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Finite‑state parameter space 
maps for pruning partitions 
in modularity‑based community 
detection
Ryan A. Gibson1,2 & Peter J. Mucha1,3,4*

Partitioning networks into communities of densely connected nodes is an important tool used 
widely across different applications, with numerous methods and software packages available for 
community detection. Modularity-based methods require parameters to be selected (or assume 
defaults) to control the resolution and, in multilayer networks, interlayer coupling. Meanwhile, most 
useful algorithms are heuristics yielding different near-optimal results upon repeated runs (even at 
the same parameters). To address these difficulties, we combine recent developments into a simple-
to-use framework for pruning a set of partitions to a subset that are self-consistent by an equivalence 
with the objective function for inference of a degree-corrected planted partition stochastic block 
model (SBM). Importantly, this combined framework reduces some of the problems associated 
with the stochasticity that is inherent in the use of heuristics for optimizing modularity. In our 
examples, the pruning typically highlights only a small number of partitions that are fixed points of 
the corresponding map on the set of somewhere-optimal partitions in the parameter space. We also 
derive resolution parameter upper bounds for fitting a constrained SBM of K blocks and demonstrate 
that these bounds hold in practice, further guiding parameter space regions to consider. With publicly 
available code (http://​github.​com/​ragib​son/​Modul​arity​Pruni​ng), our pruning procedure provides a new 
baseline for using modularity-based community detection in practice.

Many real-world data sets can be naturally encoded as networks in which the objects of interest and their rela-
tionships are represented by nodes and edges, respectively. Network analysis has proved to be a powerful tool 
across applications in biology, computer science, sociology, neuroscience, and many other fields. Community 
detection (also known as graph partitioning and network clustering) is a particularly popular technique1–4. While 
the interpretation of different community structures is typically domain-specific, the existence of communities 
and their memberships are often of significant interest. In social networks, communities may demarcate the 
limits of social cliques or groups. In biological networks encoding gene-protein relationships, clusters can reveal 
information about pathways and processes. In technological networks, the hierarchical structure of communities 
can be used to compress data and to detect abnormalities. In computer science, many standard problems, such 
as scheduling work across clusters, can be naturally reduced to graph partitioning. Though a single definition 
of “community” has never been widely accepted (see, e.g., Peel et al.5 and Priebe et al.6), many of the different 
definitions of communities lead to formulations that identify groups of nodes that are more densely connected 
internally within the communities than to the rest of the network, in line with other notions of unsupervised 
clustering of data.

One of the most popular methods for community detection is to maximize a quantity known as modularity, 
which measures the total weight of edges within communities relative to that expected under an appropriate 
random graph model. Modularity was first introduced by Newman and Girvan7 for undirected networks and 
later extended to a variety of other settings. Modularity optimization has a number of well-known limitations 
that makes it problematic as a method of community detection: it is a descriptive measure without any underlying 
statistical or generative principle, it only finds assortative structures, it is biased towards balanced communities 
of similar sizes, particularly when the null model does not describe the network well (including but not limited 
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to when the community sizes vary drastically), and the global optimization is NP-hard8. Indeed, we encourage 
readers to consult the extensive discussion by Peixoto9. Nevertheless, modularity remains one of the most popular 
methods for community detection in real-world networks, in part because a number of fast heuristics are readily 
available across multiple computational platforms. Perhaps most notably, the Louvain10 algorithm is very widely 
used because of its apparent balance between speed and the quality of the results, while the newer Leiden11 
algorithm promises further improvement. At the same time, multilayer modularity12 is one of a relatively small 
handful of community detection methods available for multilayer networks13, a general framework in which a 
collection of interrelated networks are treated as individual “layers” in a larger, connected data structure. These 
are appropriate for handling networks with multiple kinds of connections (multiplex), networks that vary over 
time, networks of networks, and other structures. The generalized formulations of modularity include a resolu-
tion parameter14 that can be used to control the number and sizes of communities found at the corresponding 
maximum. But the possibility of multiple important scales of communities across different resolution parameters, 
the need to consider different interlayer coupling values in multilayer networks, and the run-to-run variation 
in communities from heuristic algorithms lead to serious challenges reconciling results. In practice, users must 
typically reconcile multiple partitions of nodes into communities while exploring the parameter space, if they 
even realize the need to address these issues (and it would seem many do not).

Our method introduced here aims to make it easier for community detection users who are already employing 
modularity to use it better, to avoid at least some of these pitfalls. To this end, we combine two previously dis-
connected advances from the recent literature: the Convex Hull of Admissible Modularity Partitions (CHAMP) 
algorithm15,16 for post-processing a set of partitions, and the equivalence between the objective functions for 
modularity and for inference of degree-corrected planted partitions recently identified by Newman17 and Pamfil 
et al.18. We briefly introduce each of these prior works next (see also “Methods” and the detailed discussion of 
each of these prior methods in Sections A–C of the Supplementary Information [SI]). We then combine these 
methods and demonstrate our results from using them together to define a simpler map.

