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Lesion identification 
and malignancy prediction 
from clinical dermatological images
Meng Xia1*, Meenal K. Kheterpal2, Samantha C. Wong3, Christine Park3, William Ratliff4, 
Lawrence Carin1 & Ricardo Henao1

We consider machine-learning-based lesion identification and malignancy prediction from clinical 
dermatological images, which can be indistinctly acquired via smartphone or dermoscopy capture. 
Additionally, we do not assume that images contain single lesions, thus the framework supports both 
focal or wide-field images. Specifically, we propose a two-stage approach in which we first identify 
all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates 
their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of 
malignancy that can be used for high-level screening processes. Further, we consider augmenting the 
proposed approach with clinical covariates (from electronic health records) and publicly available data 
(the ISIC dataset). Comprehensive experiments validated on an independent test dataset demonstrate 
that (1) the proposed approach outperforms alternative model architectures; (2) the model based 
on images outperforms a pure clinical model by a large margin, and the combination of images 
and clinical data does not significantly improves over the image-only model; and (3) the proposed 
framework offers comparable performance in terms of malignancy classification relative to three 
board certified dermatologists with different levels of experience.

Prior to the COVID-19 pandemic, access to dermatology care was challenging due to limited supply and increas-
ing demand. According to a survey study of  dermatologists1, the mean ± standard deviation (SD) waiting time 
was 33±32 days, 64% of the appointments exceeded the criterion cutoff of 3 weeks and 63% of the appointments 
exceeded 2-week criterion cutoff for established patients. During the COVID-19 pandemic, the number of der-
matology consultations were reduced by 80-90% to urgent issues only, leading to delay in care of dermatologic 
concerns. Moreover, the issue of access is very significant for the growing Medicare population, expected to 
account for 1 in 5 patients by  20302, due to a higher incidence of skin cancer.

Access issues in dermatology are concerning as there has been an increasing incidence of skin cancers, par-
ticularly a threefold increase in melanoma over the last 40  years3. Many of the skin lesions of concern are screened 
by primary care physicians (PCPs). In fact, up to one third of primary care visits contend with at least one skin 
problem, and skin tumors are the most common reason for referral to  dermatology4. High volume of referrals 
places a strain on specialty care, delaying visits for high-risk cases. Given the expected rise in baby boomers, with 
significantly increased risk of skin cancer, there is an urgent need to equip primary care providers to help screen 
and risk stratify patients in real time, high quality and cost-conscious fashion. PCPs have variable experience and 
training in dermatology, causing often low concordance between their evaluation and  dermatology4. A consist-
ent clinical decision support (CDS) system has the potential to mitigate this variability, and to create a powerful 
risk stratification tool, leveraging the frontline network of providers to enhance access to quality and valuable 
care. In addition, such a tool can aid tele-dermatology workflows that have emerged during the global pandemic.

Over the last decade, several studies in the field of dermatology have demonstrated the promise of deep 
learning models such as convolutional neural networks (CNN) in terms of classification of skin  lesions5,6, with 
dermoscopy-based machine learning (ML) algorithms reaching sensitivities and specificities for melanoma diag-
nosis at 87.6% (95% CI 72.72–100.0) and 83.5% (95% CI 60.92–100.0), respectively, by meta-analysis7. Several 
authors have reported superior performance of ML algorithms for classification of squamous cell carcinoma 
(SCC) and basal cell carcinomas (BCC), with larger datasets improving  performance5,8.

From a machine-learning methods perspective, a common approach for classification with dermoscopy images 
consists on refining pre-trained CNN architectures such as VGG16 as  in9 or AlexNet after image pre-processing, 
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e.g., background  removal10. Alternatively, some approaches consider lesion sub-types  independently11, soni-
fied  images12, or by combining clinical data with images to increase the information available to the model for 
 prediction13. However, dermoscopy images are generally of good quality, high resolution and minimal back-
ground noise, making them less challenging to recognize compared to clinical, wide-field, images.

Beyond dermoscopy images, similar refinement approaches have been proposed based on architectures such 
as  ResNet1528,14, with additional pre-processing (illumination correction)15, by using detection models to account 
for the non-informative  background16,17, or by first extracting features with CNN-based models, e.g., Incep-
tion v2, to then perform feature classification with other machine learning  methods12. Moreover, comparative 
 studies6,18 have shown that models based on deep learning architectures can perform similarly to dermatologists 
on various classification tasks.

However, these ML algorithms are often developed with curated image datasets containing high quality 
clinical and dermoscopy photographs with limited skin variability, i.e., majority Caucasian or Asian sets in the 
ISIC dataset (dermoscopy), Asan dataset, Hallym dataset, MED-NODE, Edinburgh  dataset8. The use of such 
algorithms trained on images often acquired from high quality cameras and/or dermatoscopes may be limited 
to specialty healthcare facilities and research settings, with questionable transmissibility in resource-limited set-
tings and the primary care, thus creating a gap between healthcare providers and patients. Smartphone-based 
imaging is a promising image capture platform for bridging this gap and offering several advantages including 
portability, cost-effectiveness and connectivity to electronic medical records for secure image transfer and stor-
age. To democratize screening and triage in primary care setting, an ideal ML-based CDS tool should be trained, 
validated and tested on smartphone-acquired clinical and dermoscopy images, representative of the clinical 
setting and patient populations for the greatest usability and validity.

