρ44.

It remains to handle the proper CAR variances efficiently. Since computing vecdiag(Q−1) obviously requires 
inversion of Q , it would seem that using the proper CAR copula must leave us unable to fully exploit the sparsity 

ℓ(� | r) =
1

2
log |�−1| −

1

2
r
′�−1

r

=
1

2
log |V1/2QV1/2| −

1

2
r
′V1/2QV1/2

r

=
1

2
log |Q| +

1

2
log |V| −

1

2
w
′Qw

=
1

2
log |Q| +

1

2

n
∑

i=1

log vecdiag(Q−1)i −
1

2
w
′Qw

(5)
1

2
log |Q| =

n
∑

i=1

logCii .
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of Q . This is not the case, however, because the variances vecdiag(Q−1) can be replaced with approximations 
so that Q need not be  inverted25. The running time of the approximation algorithm scales linearly with sample 
size. And the difference between the approximate CAR copula and the true copula can be made negligible except 
with respect to computational complexity.

I use the spam  package45 for R to do sparse matrix computations. The chol and update functions of pack-
age spam perform the fast Cholesky decomposition and updating described above. And for smaller datasets the 
spam::chol2inv function can be used to invert Q.

Efficient computing for Gaussian processes. There are many approaches for speeding computing for 
Gaussian process models. I will briefly describe covariance  tapering46, an approach that is appealing because 
it induces sparsity in an intuitive fashion and is effective for copula parameter estimation (and hence for the 
bootstrapping procedure for SGCRMs). When kriging (i.e., spatial interpolation), rather than regression, is of 
interest, other GP methods, such as the nearest-neighbor Gaussian process (NNGP)47, may perform better than 
covariance tapering. (The NNGP approach is, interestingly, reminiscent of the areal methods described above 
since the NNGP approach induces sparsity by defining a spatial process in terms of a well-chosen directed acy-
clic graph having vertices at the observed spatial locations).

In spatial covariance tapering, a spatial covariance (correlation) function is multiplied by a suitable positive 
definite function with compact support. The result is a spatial covariance (correlation) function that equals zero 
beyond a certain range. For example, if the spatial correlation function is the exponential correlation function 
exp (−3 |si − si′ |/φ) , which I used in Scenario 4 of my simulation study, Furrer et al.46 recommend the spherical 
tapering function. The spherical tapering function is given by

where t is the taper length and •+ = max{0, •} . Furrer et al.46 also considered tapers from the Wendland family, 
which prove useful for Matérn processes having smoothness ν > 0.5.

If T is the tapering matrix with ii′ th entry τii′ , the tapered correlation matrix is �tap = � ◦ T . For a suitable 
taper length t, this matrix is sparse, and so fast sparse matrix algorithms can be used to compute |�tap| and 
r
′�−1

tapr . The resulting gain in computational efficiency can be dramatic.

Analyses of Slovenia stomach cancer data
In this section, I revisit the Slovenian stomach cancer data. I applied four methods to the data: (1) ordinary Pois-
son regression with offset, (2) Poisson SGCRM with proper CAR copula as described in this paper, (3) Poisson 
SGCRM with Leroux copula, and (4) traditional Poisson SGLMM with proper CAR random effects. I used a 
bootstrap sample size of 4,000 for the SGCRM analyses. And I applied the SGLMM using Markov chain Monte 
Carlo for Bayesian inference, the customary approach for that model. I drew 1,000,000 posterior samples, which 
resulted in small Monte Carlo standard errors ( < 0.003)48.

For the ordinary GLM and the SGCRM, the transformed conditional mean is

where Yi is the observed count for the ith municipality, Ei is the expected number of cases for the ith municipal-
ity, β0 is an intercept term, and β1 is the fixed effect for socioeconomic status, xi . For the SGLMM this linear 
predictor was of course augmented by addition of a spatial random effect.

The standardized residuals from the ordinary GLM fit are shown in Fig. 4. These residuals were used in the 
second stage of the SGCRM procedures to estimate the CAR copula parameter ρ and Leroux copula parameter 
� , and subsequently to incorporate spatial dependence in the bootstraps. We see that the standardized residuals 
clearly exhibit appreciable but fairly short-range spatial dependence. Specifically, we see regions of similarity, 
and said clusters are small relative to the extent of the map. To put it another way, we see small-scale spatial 
structure in these residuals. This visual assessment was corroborated by the estimate of ρ ( ρ̂ = 0.282 ), which is 
shown in Table 4 along with the other results. (Recall that ρ near 0 implies short-range dependence while ρ near 
1 implies long-range dependence.) The mild dependence in these residuals led to a confidence interval for β1 
that does not contain 0 and is just over 5% wider than the interval produced via the ordinary GLM. The Leroux 
model gave comparable results.