The CHAMP algorithm15,16 provides a framework for quickly post-processing a provided set of partitions 
of nodes into communities, identifying the “admissible” subset of partitions that have non-empty domains of 
optimality in the resolution/coupling parameter space (relative to the provided set of partitions). The CHAMP 
approach is highly flexible in that it post-processes a set of partitions to identify the best subset (in the modular-
ity sense), however many different partitions are provided and independent of the possibly multiple resolution 
parameter values or even different community detection methods that were used to obtain these partitions in 
the first place. Moreover, CHAMP does not prescribe one way to handle the admissible subset of partitions that 
are somewhere-optimal candidates, allowing users to make decisions based on the number of partitions in the 
admissible subset and the sizes and shapes of the associated domains of optimality. Of course, because CHAMP 
post-processes sets of community labels found by other means, the overall quality of the results obtained can 
depend strongly on the number and quality of the partitions that are input into CHAMP. However, and impor-
tantly, the added computational cost of CHAMP is trivial compared to that typically used to obtain partitions of 
nodes into communities in the first place. In these senses, applying CHAMP can only improve one’s perspective 
on how to handle disparate partitions of nodes into communities obtained for a given data set.

Another popular method for detecting communities is to fit a generative model known as a “stochastic block 
model” (SBM) to the network (see, e.g., Karrer & Newman19, Peixoto20, and Funke & Becker21). Importantly, 
SBMs are statistically principled and can consider more general block structures than the “assortative” structures 
explicitly sought in modularity maximization (though we will only consider assortative community structure 
here). While the descriptive nature of modularity and the generative approach of SBMs would at first appear to 
have little in common, Newman17 demonstrated an equivalence between the objective functions for modular-
ity maximization and statistical inference for a particular degree-corrected planted partition SBM. Newman 
then used this equivalence to define an iterative procedure to obtain the modularity resolution parameter, γ , 
corresponding to a selected number of communities in a network (see “Methods” and Section A of the Supple-
mentary Information [SI]). Pamfil et al.18 generalized Newman’s equivalence to multilayer networks of various 
types and extended the iterative procedure to obtain both γ and the interlayer coupling ω (see “Methods” and 
SI Section B). Importantly, in so doing they also demonstrated conditions under which the iterative procedure 
leads to unstable fixed points.

As depicted in Fig. 1, our method combines the iterative parameter estimation from modularity-SBM 
equivalence17,18 with the post-processing of CHAMP15,16 to resolve issues that arise from the heuristic nature of 
modularity maximization. Bringing together these different elements, we provide a complete methodology for 
exploring a 2D (γ ,ω) parameter space in modularity-based community detection in multilayer networks. Run-
ning CHAMP on a set of input partitions, however obtained, identifies the finite subset of admissible partitions 
that are somewhere optimal (relative to the input set) and their associated domains of optimality. We then com-
pute the estimated parameter point for each partition, per Newman17 for (single-layer) networks or the appro-
priate Pamfil et al.18 model for multilayer networks. Combining these previously disconnected approaches, we 
identify which domain of optimality that estimated parameter point resides in, and its corresponding partition, 
thus mapping each partition in the admissible CHAMP subset to a member of the same subset. That is, given a 
set of input community partitions, however obtained, this synthesized approach defines a deterministic map on 
the subset of admissible partitions. The fixed points of this finite-state map are the “stable” partitions that yield 
the highest modularity (from the input set) at their associated “correct” parameters in the corresponding SBM 
equivalence. Importantly, because this deterministic map defined on a given CHAMP subset includes only a finite 
number of possible states (partitions in the admissible subset), any fixed point of the map is inherently stable.
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Results
We demonstrate the advantages of this combined approach on (1) a well-studied, small (single-layer) network, 
(2) a synthetic hierarchical community model, (3) a synthetic multilayer network, and (4) a real-world multi-
layer network. In these demonstrations, we emphasize the differences between pre-specifying a fixed number 
of communities K, as in Newman’s iterative approach17, versus allowing K to be determined by the modularity 
maximization heuristic, as in Pamfil et al.18 (see also SI:B.5 about allowing K to vary). To further guide parameter 
selection in practice, we also derive an upper bound γmax for the estimated resolution parameter for K equal-
sized communities. Additional details appear in the Supplementary Information (SI), including details about 
the previously-known objective function equivalencies17,18 (SI:A–B, in a common notation), discussion of the 
previously-developed CHAMP method15,16 (SI:C), further results on our demonstration examples (SI:D–G), 
additional examples (SI:H–I), full derivation of γmax(K) (SI:J), and a practical discussion about performance 
and the possibility of periodic orbits (SI:K). The code and data used to generate our results are available at http://​
github.​com/​ragib​son/​Modul​arity​Pruni​ng.

Zachary karate club.   We start with the (unweighted) Zachary karate club network22, one of the most 
popular examples of community structure in the network science literature. This network describes the social 
relationships between individuals in a university karate club shortly before a disagreement split the group in two. 
The Zachary karate club is so well studied (see the Zachary Karate Club Club23) that one might accuse us of using 
a gratuitous example; but even this simple example demonstrates the value of our approach.

The behavior of γ estimate iterations using two different modularity maximization algorithms is shown 
in Fig. 2. Whereas the Louvain algorithm10 does not restrict the number of communities K (similar to Pamfil 
et al.’s18 use of GenLouvain26), the spin glass algorithm14 is run here with K = 2 to compare directly with New-
man’s results with fixed K = 217. (In such a small network, one might instead add a resolution parameter to a 
method like community_optimal_modularity in igraph, which recasts modularity maximization into an 
integer programming problem to guarantee the global optimum; but for the purposes of the present example we 
prefer to employ heuristics like those used for larger networks, to demonstrate the possible behaviors.) Matching 
Newman’s iterative scheme, which consistently converged to an optimal estimate γ ≈ 0.78 for a 2-community 
partition closely matching the true split, the scheme using the spin glass algorithm converges to this γ after a 
single iteration, regardless of the initial γ (see Fig. 2a).