While there are challenges to consumer grade smartphone image quality such as variability in angles, light-
ing, distance from lesion of interest and blurriness, they show promise to improve clinical workflows. Herein, 
we propose a two-stage approach to detect skin lesions of interest in wide-field images taken from consumer 
grade smartphone devices, followed by binary lesion classification into two groups: Malignant vs. Benign, for all 
skin cancers (melanoma, basal cell carcinoma and squamous cell carcinoma) and most common benign tumors. 
Ground truth malignancy was ascertained via biopsy, as apposed to consensus adjudication. As a result, the 
proposed approach can be integrated and generalized into primary care and dermatology clinical workflows. 
Importantly, our work also differs from existing approaches in that our framework can detect lesions from both 
wide-field clinical and dermoscopy images acquired with smartphones.

Method
In this section, we will first explain how we formulate the problem and introduce the model details. Then we 
describe the datasets we used in this study. Finally, we present the evaluation metrics used for each task.

Problem formulation. We represent a set of annotated images as D = {Xn,Zn,Un, yn}
N
n=1 , where N is the 

number of instances in the dataset, Xn ∈ R
h×w×3 denotes a color (RBG) image of size w × h (width × height) 

pixels, Zn is a non-empty set of annotations Zn = {zn1, . . . , znmn} , with elements zni corresponding to the ith 
region of interest (ROI) represented as a bounding box with coordinates (xni , yni ,wni , hni) (horizontal center, 
vertical center, width, height) and ROI labels Un = {un1, . . . , unmn} , where mn is the number of ROIs in image 
Xn . Further, yn ∈ {0, 1} is used to indicate the global image label.

In our specific use case, the images in D are a combination of smartphone-acquired wide-field and dermos-
copy images with ROIs of 8 different biopsy-confirmed lesion types (ROI labels): Melanoma, Melanocytic Nevus, 
Basal Cell Carcinoma, Actinic Keratosis/Bowen’s Disease, Benign Keratosis, Dermatofibroma, Vascular Lesions 
and Other Benign lesions. The location of different lesions was obtained by manual annotation as described 
below in the “Dataset” section. For malignancy prediction, the set of malignant lesions denoted as M is defined 
as Melanoma, Basal Cell Carcinoma, and Actinic Keratosis/Bowen’s Disease/Squamous cell carcinoma while the 
set of benign lesions contains all the other lesion types. For the global image label yn , a whole image (smartphone 
or dermoscopy) is deemed as malignant if at least one of its ROI labels are in the malignant set, M.

Below, we introduce deep-learning-based models for lesion identification, malignancy prediction and image-
level classification for end-to-end processing. An illustration of the two-step lesion identification and malignancy 
prediction framework is presented in Fig. 1.

Malignancy prediction. Assuming we know the position of the ROIs, i.e., {Xn,Zn}
N
n=1 are always available, the 

problem of predicting whether a lesion is malignant can be formulated as a binary classification task. Specifically, 
we specify a function fθ (·) parameterized by θ whose output is the probability that a single lesion is consistent 
with a malignancy pathohistological finding in the area, i.e.,

 where fθ (·) is a convolutional neural network that takes the region of Xn defined in zni as input. In practice, we 
use a ResNet-50  architecture19 with additional details described in the “Model details” section.

Lesion identification. Above we assume that the location (ROI) of the lesions is known, which may be the case 
in dermoscopy images as illustrated in Fig. 1. However, in general, wide-field dermatology images are likely to 
contain multiple lesions, while their locations are not known or recorded as part of clinical practice. Fortunately, 
if lesion locations are available for a set of images (via manual annotation), the task can be formulated as a super-

(1)p(uni ∈ M|Xn, zni) = fθ (Xn, zni)
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vised object detection problem, in which the model takes the whole image as input and outputs a collection of 
predicted ROIs along with their likelihood of belonging to a specific group. Formally,

where p̂ni = [p̂ni1, . . . , p̂niC] ∈ (0, 1)C is the likelihood that the predicted region ẑni = {x̂ni , ŷni , ŵni , ĥni} belongs to 
one of C groups of interest, i.e., p(ẑni ∈ c) = p̂nic . In our case, we consider three possible choices for C, namely, (1) 
C = 1 denoted as one-class where the model seeks to identify any lesion regardless of type; (2) C = 2 denoted as 
malignancy in which the model seeks to separately identify malignant and benign lesions; and (3) C = 8 denoted 
as sub-type, thus the model is aware of all lesion types of interest.

Note that we are mainly interested in finding malignant lesions among all lesions present in an image as 
opposed to identifying the type of all lesions in the image. Nevertheless, it may be beneficial for the model to 
be aware that different types of lesions may have common characteristics which may be leveraged for improved 
detection. Alternatively, provided that some lesion types are substantially rarer than others (e.g., dermatofibroma 
and vascular lesions only constitutes 1% each of all the lesions in the dataset described in the “Dataset” section), 
seeking to identity all lesion types may be detrimental for the overall detection performance. This label granular-
ity trade-off will be explored in the experiments. In practice, we use a Faster-RCNN (region-based convolutional 
neural network)20 with a feature pyramid network (FPN)21 and a ResNet-5019 backbone as object detection 
architecture. Implementation details can be found in the “Model details” section.

