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Balancing the effects of solar 
radiation pressure on the orbital 
elements of a spacecraft using 
Lorentz force
M. A. Yousef  1*, M. I. El‑Saftawy  1,2 & A. Mostafa  3

In this work, orbits of Lorentz spacecrafts and satellites are investigated under the perturbation of 
solar radiation pressure. An attempt is made to control the perturbation of the solar radiation pressure 
using the effect of Lorentz force that affects an electrically charged spacecraft. The charge per unit 
mass is the controlling parameter in this process. The redial, transverse and normal components 
of the mentioned forces are constructed. The Lagrange planetary equations for perturbations in 
the Keplerian orbital elements are formulated. The formula describing the charge per unit mass, as 
function of the physical parameter of the problem as well as the orbital elements, were derived. The 
effects of the combined forces are analytically and numerically studied.

Abbreviations
LF	� Lorentz force
LS	� Lorentz spacecraft
SRP	� Solar radiation pressure
LPE	� Lagrange planetary equation

The orbital theory of the artificial bodies, either artificial satellites or spacecrafts, is one of the most essential 
science disciplines. This importance appears due to engaging its applications with human life such as communica-
tion, climate change, environmental science, and Earth science. Based on the purpose of the orbit, the orbits are 
designed differently. So, there are six Keplerian orbital elements of spacecraft that determine its orbit1. As the time 
goes with any involving outer perturbing force on the satellite, the orbital parameters are significantly affected.

To obtain desired orbits, the forces involved in any mathematical model must be solved. These forces involved 
consist of two parts. Firstly, major forces define the major terms of the orbits. Secondly, perturbing forces 
determine the deviations of the orbit from its main one. These deviations cause the artificial satellite to leave the 
planned orbit with time. The main objective of the orbital theory is to minimize the effects of the perturbing 
forces as much as possible.

In space, there are gravitational and nongravitational disturbances that can affect any satellite during traveling 
on its orbit. The gravitational disturbance engages with central attraction mass of the large body on the small 
body (satellite). On the other hand, the effects of nongravitational disturbance have a significant impact on 
the motion of the satellite. Based on the altitudes, the nongravitational disturbances influence the satellite on 
different ways. For example, in the low orbit altitudes the atmospheric drag as a nongravitational disturbance 
affects the satellite’s motion. For higher orbit altitudes, the interaction of the satellite’s surface with solar photons 
produces a force which is called SRP. The effects of the SRP on any satellite depends on many parameters such 
as distance to the Sun and satellite’s position with respect to Sun and Earth. Any modeling of the SRP depends 
on the accurate performance of the satellite orbit, the behavior of the satellite, and the geometric and physical 
properties of the satellite structures2,3.

Recently, the electromagnetic force of the Earth’s magnetic field on a charged object has been studied and 
used to control the motion of the artificial object. The effect of this force is called Lorentz force or LF4. This 
force is used to balance perturbations of the same order of LF within the range of possible charges that can be 
produced nowadays.
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Obviously, the urgent need for orbits, whose space orientation and in turn coverage regions, remains fixed 
for somewhat extended intervals of time. Orbits satisfying these conditions are called frozen orbits5–7. The use of 
LF in orbit control is an interacting process between space dynamics and space technology which is responsible 
for designing the cells that produce the charge over the space craft. The literature is rich now with articles in 
this field, e.g.8,9.

In this paper, we will investigate the condition (or conditions) to control all orbital elements to avoid the 
effects of SRP as perturbing force using Lorentz acceleration. The LPE’s are formed for the combined forces using 
the charge per unit mass as a controller parameter. After that, the formed equations are solved to determine the 
required values of charge per unit mass that balance the effects of SRP.

In "Problem formulation" section explains both forces, SRP and LF, with presenting their components. In 
"Methodology" section, the Lagrange’s planetary equations (LPE) is formulated under both effects SRP and LF. 
After that the average perturbations, over an orbital revolution, are obtained. In "Balancing the SRP perturbation 
using LF" section  calculates the controlling orbital elements. Some numerical applications are used to calculate 
the required values of charge per unit mass as in "Numerical application" section. Lastly, in "Conclusion and 
discussion" section  provides a short summary of our results. The results show the applicability of using LF to 
balance SRP.