In contrast, the Pamfil et al. approach does not keep K fixed during the iterations18 (see SI:B.5 for discussion 
of some consequences of allowing K to vary). Applied to this simple single-layer example, we observe greater 
stochasticity when allowing K to vary within the iterative scheme’s use of Louvain (see Fig. 2b). The iterations 
most frequently converge to estimates with 1.0 < γ < 1.1 , corresponding to different 4-community partitions. 
However, the scheme can also converge to the 2-community partition with γ ≈ 0.78 if the iterative procedure 
is initialized with a small γ value and if in the employed stopping condition the follow-up Louvain calls fail to 
identify the higher-quality 3-community partition at that γ . That 3-community partition then provides a γ ≈ 0.9 
estimate, and as seen in Fig. 2b it is possible to stop at that result; but there is a 4-community partition with 
higher quality there, and so the scheme frequently proceeds to a 4-community partition with 1.0 < γ < 1.1 . As 
expected, there is a strong dependence between a partition’s γ estimate and its number of communities, as seen 
in Fig. 2c since increasing γ typically promotes a larger number of smaller communities. Notably, the difference 
between the exceptionally stable K = 2 fixed point and the stochastic fluctuations when allowing K to vary are 
striking, especially for such a small, simple network. In hindsight, these fluctuations are perhaps less surprising 
when one considers that the duality between modularity optimization and SBM inference depends on estimates 

Figure 1.   Visualization of our method. (a) Input partitions are obtained, usually through modularity 
maximization at various points across the resolution/coupling parameter space. (b) We use CHAMP15,16 to find 
the partitions’ domains of optimality (relative to the input set) within the space, discarding partitions that are 
nowhere optimal. (c) For each remaining partition, we use the objective function equivalence17,18 to estimate the 
“correct” parameter point, depicted here by arrows from each partition’s domain to its parameter estimate. (d) 
The “stable” partitions are those whose parameters fall within their domains of optimality; that is, they are fixed 
points of the map. By combining these methods, the resulting map is deterministic (conditional on the set of 
partitions input to CHAMP) on a finite set of states, so all fixed points are inherently stable.

http://github.com/ragibson/ModularityPruning
http://github.com/ragibson/ModularityPruning
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of the SBM parameters, which may differ greatly when the number of blocks is changed as allowed by Pamfil 
et al. (but not Newman). Hence, in general, the results of resolution parameter estimation can strongly depend 
on the number of communities returned by the modularity maximization heuristic of choice.

The stochastic nature of the above results are greatly suppressed in our combined approach depicted in Fig. 1 
that includes CHAMP. Indeed, given an identified set of input partitions, the iterative scheme becomes a finite-
state deterministic map on the admissible subset of those partitions, from which we can trivially identify the 
fixed points without any further problems of randomness or stability. Of course, we pay for this simplicity by 
finding a set of input partitions to prune in the first place. For a small network like the Zachary karate club, we 
can very reasonably generate an excessive number of input partitions. Indeed, it is a common misinterpretation, 
understandable in light of the examples described by Weir et al.15, that CHAMP requires large numbers of input 
partitions; however, CHAMP will identify an admissible subset from any set of partitions, regardless of cardinal-
ity, and it is easily confirmed by comparing results with the corresponding package16 with different numbers of 
inputs that the number of partitions in CHAMP’s admissible subset and the main features of the corresponding 
domains of optimality typically stabilize rapidly in practice, with only slow or modest improvement upon adding 

(a) (b)

(c) (d)