Image classification. For screening purposes, one may be interested in estimating whether an image is likely to 
contain a malignant lesion so the case can be directed to the appropriate dermatology specialist. In such case, the 
task can be formulated as a whole-image classification problem

where p(yn = 1|Xn) ∈ (0, 1) is the likelihood that image Xn contains a malignant lesion.
The model in Eq. (3) can be implemented in a variety of different ways. Here we consider three options, two 

of which leverage the lesion identification and malignancy prediction models described above.
Direct image-level classification hφ(·) is specified as a convolutional neural network, e.g., ResNet-5019 in 

our experiments, to which the whole image Xn is fed as input. Though this is a very simple model that has 
advantages from an implementation perspective, it lacks the context provided by (likely) ROIs that will make 
it less susceptible to interference from background non-informative variation, thus negatively impacting clas-
sification performance.

(2)
{

ẑni , p̂ni ,
}m̂n

i=1
= gψ(Xn),

(3)p(yn = 1|Xn) = hφ(Xn),

Figure 1.  Two-stage lesion identification and malignancy prediction Framework. Top left: Examples of 
dermoscopy images. Bottom left: Examples of wide-field images. Top right: The lesion identification model 
estimates lesion locations (bounding boxes) from whole images (dermoscopy or wide-field) via a faster-RCNN 
architecture (see “Lesion identification” section). Bottom right: The malignancy prediction model specified via a 
ResNet-50 architecture predicts the likelihood that a lesion is malignant (see  “Malignancy prediction” section). 
The lesions identified by the lesion identification model are fed into the malignancy prediction model for end-
to-end processing.
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Two-stage approach hφ(·) is specified as the combination of the one-class lesion identification and the malig-
nancy prediction models, in which detected lesions are assigned a likelihood of malignancy using Eq. (1). This 
is illustrated in Fig. 1(Right). Then we obtain

where we have replaced the ground truth location zni in Eq. (1) with the m̂n predicted locations from Eq. (2), and 
a(·) is a permutation-invariant aggregation function. In the experiments we consider two simple parameter-free 
options:

Other more sophisticated (parametric) options such as noisy  AND22, and attention  mechanisms23, may further 
improve performance but are left as interesting future work.

One-step approach hφ(·) is specified directly from the sub-types lesion identification model in Eq. (2) as

where a(·) is either Eqs. (5), (6) or Eq. (7).
From the options described above, the direct image-level classification approach is conceptually simpler 

and easier to implement but it does not provide explanation (lesion locations) to its predictions. The one-step 
approach is a more principled end-to-end system that directly estimates lesion locations, lesion sub-type likeli-
hood, and overall likelihood of malignancy, however, it may not be suitable in situations where the availability 
of labeled sub-type lesions may be limited, in which case, one may also consider replacing the sub-type detection 
model with the simpler malignancy detection model. Akin to this simplified one-step approach, the two-stage 
approach provides a balanced trade-off between the ability of estimating the location of the lesions and the need 
to identify lesion sub-types. All these options will be quantitatively compared in the experiments below.

Model details. Malignancy classification. For malignancy classification we use a ResNet-50  architecture19 
as shown in Fig. 1(Bottom right). The feature maps obtained from the last convolutional block are aggregated 
via average pooling and then fed through a fully connected layer with sigmoid activation that produces the like-
lihood of malignancy. The model was initialized from a ResNet-50 pre-trained on ImageNet and then trained 
(refined) using a stochastic gradient descent (SGD) optimizer for 120 epochs, with batch size 64 initial learn-
ing rate 0.01, momentum 0.9 and weight decay 1e−4. The learning rate was decayed using a half-period cosine 
function, i.e., η(t) = 0.01× [0.5+ 0.5 cos (tπ/Tmax)] , where t and Tmax are the current step and the max step, 
respectively. We augment the data by randomly resizing and rotating images and note that other augmentation 
techniques such as flips and random crops have non-substantial impact on model performance.

Lesion identification. The lesion identification model is specified as a Faster-RCNN20 with a  FPN21 and a 
ResNet-5019 backbone. The feature extraction module is a ResNet-50 truncated to the 4th block. The FPN then 
reconstructs the features to higher resolutions for better multi-scale  detection21. Higher resolution feature maps 
are built as a combination of the same-resolution ResNet-50 feature map and the next lower-resolution feature 
map from the FPN, as illustrated in Fig. 1(Top right). The combination of feature maps from the last layer of the 
feature extraction module and all feature maps from the FPN are then used for region proposal and ROI pooling. 
See the original FPN work for further  details21. The model was trained using an SGD optimizer for 25 epochs, 
with batch size of 512 per image, initial learning rate 0.001, momentum 0.9 and weight decay 1e-4. Learning rate 
was decayed 10x at 60,000-th and 80,000-th step, respectively. We augment the data by random resizing.

Direct image-level classification model. The direct image-level classification model in the “Image classification” 
section has the same architecture and optimization parameters as the malignancy classification model described 
above.

Clinical model. The clinical model was built using logistic regression with standardized input covariates and 
discrete (categorical) covariates encoded as one-hot-vectors.

Combined model. In order to combine the clinical covariates with the images into a single model, we use the 
malignancy classification model as the backbone while freezing all convolutional layers during training. Then, 
we concatenate the standardized input covariates and the global average-pooled convolutional feature maps, and 
feed them through a fully connected layer with sigmoid activation that produces the likelihood of malignancy. 