An astute reviewer pointed out that ρ plays a complicated role in the joint distribution, as revealed by  Wall49. 
Yet subsequent work by Assunção and  Krainski50 established ρ as a spatial range parameter. And so, values of 
ρ that are close to 0 generally produce small-scale clustering in the data while values close to 1 produce large 
spatial clusters.

The SGLMM with CAR random effects produced a rather different estimate of β and found no association 
between socioeconomic status and stomach cancer incidence. This is implausible given that a simple correla-
tion analysis found a statistically significant association (Kendall’s τ̂ = −0.186 ; p value < 0.001) between Yi/Ei 
and xi . The non-significance of the SGLMM regression is due to the well-known phenomenon termed spatial 
confounding, i.e., collinearity between the spatial random effects and the fixed-effects predictors. Additionally, 
the CAR SGLMM found quite strong spatial dependence in the Slovenia data, yielding ρ̂ = 0.979 (estimated 
posterior mode). This is puzzling and implausible given the agreement between the appearance of the residu-
als and the SGCRM’s small estimates of ρ and � . The SGLMM fit is difficult to defend while the SGCRM fit is 
plausible and satisfying.

τii′ =

{(

1−
�si − si′ �

t

)

+

}2(

1+
�si − si′ �

2t

)

,

logE(Yi | xi) = logEi + β0 + β1xi ,
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Discussion
I believe the SGCRM, along with the two-stage inferential procedure developed in this paper, should be appealing 
to spatial modelers whose chief aim is to identify important explanatory variables when the response variable 
is spatially referenced. Because the SGCRM is a marginal model and thus cannot suffer from spatial confound-
ing or other mixed-model pathologies, regression results from an SGCRM analysis have a clear and intuitive 
interpretation, namely, the same interpretation as for an ordinary regression model. And the bootstrap in the 
procedure’s second stage permits the standard errors for the estimated regression coefficients to be appropriately 
and efficiently adjusted in light of the extra-regression spatial dependence accommodated by the spatial Gaussian 
copula, the parameters of which can be estimated using standardized residuals from the first-stage fit.

I was inspired to write this paper by the excellent paper of Valle et al.51. They argue that one can get free of 
having to select the correct response family for count data (e.g., Poisson, negative binomial, zero-inflated Pois-
son, etc) by simply applying ordinal regression models to count data. Valle et al.51 show that an ordinal model 
fits count data better than the true model of the counts, owing to the ordinal model’s greater flexibility. Although 
Valle et al.51 did not consider spatially referenced counts, or, indeed, dependent counts more generally, it stands 
to reason that ordinal regression models hold the same promise for dependent counts as for independent counts. 
This suggests that the methodology I explored in this paper can be further unified for spatial count data.

Ungrouped binary spatial data present a unique challenge since the residuals from a Bernoulli GLM are typi-
cally worthless. In a future study I will carefully explore methods for regression analyses of spatially referenced 
ungrouped binary data, focusing especially on methods for continuous-domain spatial processes.

Another topic for future study is spatial smoothing, which I believe should more often be considered as 
distinct from spatial regression.

Data availability
The datasets analyzed during the current study are available from the corresponding author upon reasonable 
request.

Received: 5 May 2022; Accepted: 9 September 2022

Figure 4.  Standardized residuals for an ordinary GLM fit (Poisson regression with offset) to the Slovenia 
stomach cancer data. Darker gray means larger value. The residuals exhibit substantial, but short-range, positive 
dependence. Figure created using R version 4.1.2 (https:// www.r- proje ct. org).

Table 4.  Results for analyses of the Slovenia stomach cancer data. The first row shows results for an ordinary 
Poisson regression with offset. The second row shows results for the two-stage SGCRM procedure, where the 
first stage employed an ordinary Poisson regression with offset. The third row shows results for the SGCRM 
procedure with Leroux copula. The fourth row shows results for an SGLMM fit such that the linear predictor 
for the Poisson regression with offset was augmented with proper CAR spatial random effects.