Figure 2.   Iterative steps to determine “correct” values for the resolution parameter γ on the Zachary karate 
club. Behavior observed using individual partitions obtained at each γ by the (a) spin glass algorithm14 as 
implemented in igraph24, restricted to finding K = 2 communities and the (b) Louvain algorithm10, which does 
not fix K, as implemented by Traag25. Arrows show average movement (over 100 trials) in γ with the base of 
the tail at the initial γ used and the head of the arrow indicating the (averaged) γ estimate. Blue points indicate 
paired initial and final γ values obtained after multiple steps (from multiple runs at each γ ). (c) Frequencies of 
γ estimates from 1e7 runs of Louvain on a uniform γ ∈ [0, 2] grid, relative to observed partitions with the same 
number of communities K. (d) Domains of optimality and associated γ estimates for the 9 partitions of the 
Zachary karate club admitted by CHAMP starting from the 1e7 Louvain calls on γ ∈ [0, 2] mentioned above. 
Each of these 9 partitions is indicated by a horizontal line segment bounded by ‘x’ symbols at height indicating 
the number of communities. The “correct” value of γ for each of these partitions (except the trivial 1-community 
partition, which has no such estimate) is indicated by an arrow from the midpoint of the partition to a 
corresponding dot, possibly within another domain. Notably, only one of these partitions (with K = 4 ) yields a 
fixed point under the map, with its arrow pointing inside its domain.
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further candidate partitions. CHAMP does not itself inherently require a large number of input partitions, though 
of course the overall quality may improve as the number of input partitions increases. Nevertheless, to be sure our 
results here are not impacted by a relative lack of input partitions we ran the Louvain algorithm, as implemented 
by Traag25, 10,000,000 times on a uniformly spaced 0 ≤ γ ≤ 2 grid on a desktop computer (8-core i7-9700K CPU, 
16 GB DDR4 3200 MHz) in less than 5 minutes. However, the CHAMP domains are qualitatively similar with 
only 100 Louvain calls, and we typically obtain the same final pruned fixed point partitions for the karate club 
with as few as a dozen Louvain calls. In our trial, we found 539 unique partitions, from which CHAMP identi-
fies only 9 partitions as admissible (somewhere optimal), with domains of optimality and γ estimates shown in 
Fig. 2d When the number of communities K is left unrestricted, there is only one fixed point: the 4-community 
partition in Fig. 2d Note this corresponds to the partition that Pamfil et al.’s iterative procedure most frequently 
converged to in Fig. 2b On the other hand, when the number of communities is restricted prior to running 
CHAMP, we find exactly one fixed point for each choice of K ∈ {2, 3, . . . , 8} . Given the relatively simple behavior 
observed in Fig. 2a it is unsurprising that the stable 2-community partition remains the same as that identified 
using Newman’s procedure. Meanwhile, the 4-community fixed point that was stable for unrestricted K in Fig. 2d 
is necessarily also a fixed point when we restrict to partitions with K = 4 communities.

Synthetic example with multiple community scales.   The reduction to a deterministic map allows 
us to more easily handle networks in which there are multiple “correct” values for the resolution parameter. For 
example, a network with significant community structure at multiple different scales may have one value of γ 
that corresponds to larger communities and a different value corresponding to smaller communities within the 
larger ones. Having seen this occur in practice, we demonstrate such behavior using a simple hierarchical block 
model with multiple partitions of a network that are simultaneously stable under the parameter estimation map. 
Figure 3 shows results from random graphs of 450 nodes generated with 9 equal-sized blocks grouped into 3 
communities of 3 subcommunities each, with node pairs within the same subcommunity connected with prob-
ability 0.12, within the same community but different subcommunities with probability 0.03, and in different 
communities with probability 1/600. Figure 3a visualizes the resolution parameter map for a single network 
realization from this model, simultaneously yielding 3 stable partitions: one well aligned with the 3 planted com-
munities, another aligned with the planted 9-subcommunity split, and a partition that correctly identifies the 
possibility of subdividing each of the 3 communities but highlights a (presumably random) substructure with 6 
communities. Figure 3b explores this behavior by accumulating the frequencies of the stable partitions identified 
across 500 network realizations from this model.

Synthetic multilayer temporal network.   We next focus on a synthetic temporal network model used 
in Pamfil et al.18, initially proposed by Ghasemian et al.27, generated as follows. Ground-truth community mem-
bership in the first layer is split evenly between K available community labels. For each subsequent layer, the 
community label is copied from the previous layer with probability η ; otherwise, the community is randomly 
assigned from all K possible labels. Using these assigned communities, edges are independently placed between 
pairs of nodes in each layer with probability pin for nodes in the same community and with probability pout 

(a) (b)

Figure 3.   Hierarchical block model networks with 3 communities of 3 subcommunities each. (a) The 
parameter map on a single network realization, plotted in the manner of Figure 2d with each line segment 
between ‘x’ symbols indicating the domain of optimality of a partition and the “correct” estimate of γ indicated 
by an arrow from its midpoint to corresponding dot. Stable fixed point partitions with 3, 6, and 9 communities 
are identified by each having its γ estimate within its own domain. (b) Frequencies of stable partitions of 
K communities on 500 realizations from this model. A 3-community structure is always identified and a 
stable 9-subcommunity structure appears in ∼90% of realizations. Other numbers of communities are also 
frequently identified. Each network realization was partitioned with 1000 runs of Louvain on a uniform grid of 
γ ∈ [0, 2.5].
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otherwise. The probability ratio ε = pout/pin describes the strength of the community structure in these layers 
(smaller values of ε placing more edges within than between communities).

The top row of Fig. 4 considers a multilayer network in the “easy” regime of Pamfil et al., with copying 
probability η = 0.7 , edge probability ratio ε = 0.4 , T = 15 layers, K = 2 communities, and 150 nodes per 
layer. (Note K = 2 means agreement of labels from one layer to the next actually occurs with probability 
η + 1

2
(1− η) = 0.85 .) Pamfil et al.’s iterative procedure on this network, visualized in Fig. 4a converges near to 

the ground truth parameter estimate for most initial (ω, γ ) values with γ � 1.15 , whereas initializations with 
γ � 1.15 fail to converge to the ground truth. We ran Louvain 50,625 times on a 225× 225 uniform grid of 
γ ∈ [0, 2] , ω ∈ [0, 2] , yielding 27,639 unique partitions with more than one community. CHAMP identifies 91 
of these as somewhere optimal, with domains of optimality and associated parameter estimates visualized in 
Fig. 4b exhibiting the same general behavior as the Pamfil et al. iterative procedure shown in Fig. 4a with many 
partitions’ estimates close to the ground truth (ω, γ ) ≈ (0.98, 0.94) . Notably, this 2-community stable partition 
has very strong alignment with the ground truth (agreeing for ∼99.9% of the node-layers). Also similarly, the 
partitions optimal at γ � 1.2 do not converge near this ground truth; however, unlike the Pamfil et al. procedure, 
the iterations here do converge to other stable partitions with many more communities (see SI Section F for 
details). Given these results, one might naturally focus on the K = 2 case by restricting CHAMP to only consider 
those partitions. The Louvain results above included 2,507 unique K = 2 partitions, 29 of which are somewhere 
optimal (relative to these K = 2 partitions), precisely one of which is stable under the parameter estimate map: 
the same 2-community partition that is stable for unconstrained K (Fig. 4c).