(4)p(yn = 1|Xn) = a
(

{p(uni ∈ M|Xn, ẑni)}
m̂n
i=1

)

,

(5)a(·) =
1

m̂n

m̂n
∑

i=1

p(uni ∈ M|Xn, ẑni), (Average)

(6)a(·) =max({p(uni ∈ M|Xn, ẑni)}
m̂n
i=1) (Maximum)

(7)a(·) =1−

m̂n
∏

i=1

p(uni ∈ M|Xn, ẑni) (Noisy OR)

(8)p(yn = 1|Xn) = a
(

{p̂ni}
m̂n
i=1

)

,
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The combined model was trained using an SGD optimizer for 30 epochs, with batch size 64, initial learning rate 
0.001, momentum 0.9 and weight decay 1e-4. The learning rate was decayed using a half-period cosine function 
as in the malignancy classification model.

Implementation. We used  Detectron24 for the lesion identification model. All other models were coded in 
Pyhton 3.6.3 using the PyTorch 1.3.0 framework except for the clinical model that was implemented using scikit-
learn 0.19.1. The source code for all the models used in the experiments is available (upon publication) at https:// 
github. com/ mx41-m/ Lesion- Ident ifica tion- and- Malig nant- Predi ction. git.

Dataset. Discovery dataset. To develop the model we consider a single institution, retrospective collec-
tion of skin lesion images taken with smartphones with and without dermoscopy from Duke University Medi-
cal Center patients of age 18 and older from 2013 to 2018. These data are collected under the approval of the 
Duke Institute for Health Innovation and each participant has provided written informed consent. The discovery 
dataset consists of 6819 images from 3853 patients with 7196 manually annotated lesions. Malignancy was as-
certained by separate Histopathological diagnosis. There are 4113 (57%) lesions in 3894 images diagnosed as 
malignant. For images with multiple lesions, the image is deemed malignant if it contains at least one malignant 
lesion. In terms of skin tone, the Fitzpatrick scale was used to group skin tones: Light (Fitzpatrick type 1 &2), 
Medium (Fitzpatrick type 3 &4), Dark (Fitzpatrick type 5 &6). Specifically, 6022 lesions (5721 images) are light, 
1073 lesions (1020 images) are medium and 101 lesions (96 images) are dark tone (lesions from one image may 
be different skin tone.) Lesions were manually annotated as bounding boxes (ROIs) by a dermatology trained 
medical doctor (Dr. Kheterpal, MK) using a in-house annotation application. Diagnoses taken from the biopsy 
reports associated with the lesion images were designated as the ground truth (Malignant vs. Benign). Further, 
there are 589 (9%) dermoscopy images and 6230 (91%) wide-field images. Based on the guidelines of the Inter-
national Skin Imaging Collaboration (ISIC) dataset, the lesions in our dataset can be further divided into several 
specific lesion types, whose counts and proportions are shown as Table 1. Additional details concerning lesion 
types, including proportions of malign and benign lesions or proportions of wide-field and dermoscopy images 
in discovery dataset are presented as supplementary Figure s1. The average area of the lesion is 307,699 (Q1–
Q3: 9192–184,900) pixels2 (roughly 554× 554 pixels in size) while the average area of the images is 8,036,107 
(3,145,728-12,000,000) pixels2 (roughly 2834× 2834 pixels in size). We split the dataset, at the patient level, into 
6115 lesions (5781 images) for training and 1081 lesions (1038 images) for validation. The validation set was 
used to optimize the model parameters, architecture and optimization parameters.

Clinical dataset. We also consider a subset of 4130 images from 2270 patients for which we also have demo-
graphic (age at encounter, sex and self-reported race, as found in the medical record, from which 104 patients are 
self-reported as non-white), lesion characteristics (location and number of previous dermatology visits), comor-
bidities (history of chronic ulcer of skin, diseases of white blood cells, human immunodeficiency virus infection, 
Hodgkin’s disease, non-Hodgkin’s lymphoma, infective arthritis and osteomyelitis, leukemias, Parkinson’s dis-
ease, rheumatologic diseases, skin and subcutaneous tissue infections, inflammatory condition of skin, systemic 
lupus erythematosus, other connective tissue disease, other sexually transmitted diseases, other hematologic 
diseases, and other skin disorders) and skin-cancer-related medications (immunosuppressants, corticosteroids, 
antihypertensives, antifungals, diuretics, antibiotics, antiarrhythmics, antithrombotics, chemotherapy, targeted 
therapy, immunotherapy, and other), their risk (Low vs. High), and frequency of administration. Among these 
patients, 1411 (2537 images) are diagnosed as malignant and 859 (1593 images) as benign. Similar to the discov-
ery dataset, we split these data into 85% for training and the remaining 15% for validation.

ISIC2018. Provided that we have a smaller number of dermoscopy images, we also consider augmenting our 
discovery dataset with the ISIC2018 training  dataset25,26 consisting of 10,015 dermoscopy images, from which 
1954 correspond to malignant lesions and 8061 benign lesions. Detailed lesion type counts are presented in 

Table 1.  Lesion type counts by dataset. The 8 lesion types considered are: Melanoma (MEL), Melanocytic 
Nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis/Bowen’s Disease (AKIEC), Benign Keratosis 
(BKL), Dermatofibroma (DF), Vascular Lesions (VASC) and Other Benign (OB) lesions. Note that in our 
dataset we included Squamous Cell Carcinoma lesion in the AKIEC category.