Problem formulation
Solar radiation pressure (SRP).  Let TSRP , RSRP , and WSRP be the transverse, redial, and normal compo-
nents of the SRP, affected spacecraft with effective cross-sectional area, A and the mass m, respectively. These 
components, mathematically, can be written as10–13:

with,

and,
R(γ ) =

A

m

S0

c
(1+ α)Cos2γ .

S = Sini, C = Cosi, C⊙ = Cosε and S⊙ = Sinε.

.

S0 , θ , ε and c are the solar constant, the true longitude of the Sun, the obliquity of ecliptic and the speed of light 
respectively. r0 and r� are respectively the distances of the Earth and the spacecraft from the Sun. In addition, γ 
and α are the falling angle of solar ray with the normal to the surface and the reflection coefficient of the space-
craft’s surface respectively.

The classical orbital parameters, used, are a, e, i, ω , � and ν are the semi-major axis, eccentricity, inclination, 
argument of preside, argument of ascending node and true anomaly respectively.

Lorentz force (LF).  Paul and Frueh14, defined the LF as a charged space object (satellite) which is moving 
through the magnetic field of the Earth. This charge produces instability in the currents of plasma electron, ion, 
photoelectric, secondary, and other different currents that the satellite usually exposed to.

The force affecting a charged spacecraft with charge per unit mass, q, moving in a magnetic field with magnetic 
dipole moment, B, rotating with rotational speed, ϑ , can be written in redial, RLF , transverse, TLF , and normal, 
WLF , components respectively as15,16:

(1.1)RSRP = −
r20
r2⊙

R(γ )[ψ1Cosν + ψ2Sinν],

(1.2)TSRP = −
r20
r2⊙

R(γ )[−ψ1Sinν + ψ2Cosν],

(1.3)WSRP = −
r20
2r2⊙

R(γ )ψ3,

ψ1 =
1

4

[

(1+ C)(1+ C⊙)Cos(θ − ω −�)+ (1− C)(1+ C⊙)Cos(θ + ω −�)+ (1− C)(1− C⊙)Cos(θ − ω +�)

+(1+ C)(1− C⊙)Cos(θ + ω +�)+ 2SS⊙Cos(θ − ω)− 2SS⊙Cos(θ + ω)

]

,

ψ2 =
1

4

[

(1+ C)(1+ C⊙)Sin(θ − ω −�)− (1− C)(1+ C⊙)Sin(θ + ω −�)+ (1− C)(1− C⊙)Sin(θ − ω +�)

−(1+ C)(1− C⊙)Sin(θ + ω +�)+ 2SS⊙Sin(θ − ω)+ 2SS⊙Sin(θ + ω)

]

,

ψ3 = [2CS⊙Sin θ − S(1+ C⊙)Sin(θ −�)+ S(1− C⊙)Sin(θ +�)],

(2.1)TLF = B1

(a

r

)2
Sin2v + B2

(a

r

)2
Cos2v + B3

(a

r

)3
Sinv,

(2.2)RLF =
[

A1

(a

r

)2
+ A2

(a

r

)4
+ A3

(a

r

)2
Cos2v + A4

(a

r

)2
Sin2v

]

,
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where,
B1 = BqS2ϑ

a2
Cos2ω , B2 = BqS2ϑ

a2
Sin2ω , B3 = BqeC

a3

√

µ
p ,

A1 = Bqϑ

a2

(

1− 1
2S

2
)

 , A2 = − BqC
√
µp

a4
 , A3 = BqϑS2

2a2
Cos2ω , A4 = − BqϑS2

2a2
Sin2ω,

Cc
0 =

BSqe

2a3

√

µ
p Sinω , Cc

1 = − 2BSq
√
µp

a4
Sinω , Cc

2 =
2BSqCϑ

a2
Sinω , Cc

3 = −Cc
0,

Cs
1 = − 2BSq

√
µp

a4
Cosω , Cs

2 =
2BSqCϑ

a2
Cosω , Cs

3 = − BSqe

2a3

√

µ
p Cosω.

Methodology
Lagrange’s planetary equations (LPE).  Let n , h and r be the mean motion, specific angular momentum 
and polar redial distance from the center of mass of the planet, respectively. LPE can be used to calculate the 
perturbation on the spacecrafts orbit. Many textbooks can be used to describe and formulate LPE17, and18.

LPE’s can be written as:

where E and µ are the eccentric anomaly and gravitational parameter of the planet respectively.