We repeat these numerical experiments with η = 0.5 and ε = 0.5 . Figure 4d visualizes this “hard” case from 
Pamfil et al., similar to their Fig. 3(b). The difficulty with this case comes from the heuristic modularity maximi-
zation creating pseudo-random fluctuations that make the fixed point unstable. Indeed, the heuristic sometimes 
returns partitions at the fixed point with modularity ∼10% lower than for the ground truth. Pamfil et al. circum-
vent some of these difficulties with an “ad hoc” (their words) reduction of γ whenever K exceeds an imposed 
Kmax . In contrast, the results across the bottom row of Fig. 4 demonstrate that our finite-state map does not suffer 
any such problems with this “hard” case, correctly identifying a (stable) fixed point closely matching the planted 
communities in the generated multilayer network (Fig. 4e). Similar to the “easy” case, we again see even simpler 
behavior of the iterative map obtained by restricting to K = 2 partitions (Fig. 4f). We again note that stability 
of a partition when allowing K to vary implies stability under the procedure when restricted to that same K.

Lazega law firm.   Following Pamfil et al.18, we now demonstrate our approach on the Lazega Law Firm 
network28, a 3-layer multiplex network that describes the relationships between 71 attorneys who were asked 
to list members of the firm that they go to for professional advice (“Advice”), closely work with (“Coworker”), 
and socialize with outside work (“Friend”). In so doing, we note that we utilize Pamfil et al.’s SBM equivalence 
for directed layers in a multiplex network. We ran 1e6 instances of Louvain over a uniform 2000× 500 grid of 
γ ∈ [0, 2] , ω ∈ [0, 3] , yielding 211,219 unique partitions. When we do not restrict K, CHAMP identifies 152 
admissible (somewhere optimal) partitions visualized in Fig. 5a, three of which are stable: one with K = 3 and 
two with K = 4 . Figure 5c highlights the domains of optimality of these stable partitions, along with param-
eter estimates of four other partitions that are stable for fixed-K-restricted parameter maps with K = 2 , 3, and 
4 (another stable partition for K = 2 has γ < 0.8 and does not appear in the figure). Comparing with Fig. 4 
of Pamfil et al.18, their two highlighted groups of partitions that they consensus cluster appear to best correspond 
to the K = 3 fixed point with ω ≈ 0.7 that we find when restricting to fixed-K maps and the stable K = 3 domain 
at ω = ∞ . Further comparing with the domains and iterative steps in Fig. 5b, one can see the large number of 
domains mapping into the region that includes both K = 4 stable points (letting K vary) and this K = 3 point 
that is stable for fixed-K maps, as well as the detail of how close these parameter estimates are to the boundaries 
of their associated domains. Observing such behavior in practice might lead one to consider adding more runs 
to obtain additional partitions near this region, to decrease the chance that a somewhere-optimal partition may 
have been missed. Additionally, one might reasonably choose to directly compare and contrast the relatively 
few CHAMP partitions obtained near these points, since this region of the parameter space has been effectively 
highlighted by the map.

Bounds on γ estimates.   Throughout the above we have repeatedly started with pre-selected ranges of γ 
and ω . Increasing the interlayer coupling ω to even modest values such as those in our results forces (nearly) all 
appearances of a selected node across layers into a single community, so that no further increase changes the 
partitions. Similarly, there is a maximum meaningful resolution parameter γ above which all off-diagonal com-
ponents of the intralayer modularity matrices are negative, forcing all nodes in a layer into different communi-
ties. To better identify useful ranges of γ , we establish maximum possible γmax(K) estimates for assortative SBMs 
of K equal-sized blocks (see SI Section J). Figure 6 demonstrates that γmax(K) empirically bounds the γ estimates 
obtained on a set of real-world networks. Similarly, we note that all γ estimates in17 are below γmax(K) . Therefore, 
if a maximum desired number of communities, Kmax , is known or can be applied ahead of time, γmax(Kmax) 
appears to provide an effective bound to further aid in selecting parameter ranges.