Binary classes Lesion type Discovery ISIC2018 Test

Malignant MEL 510 (7%) 1,113 (11%) 50 (10%)

Benign NV 1,170 (16%) 6,705 (67%) 139 (28%)

Malignant BCC 1,481 (21%) 514 (5%) 76 (15%)

Malignant AKIEC 2,122 (29%) 327 (3%) 121 (24%)

Benign BKL 897 (13%) 1,099 (11%) 83 (17%)

Benign DF 88 (1%) 115 (1%) 11 (2%)

Benign VASC 102 (1%) 142 (2%) 5 (1%)

Benign OB 826 (12%) – 17 (3%)

https://github.com/mx41-m/Lesion-Identification-and-Malignant-Prediction.git
https://github.com/mx41-m/Lesion-Identification-and-Malignant-Prediction.git
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Table 1. In the experiments, we also consider the ISIC2018 validation dataset to test the model with and without 
ISIC2018 augmentation.

Independent test set. In order to evaluate the performance of the model relative to human diagnosis, we con-
sider an independent set of 488 images also from Duke University Medical Center patients. In terms of skin tone, 
369 lesions (359 images) are light, 122 lesions (118 images) are medium and 11 lesions (11 images) are dark. 
From these images, 242 are malignant and 246 are benign. Consistent with the Discovery Dataset, we use the 
same malignancy and skin tone definitions. To compare the proposed model with human experts, we had three 
dermatology trained medical doctors with different levels of experience label each of the images without access 
to the biopsy report or context from the medical record. In terms of experience, MJ has 3 years dermoscopy 
experience, AS has 6 years of dermoscopy experience and MK has 10 year dermoscopy experience. Provided 
that MK also participated in lesion annotation with access to biopsy report information, we allowed 12 months 
separation between the lesion annotation and malignancy adjudication sessions. Detailed lesion type counts are 
presented in Table 1. The average area of the lesion is 458,619 (17,161–395,483) pixels2 (roughly 677× 677 pixels 
in size) while the average area of the images is 7,755,934 (3,145,728–12,000,000) unbelievable it is same as train 
but it is true) pixels2 (roughly 2785× 2785 pixels in size).

Performance metrics. For malignancy prediction, two threshold-free metrics of performance are reported, 
namely, area under the curve (AUC) of the receiving operating characteristic (ROC) and the average precision 
(AP) of the precision recall curve, both described below. AUC is calculated as:

 where t ∈ [p̂1, . . . , p̂i , p̂i+1, . . .] is a threshold that takes values in the set of sorted test predictions {p̂i}Ni=1 from 
the model, and the true positive rate, TPRt  , and false positive rate, FPRt  , are estimated as sample averages for 
a given threshold t.

Similarly, the AP is calculated as:

 where PPVt  is the positive predictive value or precision for threshold t. The calculation for the AUC and AP 
areas follow the trapezoid rule.

The intersection over union (IoU) is defined as the ratio between the overlap or ground truth and estimated 
ROIs, {zni}mn

i=1 and {ẑni}m̂n
i=1 , respectively, and the union of their areas. For a given ROI, IoU=1 indicates complete 

overlap between prediction and ground truth. Alternatively, IoU=0 indicates no overlap. In the experiments, we 
report the median and interquartile range IoU for all predictions in the test set.

The mean average precision (mAP) is the AP calculated on the binarized predictions from the detection 
model such that predictions with an IoU≥ t are counted as correct predictions or incorrect otherwise, if IoU< t , 
for a given IoU threshold t set to 0.5, 0.75 and (0.5, 0.95) in the experiments. These values are standard in object 
detection benchmarks, see for  instance27.

We also report the recall with IoU> 0 as a general, easy to interpret, metric of the ability of the model to cor-
rectly identify lesions in the dataset. Specifically, we calculate it as the proportion of lesions (of any type) in the 
dataset for which predictions overlap with the ground truth.

Results
Comprehensive experiments to analyze the performance of the proposed approach were performed. First, we 
evaluate and compare various design choices based on the evaluation metrics described in  “Method” section. 
Then, we study the effects of adding clinical covariates and using an auxiliary publicly available dataset for data 
augmentation. Lastly, we present some visualization of the proposed model predictions for qualitative analysis.

Quantitative results. Malignancy prediction. First, we present results for the malignancy prediction task, 
for which we assume that lesions in the form of bounding boxes (ROIs) have been pre-identified from smart-
phone (wide-field) or dermoscopy images. Specifically, we use ground truth lesions extracted from larger images 
using manual annotations as previously described. Table 2 shows AUCs and APs on the independent test dataset 
for the malignancy prediction model described in the “Malignancy prediction” section. We observe that the 
model performs slightly better on dermoscopy images presumably due to their higher quality and resolution.