Approach Intercept Effect Copula parameter Running time

Ordinary GLM β̂0 = 0.156 β̂1 = −0.137 ; β1 ∈ (−0.175,−0.098) – < 1 s

SGCRM (CAR) β̂0 = 0.156 β̂1 = −0.137 ; β1 ∈ (−0.177,−0.096) ρ̂ = 0.282 18 s

SGCRM (Leroux) β̂0 = 0.156 β̂1 = −0.137 ; β1 ∈ (−0.178,−0.094) �̂ = 0.067 11 s

SGLMM (CAR) β̂0 = 0.124 β̂1 = −0.061 ; β1 ∈ (−0.142, 0.022) ρ̂ = 0.979 1 h

https://www.r-project.org


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15915  | https://doi.org/10.1038/s41598-022-20171-1

www.nature.com/scientificreports/

References
 1. Zadnik, V. & Reich, B. J. Analysis of the relationship between socioeconomic factors and stomach cancer incidence in Slovenia. 

Neoplasma 53(2), 103 (2006).
 2. Besag, J., York, J. & Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 43(1), 

1–20 (1991).
 3. Williams, C. K. & Rasmussen, C. E. Gaussian Processes for Machine Learning (MIT Press, 2006).
 4. Banerjee, S., Carlin, B. P. & Gelfand, A. E. Hierarchical Modeling and Analysis for Spatial Data (Chapman & Hall Ltd, 2014).
 5. Rue, H. & Held, L. Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability 

Vol. 104 (Chapman & Hall, 2005).
 6. Haran, M. Gaussian random field models for spatial data. Handb. Markov Chain Monte Carlo 20, 449–478 (2011).
 7. Kindermann, R. & Snell, J. L. Markov Random Fields and Their Applications (American Mathematical Society, 1980).
 8. Diggle, P. J., Tawn, J. A. & Moyeed, R. A. Model-based geostatistics. Appl. Stat. 20, 299–350 (1998).
 9. Besag, J. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B (Methodol.) 36(2), 192–236 (1974).
 10. Nelder, J. & Wedderburn, R. Generalized linear models. J. R. Stat. Soc. Ser. A (General) 135(3), 370–384 (1972).
 11. Agresti, A. Foundations of Linear and Generalized Linear Models. Wiley Series in Probability and Statistics (Wiley, 2015).
 12. Angus, J. E. The probability integral transform and related results. SIAM Rev. 36(4), 652–654 (1994).
 13. Nelsen, R. B. An Introduction to Copulas (Springer, 2006).
 14. Joe, H. Dependence Modeling with Copulas (CRC Press, 2014).
 15. Kolev, N. & Paiva, D. Copula-based regression models: A survey. J. Stat. Plan. Inference 139(11), 3847–3856 (2009).
 16. Song, P.X.-K. Multivariate dispersion models generated from Gaussian copula. Scand. J. Stat. 27(2), 305–320 (2000).
 17. De Oliveira, V. Models for geostatistical binary data: Properties and connections. Am. Stat. 74(1), 72–79 (2020).
 18. Clayton, D., Bernardinelli, L. & Montomoli, C. Spatial correlation in ecological analysis. Int. J. Epidemiol. 22(6), 1193–1202 (1993).
 19. Reich, B. J., Hodges, J. S. & Zadnik, V. Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models. 

Biometrics 62(4), 1197–1206 (2006).
 20. Zimmerman, D. L. & Ver Hoef, J. M. On deconfounding spatial confounding in linear models. Am. Stat. 76(2), 159–167 (2022).
 21. Paciorek, C. J. The importance of scale for spatial-confounding bias and precision of spatial regression estimators. Stat. Sci. Rev. J. 

Inst. Math. Stat. 25(1), 107–125, 02 (2010).
 22. Madsen, L. Maximum likelihood estimation of regression parameters with spatially dependent discrete data. JABES 14(4), 375–391 

(2009).
 23. Kazianka, H. & Pilz, J. Copula-based geostatistical modeling of continuous and discrete data including covariates. Stoch. Environ. 

Res. Risk Assess. 24(5), 661–673 (2010).
 24. Kazianka, H. Approximate copula-based estimation and prediction of discrete spatial data. Stoch. Environ. Res. Risk Assess. 27(8), 

2015–2026 (2013).
 25. Hughes, J. copCAR: A flexible regression model for areal data. J. Comput. Graph. Stat. 24(3), 733–755 (2015).
 26. Han, H. Z. & De Oliveira, V. On the correlation structure of Gaussian copula models for geostatistical count data. Aust. N. Z. J. 