Discussion
We have developed a strategy for pruning sets of partitions obtained by modularity-based community detection 
algorithms under different parameters and random seeds. We combine the CHAMP post-processing tool of 
Weir et al.15 with iterative procedures based on SBM objective function equivalencies by Newman17 for (single-
layer) networks and Pamfil et al.18 for multilayer networks. By using CHAMP to reduce the number of partitions 
participating in the iterative procedures for identifying parameters, our strategy transforms the problem into 
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(a) (b)

(c) (d)

(e) (f)

Figure 4.   Comparing different iterative procedures on synthetic multilayer networks. Top row: the Pamfil 
et al.18 “easy” regime. (a) The Pamfil et al. iterative map visualized on an (ω, γ ) grid with arrows (scaled down 
10%) indicating the direction of parameter estimates using Louvain at each (ω, γ ) , averaged over five trials, 
finding a stable fixed point near the blue point from the ground-truth partition, (ω, γ ) ≈ (0.98, 0.94) . (b) 
Domains of optimality for the CHAMP set ( ≈ 25 partitions somewhere optimal in the displayed range), with 
arrows from the centroid of each domain to its (ω, γ ) estimate. (c) Domains of optimality and (ω, γ ) estimates 
from CHAMP restricted to K = 2 communities. Bottom row: the Pamfil et al. “hard” regime: (d) The ground-
truth (ω, γ ) ≈ (0.80, 0.96) blue point is unstable under the Pamfil et al. iterative map, whereas the finite state 
maps on (e) the full CHAMP set and (f) restricting CHAMP to K = 2 communities both identify a fixed point 
near the ground-truth estimates. The absence of arrows for γ � 0.65 are from the single-community partition.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15928  | https://doi.org/10.1038/s41598-022-20142-6

www.nature.com/scientificreports/

a deterministic map on the finite subset of admissible partitions from CHAMP. The fixed points are then the 

Figure 5.   Results for the Lazega law firm multiplex network. (a) Domains of optimality for the partitions in 
CHAMP’s admissible subset. Color indicates number of communities. (b) Domains annotated with arrows 
to indicate each partition’s (ω, γ ) parameter estimates. Partitions with identical communities across all layers, 
yielding an ω = ∞ estimate, are visualized with arrows to ω = 3 . (c) The domains and parameter estimates for 
the three stable partitions allowing K to vary, with additional points indicating other stable partitions found 
when separately fixing K = 2, 3, 4 prior to running CHAMP.

Figure 6.   The γmax bound for SBMs of equal-sized blocks compared with observations on 16 social networks 
(4k–82k nodes, 17k–948k edges) from the Stanford Large Network Dataset29. Box plots collect γ estimates for 
partitions of K communities from 1000 Louvain runs on a γ ∈ [0, 10] grid on each network. The γmean estimate 
(see SI:J) is also plotted for comparison.
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“stable” partitions that are significant from the perspective of the SBM objective function equivalence. Combin-
ing CHAMP with iterative parameter mapping performs better than either method alone, particularly where 
it greatly reduces the effects of stochasticity due to non-optimal partitions found by the community detection 
heuristics. Importantly, our combined methodology works for holding the number of communities K fixed (as 
in Newman17) or letting K vary (as in Pamfil et al.18).

One might rightfully be concerned about potentially removing important partitions by using CHAMP, espe-
cially given the typically large number of near-optimum partitions30 with structures from a seemingly similar 
template31. On the other hand, while one may be understandably tempted to keep a broader collection of parti-
tions obtained by computational heuristics, there is then a natural concern about not knowing the effectively 
true optimization problem solved there. In contrast, the quality of stable partitions that are fixed points under the 
iterative procedure are directly related to the likelihood of the underlying planted partition SBM, so we believe 
that it is reasonable to ignore the nowhere-optimal partitions, at least as a first pass. At the same time, however, 
because the planted partition equivalent to modularity is highly restrictive, it is of course possible that other 
partitions that are not fixed points still contain important community structures (see in particular Peel et al.5). 
Users with advanced knowledge will undoubtedly encounter situations where their further exploration yields 
important observations, but we believe the vast majority of community detection users across different fields of 
application will benefit from the simplicity of our approach for reconciling multiple partitions obtained across 
the parameter space.

Moreover, we stress that CHAMP can only post-process partitions that are provided to it as input, so the 
performance of the full framework is limited by that of whatever community detection heuristics are used to 
initially find that input set of partitions. That is, if the underlying heuristics fail to find adequately optimum 
partitions in a modularity sense in the first place, CHAMP cannot improve upon what is in the input set. That 
said, we note the key role CHAMP plays in the success of our combined framework on the “hard” case synthetic 
multilayer temporal network (bottom row of Fig. 4): the heuristic used finds partitions in strong agreement with 
the ground truth elsewhere in the parameter space that CHAMP then identifies as being optimal at the point 
corresponding to the ground truth, whereas the heuristic run around this point typically returns partitions with 
modularity ∼ 10% lower than for the ground truth. By pooling and post-processing the full set of input parti-
tions together, CHAMP identifies an appropriate partition near this point even though the heuristic run at that 
point does not. It is precisely because of this behavior that the iterative map on the CHAMP set yields a fixed 
point that is inherently stable and in good agreement with the ground truth, emphasizing the value of combining 
these previously disconnected approaches.

We emphasize that the general methodology of combining CHAMP with iterative parameter maps is very 
flexible in terms of how the initial set of partitions is obtained and in what order the different concepts are 
applied. Because of our desire to focus here on the finite-state map on the space of admissible partitions at the 
end of the process, and the relatively low cost of calling Louvain on the examples considered here, we have opted 
to first generate a large number of partitions using Louvain at different parameter values in a reasonable range. 
Indeed, our γmax(K) bound can be used in practice to help select the range of γ considered. Because CHAMP 
greatly reduces the effect of heuristic-caused stochasticity, we found that we tend to find the stable partitions 
even when the number of Louvain calls is relatively small. One could combine CHAMP (which is computation-
ally negligible) with iterative maps a la Pamfil et al. without incurring any additional Louvain calls if desired, 
running the iterations (including stochasticity from the computational heuristic) from different seed points and 
inputting all partitions obtained into CHAMP to define the map on the admissible subset and find the stable 
partitions that are its fixed points. Alternatively, since the Qhull32 implementation of halfspace intersection 
supports incrementally added halfspaces, one could update the admissible subset and domains of optimality as 
each new partition is found.