Malignancy detection. Provided that in practice lesions are not likely to be pre-identified by clinicians, we pre-
sent automatic detection (localization) results using the models presented in the “Lesion identification” section. 
Specifically, we consider three scenarios: (1) one-class: for all types of lesions combined; (2) malignancy: for all 
types of lesions combined into malignant and benign; and (3) sub-type: for all types of lesions separately. Table 3 
shows mean Average Precision (mAP) at different thresholds, Recall (sensitivity) and IoU summaries (median 

AUC =
1

2

∑

i

[

FPRp̂i+1
− FPRp̂i

][

TPRp̂i+1
+ TPRp̂i

]

TPRt = p(p̂ > t|y = 1)

FPRt = p(p̂ > t|y = 0),

AP =
1

2

∑

i

[

TPRp̂i+1
− TPRp̂i

][

PPVp̂i+1
+ PPVp̂i

]

PPVt = p(y = 1|p̂ > t),
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and interquartile range), all on the independent test set (detailed results for the sub-type lesions are shown as 
supplementary Table s1 and Table s2). In order to make mAP comparable across different scenarios, we calculate 
it for all lesions regardless of type, i.e., mAP is not calculated for each lesion type and then averaged but rather 
by treating all predictions as lesions. We observe that in general terms, the one-class lesion identification model 
outperforms the more granular malignancy and sub-type approaches. These observation is also consistent in 
terms of Recall and IoU.

For the one-class model specifically, 79.3% regions predicted are true lesions at at IoU≥ 0.5 (at least 50% 
overlap with ground truth lesions), whereas the precision drops to 28.1% with a more stringent IOU≥ 0.75 . 
Interestingly, the 95.6% Recall indicates that the one-class model is able to capture most of the true lesions at 
IoU> 0 and at least 50% of the predicted regions have a IoU> 0.729 or IoU> 0.599 for 75% of the lesions in the 
independent test set.

Image classification. The image-level prediction results of malignancy are reported in Fig. 2. Predictions on 
the independent test set were obtained from the average-pooled image classification model in the “Image clas-
sification” section with the one-class detection model in the “Lesion identification” section and the malignancy 
prediction model in the “Malignancy prediction” section. From the performance metrics reported we note that 
the proposed approach is comparable with manual classification by three expert dermatologists (AS, MK and 
MJ). Interestingly, in dermoscopy images, the model slightly outperforms two of the three dermatologists and 
the difference in their performance is consistent with their years of experience; MK being the most experienced 
and better performing dermatologist.

Additional results comparing the different image-level malignancy prediction strategies described in the 
“Image classification” section, namely, (1) direct image-level classification, (2) two-stage with one-class lesion 
identification, and one-step with (3) malignancy or (4) sub-type identification models with max pooling aggrega-
tion are presented in Table 4. In terms of AUC, the one-class approach consistently outperforms the others, while 
in terms of AP, sub-type is slightly better. Interestingly, the direct image-level classification which takes the whole 
image as input, without attempting to identify the lesions, performs reasonably well and may be considered in 
scenarios where computational resources are limited, e.g., mobile and edge devices.

Further, we also compare different lesion identification models (one-class, malignancy and sub-types) described 
in the “Lesion identification” section and aggregation strategies (average, max and noisy OR pooling) described 
in the “Image classification” section, and the results are presented in Table 5, from which we see that the combi-
nation of max pooling and one-class lesion detection slightly outperforms the alternatives.

Accounting for clinical data. Next, we explore the predictive value of clinical features and their combination 
with image-based models. Specifically, we consider three models: (1) the logistic regression model using only 
clinical covariates; (2) the malignancy classification model; and (3) the combined model described in the “Model 
details” section. Note that since we have a reduced set of images for which both clinical covariates and images 
are available as described in the “Dataset” section, all models have been re-trained accordingly. Figure 3 shows 
ROC and PR curves for the three models and the TPR and FPR values for three dermatology trained MDs on 
the independent test set. Results indicate a minimal improvement in classification metrics by combining clinical 
covariates and images, and a significant improvement of the image-based models relative to the pure clinical 
model, which underscores the importance and predictive value of the images for the purpose of malignancy 

Table 2.  Malignancy prediction performance where ground truth lesions are manually drawn and annotated 
by a dermatology trained medical doctor (MK).

AUC AP

All lesions 0.790 0.775

Lesions from smartphone images 0.789 0.775

Lesions from dermoscopy images 0.791 0.790

Table 3.  Lesion detection from smartphone (wide-field) and dermoscopy images. Performance is evaluated 
as the mean Average Precision (mAP) at three different thresholds: 0.5, 0.75 and [0.5, 0.95], recall (sensitivity) 
and intersection over union (IoU) summarized as median (interquartile range). Significant values are in [bold].

One-class Malignancy Sub-type

mAP@0.5 0.793 0.755 0.749

mAP@0.75 0.281 0.232 0.250

mAP@0.5,0.95 0.370 0.335 0.337

Recall 0.954 0.956 0.948

IoU 0.729(0.59,0.82) 0.726(0.58,0.80) 0.716(0.59,0.80)
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Figure 2.  Performance metrics of the malignancy prediction models. ROC and PR curves, top and bottom 
rows, respectively, for all images (Left), smartphone (wide-field) images (Middle) and dermoscopy images 
(Right) on the test set. Predictions were obtained from the one-class model followed by the malignancy 
prediction model and the image classification aggregation approach. Also reported are the TPR (sensitivity) and 
FPR (1-specificity) for three dermatology trained MDs (AS, MK and MJ).

Table 4.  Performance metrics with different image-level classification strategies (direct image-level, two-stage 
with one-class lesion identification and one-step with malignancy or sub-type identification) stratified into all 
images and smartphone or dermoscopy only subsets. Significant values are in [bold].