Perturbation due to SRP.  To compute the perturbation due to SRP on the orbital elements, we must apply Eqs. 
(1.1)–(1.3) into Eqs. (3.1)–(3.5). After computing the required derivatives, we get:

Perturbation due to LF.  The perturbation due to LF on the orbital elements can be computed by substitut-
ing Eqs. (2.1)–(2.3) into Eqs. (3.1)–(3.5). After computing the required derivatives with simple mathematical 
manipulating, we get:

(2.3)
WLF = Cc

0

(a

r

)3
+

[

Cc
1

(a

r

)4
+ Cc

2

(a

r

)2
]

Cosv + Cc
3

(a

r

)3
Cos2v +

[

Cs
1

(a

r

)4
+ Cs

2

(a

r

)2
]

Sinv

+ Cs
3

(a

r

)3
Sin2v,

(3.1)ȧ =
2a2

h
[T + e(TCosv + RSinv)],

(3.2)ė =
√
1− e2

na
[RSinv + T(Cosv + CosE)],

(3.3)i̇ =
W

h
rCos(ω + v),

(3.4)�̇ =
W

hSinI
rSin(ω + v),

(3.5)ω̇ =
h

µe

[

−RCosv + T

(

Sinv +
1√

1− e2
SinE

)]

− �̇CosI .

(4.1)ȧSRP = −
2a2

h

r20
r2⊙

R(γ )[−ψ1Sinv + ψ2Cosv + eψ2],

(4.2)ėSRP = −
√
1− e2

na

r20
r2⊙

R(γ )[ψ2 − ψ1SinνCosE + ψ2CosνCosE],

(4.3)i̇SRP = −
r20
2r2⊙

R(γ )
ψ3

h
rCos(ω + v),

(4.4)�̇SRP = −
r20
2r2⊙

R(γ )
ψ3

hS

( r

a

)

Sin(ω + v),

(4.5)
ω̇SRP =

h

µe

r20
r2⊙

R(γ )

[

(ψ1Cosν + ψ2Sinν)Cosv − (−ψ1Sinν + ψ2Cosν)

(

Sinv +
1√

1− e2
SinE

)]

− C�̇SRP .
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Average orbital perturbations.  In the next subsections we will calculate the averages of the perturbation 
due to SRP and LF over the complete period of the true anomaly v.

The average of the function f(x) over a complete period for the variable x is defined as:

Average perturbation due to SRP.  Now, apply the averaging definition for Eqs. (4.1)–(4.5). After calculating the 
required integrations, we get:

(5.1)ȧLF =
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




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
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+
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
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√
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where,

Average perturbation due to LF.  Also, applying the averaging definition for Eqs. (5.1)–(5.5). After calculating 
the required integrations, we get:

With, p is the semi-parameter of the orbit.

Balancing the SRP perturbation using LF
To balance the effects of SRP perturbations on the Keplerian orbital elements, we need to determine the mag-
nitude and type of the charge per unit mass that can balance such perturbation. After the LPE’s are formed for 
both forces, they are combined and solved using the charge per unit mass 

(

q
)

 , as controlling parameter. Then the 
desired values of q are determined to balance such perturbation for each orbital element.

Let qa , qe , qi , q� , and qω be the required charge per unit mass to balancing the variations in semi-major axis 
(a), eccentricity (e), inclination (i) argument of ascending node ( � ) and argument of preside ( ω ) respectively. 
Using Eqs. (7.1)–(7.5) and (8.1)–(8.5), we get:
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where,

where,

Equations (9.1)–(9.5) are the required relation needs to calculate the desired charge per unit mass to balance 
the effects of SRP on the spacecraft’s orbital elements according to required element and to the purpose of the 
balance. It is to be noted that elements can be balanced individually, or an optimization process can be made to 
get minimum possible perturbations to all elements at the same time. Near the discontinuity points, numerical 
investigation must be done using one of the numerical integrations with small step size.

The work deals with the secular perturbations only as they are the accumulative and the most effective forces 
on the satellite’s orbit. This has been processed by averaging over the fast angle of the orbit. This ensures a longer 
lifetime for the sat which is the main concern of the work. However, if there is a need for a local balance for a 
specific position the values of the charge per unit mass should be calculated without averaging.

The balance in both cases is guaranteed for each element by the fulfillment of the corresponding one of the 
conditions (9.1)-(9.5) with average or without average respectively.