Future work could further analyze the equivalencies between modularity maximization and SBM inference, 
especially in terms of applying different information criteria for varying K, and extend the implementation to 
parameter spaces with more than two dimensions, especially for some of the other interlayer couplings considered 
by Pamfil et al.18 where parameters vary across layers. The current implementation of our methodology only 
considers parameter spaces with one dimension (i.e., γ ) or two dimensions. Typically these are the resolution 
parameter γ and interlayer coupling ω in our development here, but could alternatively be two multipliers of 
other parameters varying between layers as in some of the higher-dimensional parameter spaces of Pamfil et al. 
The use of Qhull in CHAMP restricts the dimensionality of the parameter space in practice, but one might also 
develop a scheme using pseudo-random results on higher-dimensional parameter spaces to then re-cast to a 
lower-dimensional space where a map could again be defined on the appropriate admissible subset. Theoreti-
cally, the equivalence with SBM inference is only known for unweighted multigraphs; it would be particularly 
important to explore whether any extended interpretation of the related formulae to weighted graphs may be 
appropriate or to identify some other equivalence. Finally, while we conjecture that parameter estimation orbits 
(beyond simple fixed points) cannot occur for assortative partitions in our iterative maps, we have neither a 
proof nor a counterexample of this property.

Methods
We aim here to provide the essential, high-level information about each method in a common notation, modify-
ing that of the cited works where needed, to aid the reader’s understanding. Complete details about each method 
are in the cited works.

Modularity.   Modularity for undirected networks7 after including a resolution parameter14 is given by
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where A is the adjacency matrix ( Aij = 1 when nodes i and j are connected and Aij = 0 otherwise), m is the total 
edge weight, ki is the weighted degree of node i (the total weight of edges connected to i), gi is the community/
group label of node i, and δ is the Kronecker delta with δ(gi , gj) = 1 when gi = gj and 0 otherwise. Newman and 
Girvan’s original definition, corresponding to γ = 1 , measures the total weight of edges within the communities 
minus that expected in a random model with the same expected degree sequence. The resolution parameter γ 
introduced14 in part to overcome issues resolving communities in large networks33 can be used to detect com-
munities at different scales: small γ favors partitions with a few large communities; as γ increases, one tends to 
find larger numbers of smaller communities (see also Arenas et al.34). While the descriptive nature of modular-
ity has many shortcomings compared to generative models, modularity maximization remains one of the most 
popular methods for community detection, in part because fast heuristics are readily available across computa-
tional environments. The Louvain10 algorithm is particularly widely used, while the newer Leiden11 algorithm 
promises greater improvements.

Multilayer modularity.   Mucha et  al.12 generalized modularity to (what are now known as) multilayer 
networks13 by leveraging the relationship between modularity and Laplacian dynamics35,36. Consider a set of 
T layers of n× n adjacency matrices At , 1 ≤ t ≤ T , each representing the same set of n nodes. (Different sets 
of nodes in different layers can also be handled, as demonstrated by the Senate roll call example in  Mucha 
et al.12.) The simplest multilayer cases involve a set of interlayer couplings Csr , one for each pair of distinct layers 
1 ≤ s, r ≤ T such that node j in layer s is connected to itself in layer r with weight Csr

j  . Then, the goal is to deter-
mine group membership per node-layer, i.e. the assignment gsi  of node i in layer s, by maximizing the multilayer 
modularity12 (assuming undirected layers here, though other intralayer model contributions may be selected as 
appropriate)

where ksi is the degree of node i in layer s, ms is the number of edges in layer s, and 2µ =
∑

is

(

ksi +
∑

r C
sr
i

)

 is 
twice the sum of all intralayer and interlayer edge weights. Note that in principle each layer may have a different 
“intralayer resolution parameter” with the weighting of the null model in layer s being controlled by γs , though 
in many cases in practice one simply selects γs = γ constant across layers. In the simplest settings used in Mucha 
et al.’s examples, the interlayer coupling Csr elements take values {0,ω} corresponding, respectively, to absence 
and presence of an interlayer link. This particular choice is known as uniform (interlayer) coupling37 since the 
weights of all of the present interlayer couplings are identical. Multilayer modularity extends naturally to more 
complicated settings by defining and summing appropriately over the interlayer edges.