All images Smartphone only Dermoscopy only

AUC AP AUC AP AUC AP

Image-level 0.755 0.731 0.768 0.729 0.696 0.723

Malignancy 0.769 0.777 0.775 0.779 0.735 0.788

Sub-type 0.764 0.771 0.767 0.769 0.754 0.805

One-class 0.787 0.782 0.789 0.784 0.779 0.794

Table 5.  Performance metrics of the image-level malignancy prediction model with different lesion 
identification models (one-class, malignancy and sub-types) and aggregation strategies (average, noisy OR and 
max pooling). The best performing combination is highlighted in boldface.

Average Noisy OR Max

Detection AUC AP AUC AP AUC AP

Malignancy 0.7698 0.7759 0.7698 0.7461 0.7690 0.7772

Sub-type 0.7784 0.7822 0.7698 0.7600 0.7643 0.7705

One-class 0.7759 0.7650 0.7783 0.7661 0.7868 0.7821
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prediction. Moreover, we verified that self-reported race has minimal impact on performance in the clinical 
model (see Supplementary Figure s2).

Dermoscopy data augmentation. Finally, we consider whether augmenting the discovery dataset with the pub-
licly available ISIC2018 dataset improves the performance characteristics of the proposed model. Specifically, 
the ISIC20128 (training) dataset which consists of only dermoscopy images is meant to compensate for the low 
representation of dermoscopy images in our discovery dataset, i.e., only 9% of the discovery images are dermos-
copy. Results in Table 6 are stratified by image type (all images, smartphone (wide-field) only and dermoscopy 
only) are presented for three different models: (1) malignancy prediction (assuming the positions of the lesions 
are available); (2) direct image-level classification; and (3) the two-stage approach with one-class lesion identifi-
cation. As expected, data augmentation consistently improve the performance metrics of all models considered. 
But, performance metrics on dermoscopy images do not improve. We think it may be caused by the domain 
gap between our dermoscopy images and ISIC dataset since the dermoscopy parameters, resolutions and light 
conditions are different.

Qualitative results. Figure 4 shows examples of the one-class lesion identification model described in the 
“Lesion identification” section. Note that the model is able to accurately identify lesions in images with vastly 
different image sizes, for which the lesion-to-image ratio varies substantially. We attribute the model ability to 

Figure 3.  Performance metrics of the malignancy prediction models including clinical covariates. ROC and PR 
curves for three models are presented, namely, combined (clinical + images), image only and clinical covariates 
only. Also reported are the TPR (sensitivity) and FPR (1-specificity) for three dermatology trained MDs (AS, 
MK and MJ). Note that we also provide performance characteristics for a clinical model trained without self-
reported race in supplementary Figure s2.

Table 6.  Performance metrics (AUC and AP) of the models with data augmentation. We consider three 
models with and without ISIC2018 dermoscopy image dataset augmentation. The three models considered are 
the malignancy prediction model described in the “Malignancy prediction” section, and the direct image-level 
classification and two-step approach with one-class lesion identification described in the “Image classification” 
section. Significant values are in [bold].

All images
Smartphone 
only

Dermoscopy 
only

AUC AP AUC AP AUC AP

Malignancy prediction
Discovery 0.783 0.769 0.786 0.769 0.775 0.783

Discovery + ISIC2018 0.805 0.783 0.822 0.787 0.734 0.777

Direct image-level
Discovery 0.755 0.731 0.768 0.739 0.696 0.723

Discovery + ISIC2018 0.774 0.741 0.778 0.753 0.745 0.719

Two-step approach
Discovery 0.787 0.782 0.789 0.784 0.779 0.794

Discovery + ISIC2018 0.793 0.773 0.802 0.773 0.734 0.762

Malignancy prediction
ISIC2018 – – – – 0.959 0.849

Discovery + ISIC2018 – – – – 0.961 0.881
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do so to the FPN network that allows to obtain image representations (features) at different resolution scales. 
Further, in Fig. 5 we show through a two-dimensional t-SNE  map28 that the representations produced by the 
lesion detection model (combined backbone and FPN features) roughly discriminate between malignant and 
benign lesions, while also clustering in terms of lesion types.

Discussion
The early skin lesion classification literature used largely high-quality clinical and dermoscopy images for proof 
of  concept5,6,8–10. Specifically, Esteva et al.5 showed that when trained with over 100,000 images, Inception v3 
achieved 72.1(±0.9%) accuracy in a three-level (i.e., benign, malignant and non-neoplastic) lesion classification 
and surpassed two dermatologists, whose accuracies were 65.6% and 66.0% respectively. Haenssle et al.6 showed 
that Inception V4, an improved version of model architecture over Inception V3, obtained a higher specificity of 
82.5% in a binary lesion classification (i.e., melanoma and benign) when compared to 58 international dermatolo-
gists, whose average specificity was 71.3%(±11.2%) . Han et al.8 applied ResNet-152 in classifying 12 types of skin 
diseases then tested the model performance on three different public datasets, i.e., Asan, Hallym and Edinburgh. 
They further analyzed the performance of the models built separately on each dataset and on each type of skin 
disease, and proposed several hypothesis for the observed performance differences, e.g., unequal lighting and 
background of images, imbalanced number of images for each class. However, usability of these algorithms 
in the real-world remains questionable and must be tested prospectively in clinical settings. Consumer-grade 
devices produce images of variable quality, however, this approach mimics the clinical work flow and provides 
a universally applicable image capture for any care setting. The utility of wide-field clinical images taken with 
smartphone was recently demonstrated by Soenksen et. al for detection of “ugly duckling” suspicious pigmented 
lesions vs. non-suspicious lesions with 90.3% sensitivity (95% CI 90.0–90.6) and 89.9% specificity (95% CI 
89.6–90.2) validated against three board certified  dermatologists29. This use case demonstrates how clinical work 