Stat. 20, 20 (2016).
 27. Hughes, J. On the occasional exactness of the distributional transform approximation for direct Gaussian copula models with 

discrete margins. Stat. Probab. Lett. 177, 109159 (2021).
 28. Henn, L. L. Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of 

discrete data. Comput. Stat. 20, 1–38 (2021).
 29. Pierce, D. A. & Schafer, D. W. Residuals in generalized linear models. J. Am. Stat. Assoc. 81(396), 977–986 (1986).
 30. Simon, J. L. The Philosophy and Practice of Resampling Statistics (University of Maryland, 1998).
 31. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).
 32. Leroux, B. G., Lei, X. & Breslow, N. Estimation of disease rates in small areas: A new mixed model for spatial dependence. In 

Statistical Models in Epidemiology, the Environment, and Clinical Trials 179–191 (Springer, 2000).
 33. Waller, L. A. & Carlin, B. P. Disease Mapping. Chapman & Hall/CRC Handbooks of Modern Statistical Methods2010, 217 (2010).
 34. Lee, D. A comparison of conditional autoregressive models used in Bayesian disease mapping. Spat. Spatio-Temp. Epidemiol. 2(2), 

79–89 (2011).
 35. LeSage, J. & Pace, R. K. Introduction to Spatial Econometrics (Chapman and Hall/CRC, 2009).
 36. Minasny, B. & McBratney, A. B. The Matérn function as a general model for soil variograms. Geoderma 128(3), 192–207 (2005).
 37. Genton, M. G. Classes of kernels for machine learning: A statistics perspective. J. Mach. Learn. Res. 2, 299–312 (2002).
 38. Santner, T. J., Williams, B. J., Notz, W. I. & Williams, B. J. The Design and Analysis of Computer Experiments Vol. 1 (Springer, 2003).
 39. Moler, C. Matrix computation on distributed memory multiprocessors. Hypercube Multiprocessors 86(181–195), 31 (1986).
 40. Dunn, P. K. & Smyth, G. K. Randomized quantile residuals. J. Comput. Graph. Stat. 5(3), 236–244 (1996).
 41. Feng, C., Li, L. & Sadeghpour, A. A comparison of residual diagnosis tools for diagnosing regression models for count data. BMC 

Med. Res. Methodol. 20(1), 1–21 (2020).
 42. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974).
 43. Konishi, S. & Kitagawa, G. Information Criteria and Statistical Modeling (Springer, 2008).
 44. Ng, E. G. & Peyton, B. W. Block sparse Cholesky algorithms on advanced uniprocessor computers. SIAM J. Sci. Comput. 14(5), 

1034–1056 (1993).
 45. Furrer, R. & Sain, S. R. spam: A sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields. 

J. Stat. Softw. 36(10), 1-25,9 (2010) (ISSN 1548-7660).
 46. Furrer, R., Genton, M. & Nychka, D. Covariance tapering for interpolation of large spatial datasets. J. Comput. Graph. Stat. 15(3), 

502–523 (2006).
 47. Datta, A., Banerjee, S., Finley, A. O. & Gelfand, A. E. Hierarchical nearest-neighbor Gaussian process models for large geostatistical 

datasets. J. Am. Stat. Assoc. 111(514), 800–812. https:// doi. org/ 10. 1080/ 01621 459. 2015. 10440 91 (2016) (PMID:29720777).
 48. Flegal, J. M., Haran, M. & Jones, G. L. Markov chain Monte Carlo: Can we trust the third significant figure?. Stat. Sci. 23(2), 250–260 

(2008).
 49. Wall, M. A close look at the spatial structure implied by the CAR and SAR models. J. Stat. Plan. Inference 121(2), 311–324 (2004).
 50. Assunção, R. & Krainski, E. Neighborhood dependence in Bayesian spatial models. Biom. J. 51(5), 851–869 (2009).
 51. Valle, D., Toh, K. B., Laporta, G. Z. & Zhao, Q. Ordinal regression models for zero-inflated and/or over-dispersed count data. Sci. 

Rep. 9(1), 1–12 (2019).

Author contributions
I am the sole author of the article.

Competing interests 
The author declares no competing interests.

https://doi.org/10.1080/01621459.2015.1044091


13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15915  | https://doi.org/10.1038/s41598-022-20171-1

www.nature.com/scientificreports/

Additional information
Correspondence and requests for materials should be addressed to J.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A unified Gaussian copula methodology for spatial regression analysis
	Spatial regression models: two roads diverge
	A linear spatial regression model for Gaussian outcomes. 
	Extending the linear spatial regression model. 

	Approaches to inference for the SGCRM
	Application of the SGCRM to simulated data
	Model assessment and choice
	Additional computing concerns
	Efficient computing for areal copulas. 
	Efficient computing for Gaussian processes. 

	Analyses of Slovenia stomach cancer data
	Discussion
	References