The model is valid for regions with no shadow. It is known that there is no analytical treatment for shadow 
region yet.

Numerical application
In this section, we will examine the charge per unit mass for different altitude satellites. We use the SEASAT 
satellite as low Earth orbit, LAGEOS satellite as mid Earth orbit and geostationary satellite as high Earth orbit.
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The parameters for the planet Earth present in Table 1.
Calculations are done at θ = 0, for SEASAT, LAGEOS and Geostationary orbits display in Table 2.
The dimensions used in the following calculation and figures are km, gram and second for distance, mass 

and time respectively while the charge per unit mass, q, are coulombs/gram.

Conclusion and Discussion
From Eqs. (9.1)–(9.5) and the Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, we can summary our conclusions 
as follows:

•	 Because both SRP and LF perturbations depend on the charge per unit mass and area per unit mass, we can 
calculate the charge per unit area to cancel the mass of the spacecraft from equations.

•	 From Eq. (9.1), the function qa is discontinuous at (1− Cos2i)Sin2ω which leads to ω =
{

0,±π
2

}

 and 
i = {0,±π} . That means when the spacecraft is at the line of nods or normal to it or in equatorial orbit.

•	 The charge per unit mass is directly proportion with the square of the semi-major axis.
•	 The change of the q values from low to intermediate orbits is mainly due to the dependance on the different 

negative powers of the eccentricity (for semi-circular orbits e <  < 1) while the change of the semi-major axis 
is within the same order of magnitude.

•	 For the geostationary orbits, the effective factors are the increases of a (squared) to 42,160 km. Also, the 
geostationary orbits have very small values of inclination, this increases the values of q’s which depend on 
(sin i) with different negative powers. The combined results of these two factors increase dramatically the 
value of the required charge to balance the under-study perturbations specially for the elements that inverse 
square with Sin i.

Table 1.   The physical parameters for the Earth19.

B (T-Km3) µ (km3/s2) ϑ(hr-1) ε (o) So

(

g

s3

)

8X106 398,601 π/12 23.439 1.3615× 10
6

Table 2.   The parameters of the satellite’s in different altitudes20.

Satellite a (Km) e i (o) A/m (cm2 g-1)

SEASAT 7100 0.00209 108 0.2

LAGEOS 12,270 0.004456 109.8 0.007

Geostationary 42,160 0.00091 7.0 0.1

Figure 1.   The variation of ω and � with qa for SESAT type satellite as a low Earth orbit.
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We conclude that Lorentz force can be used to balance perturbations of solar radiation pressure since they 
are of similar order for the applicable values of charge that can be produced with the present technology. But for 
example, it will be not applicable to balance air drag or earth’s oblateness with Lorentz force for low earth orbits. 
The work mainly studies how to get use of Lorentz force in the process of balancing. It could be used among 
set of forces to balance different set of perturbing forces. The technical part of this control can be handled by 
adding instrument onboard of spacecraft to measure the charge accumulated on the spacecraft’s surface, then 
special devices will generate the required charge value (magnitude and sign) according to the calculations of 
Eqs. (9.1)–(9.5) and according to the element we would like to balance.

Figure 2.   The variation of ω and � with qe for SESAT type satellite as a low Earth orbit.

Figure 3.   The variation of ω and � with qi for SESAT type satellite as a low Earth orbit.
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Figure 4.   The variation of ω and � with q� for SESAT type satellite as a low Earth orbit.

Figure 5.   The variation of ω and � with qω for SESAT type satellite as a low Earth orbit.
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Figure 6.   The variation of ω and � with qa for LAGEOS type satellite as a mid-Earth orbit.

Figure 7.   The variation of ω and � with qe for LAGEOS type satellite as a mid-Earth orbit.
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Figure 8.   The variation of ω and � with qi for LAGEOS type satellite as a mid-Earth orbit.

Figure 9.   The variation of ω and � with q� for LAGEOS type satellite as a mid-Earth orbit.
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Figure 10.   The variation of ω and � with qω for LAGEOS type satellite as a mid-Earth orbit.

Figure 11.   The variation of ω and � with qa for Geostationary type satellite as a high Earth orbit.
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Figure 12.   The variation of ω and � with qe for Geostationary type satellite as a high Earth orbit.

Figure 13.   The variation of ω and � with qi for Geostationary type satellite as a high Earth orbit.
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