Figure 4.  Lesion detection examples. Top: Dermoscopy images. Bottom: Smartphone (wide-field) images. The 
ground-truth, manually annotated lesion is represented by the red bounding box, while the predicted lesion is 
denoted by the blue bounding box.

Figure 5.  t-SNE Map. Each point in the figure represents a test-set lesion separately colored by malignancy 
(Top) and lesion sub-type (Bottom): Melanoma (MEL), Melanocytic Nevus (NV), Basal Cell Carcinoma (BCC), 
Actinic Keratosis/Bowen’s Disease (AKIEC), Benign Keratosis (BKL), Dermatofibroma (DF), Vasular Lesion 
(VASC) and Other Benign (OB).
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flow in dermatology can be replicated with ML-based CDS. However, the limitation is that the number needed 
to treat (NNT) for true melanoma detection from pigmented lesion biopsies by dermatologists is 9.60 (95% CI 
6.97–13.41) by meta-analysis30. Hence, the task of detecting suspicious pigmented lesions should be compared 
against histological ground truth rather than concordance with dermatologists, for improved accuracy and 
comparability of model performance. Furthermore, pigmented lesions are a small subset of the overall task to 
detect skin cancer, as melanomas constitute fewer than 5% of all skin cancers. Our approach utilizing wide-field 
images to detect lesions of interest demonstrated encouraging mAP, IoU and Recall metrics, considering the 
sample size used. This primary step is critical in the clinical workflow where images are captured for lesions of 
interest but lesion annotation is not possible in real time. An ideal ML-based CDS would identify lesion of interest 
and also provide the likelihood of malignancy and the sub-type annotations as feedback to the user. Our study 
demonstrates malignancy classification for the three most common skin cancers (BCC, SCC and Melanoma) vs. 
benign tumors with smartphone images (clinical and dermoscopy) with encouraging accuracy when validated 
against histopathological ground truth. The usability of this algorithm is further validated by comparison with 
dermatologists with variable levels of dermoscopy experience, showing comparable performance to dermatolo-
gists in both clinical and dermoscopy binary classification tasks, despite low dermoscopy image data (9%) in 
the Discovery set. This two-stage model, with the current performance level, could be satisfactorily utilized in a 
PCP triage to dermatology (pending prospective validation) at scale for images concerning for malignancy as a 
complete end-to-end system. Interestingly, the additional ISIC high-quality dataset (predominantly dermoscopy 
images) improved performance across both clinical and dermoscopy image sets. This suggests that smartphone 
image data can be enriched by adding higher quality images. It is unclear if this benefit is due to improvement 
in image quality or volume, and remains an area of further study.

Finally, we demonstrated that comprehensive demographic and clinical data is not critical for improving 
model performance in a subset of patients, as the image classification model alone performs at par with the 
combination model. Clinicians often make contextual diagnostic and management decisions when evaluating 
skin lesions to improve their accuracy. Interestingly, this clinical-context effect that improves diagnostic accuracy 
at least in pigmented lesions maybe dependent on years of dermoscopy  experience6. The value of clinical context 
in model performance has not been studied extensively and remains an area of further study in larger datasets.

Limitations. Limitations of the study include a small discovery image dataset, predominantly including 
light and medium skin tones, and with less than 2% of images included with dark skin tone. However, this 
may represent the bias in the task itself as skin cancers are more prevalent in light- followed by medium-skin 
tones. Given the large range of skin types and lesions encountered in clinical practice, additional images may 
improve performance and generalizability. At scale, image data pipelines with associated metadata are a key 
resource needed to obtain inclusive ML-based CDS for dermatology. Improved image quality and/or volume 
improves performance as demonstrated by the ISIC dataset incorporation into the model, however, this theo-
retical improvement in performance needs validation in prospective clinical settings. While the pure clinical 
model incorporates a comprehensive list and accounts for temporal association of this metadata with detection 
of lesions, it is not an exhaustive list as it does not include social determinants such as sun-exposure behavior and 
tanning bed usage; two critical factors contributing to increasing incidence of skin cancer. In particular, meta-
data including lesion symptoms and evolution is missing and should be incorporated in future studies. Finally, 
it should be noted that lesions included in this study were evaluated and selected for biopsies in dermatology 
clinics. If this model was to be utilized in other clinical settings such as primary care, additional validation will 
be needed as pre-test probability of lesion detection is different among clinical  settings30.

Data availibility
In this study, the discovery dataset, clinical dataset and independent test dataset are collected from Duke Uni-
versity Medical Center and are not available for participant privacy protecting rules. Researchers interested in 
accessing the clinical dataset should contact Meenal Kheterpal at meenal.kheterpal@duke.edu. The ISIC dataset 
is a public dataset, which is available at https:// chall enge. isic- archi ve. com/ data# 2018.
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