Newman’s equivalence between modularity maximization and SBM inference.  The Stochastic 
Block Model (SBM) approach instead approaches community detection as an inference problem fitting network 
data to a generative model. Newman17 demonstrated that the objective functions for modularity maximization 
and statistical inference on SBMs become equivalent under certain conditions. Specifically, consider a degree-
corrected version of a “planted partition” SBM with expected degree sequence matching the observed sequence, 
such that node i will on average have ki neighbors, and the number of edges between nodes i and j are inde-
pendently Poisson distributed with mean kikj

2m θgigj (or half this value when i = j ), where 2m =
∑

i ki and the θαβ 
elements take two values: one shared by all diagonal entries, θin , and another shared by all off-diagonal entries, 
θout , so that all communities have the same in-group and between-group connection propensities. Neglecting 
constants that do not alter the argmax of the expression, simplification of the log-likelihood (under very specific 
constraints38) yields17

The above expression is recognizably equivalent to (1) when

In this way, this choice of γ is the “correct” value of the resolution parameter if one wishes to make modular-
ity maximization equivalent to the maximum likelihood fit of a planted partition, degree-corrected stochastic 
block model. We will often call this the “ γ estimate” or “resolution parameter estimate” of a partition. Newman17 
then gives an iterative procedure to find this correct choice of γ . First, note that the expected number of within-
community edges in this model is

where κc =
∑

i kiδ(gi , c) is the sum of the degrees of all nodes in group c. Then, we can estimate

(1)Q =
1

2m

∑

i,j

[

Aij − γ
kikj

2m

]

δ(gi , gj) ,

(2)Q =
1

2µ

∑

ijsr

[(

As
ij − γs

ksi k
s
j

2ms

)

δ(s, r)+ Csr
j δ(i, j)

]

δ

(

gsi , g
r
j

)

,

(3)ln P(A | θin, θout, g) =
∑

ij

[

Aij −
kikj

2m
·

θin − θout

ln θin − ln θout

]

δ(gi , gj) .

(4)γ =
θin − θout

ln θin − ln θout
.

min =
1

2

∑

ij

[

kikj

2m
· θin · δ(gi , gj)

]

=
θin

4m

∑

c

κ2c ,
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Thus, with an initial guess for γ , one can repeatedly maximize modularity (with the number of communities 
fixed) and compute new estimates for θin and θout . This gives a new value for γ and we repeat until convergence.

Pamfil et  al.’s generalizations for multilayer networks.   Pamfil et  al.18 generalized Newman’s17 
equivalence to several variants of multilayer networks. While many different multilayer network settings are 
possible13, Pamfil et al.’s extension focuses on three types: “temporal”, “multilevel”, and “multiplex” networks. 
Pamfil et al.18 show that multilayer modularity maximization with specific resolution and coupling parameters is 
equivalent to statistical inference on corresponding multilayer stochastic block models. Generalizing Newman’s 
strategy17, they consider the intralayer connections in layer t given by At to be drawn from a degree-corrected, 
planted-partition stochastic block model. Temporal networks are those in which each layer encodes interac-
tions during some period or instance of time. The underlying SBM model further assumes that labels are copied 
between layers with “copying probability” p. That is, the ground truth group assignment gti  of node i in layer 
t is copied from layer t − 1 with probability p and is with probability 1− p assigned randomly according to a 
uniform distribution across the K labels. Consider a partition g of the multilayer network where gti  is the group 
membership of node i in layer t. After substantial simplification, Pamfil et al. reduce ln P(g | A, θin, θout, p,K) to 
multilayer modularity (2) with

Hence, these γ and ω are the “correct” values of the intralayer resolution and interlayer coupling parameters to 
make multilayer modularity maximization equivalent to the maximum likelihood fit of the considered temporal 
network SBM. Like before, we will call the values in Equation 6 the “ γ estimate” and “ ω estimate” (together, 
“parameter estimates”) of a partition. The θin and θout are estimated in much the same way as the corresponding 
propensities in the single-layer case, with the added restriction that group memberships are considered per layer 
rather than in aggregate. The copying probability p of labels from one layer to the next is empirically estimated 
using the observed frequency with which the group membership of node i persists across layers — i.e. one esti-
mates p by calculating the probability that gt−1

i = gti  over all layers t = 2, . . . ,T and all nodes i = 1, . . . ,N . One 
can then iteratively find “correct” values for γ and ω by maximizing modularity and computing new estimates, 
repeating until convergence. We specially note that Pamfil et al. consider multiple models beyond those consid-
ered in the current implementation of our framework, including different multilayer topologies, parameters that 
vary across the multilayer network, and multilevel networks; for details, see the SI (Section B) and Pamfil et al.18.

CHAMP.   Weir et al.15 developed the Convex Hull of Admissible Partitions (CHAMP) algorithm to post-
process sets of network partitions in order to identify regions of modularity optimization. Given an input set 
of partitions, however obtained (e.g., by different methods, under different parameters, or even through non-
algorithmic means), CHAMP identifies domains of the resolution-coupling parameter space for which each 
partition has the largest (multilayer) modularity relative to the input set of partitions. In practice many partitions 
are nowhere optimal. The somewhere-optimal partitions are then referred to as the “admissible” or “CHAMP” 
subset. In particular, because of the form of multilayer modularity, the domain of optimality of each partition is 
necessarily convex in the parameter space, leading to the (convex) polygonal domains in our Figures. For more 
details, see the SI (Section C), Weir et al.15and the CHAMP package16.

ModularityPruning implementation.   The repository http://​github.​com/​ragib​son/​Modul​arity​Pruni​ng 
includes our modularitypruning Python library that implements our pruning pipeline. The library is avail-
able for installation through the Python Package Installer (pip).

Data Availability
The repository http://​github.​com/​ragib​son/​Modul​arity​Pruni​ng also includes the code and data used to generate 
the results presented here and in the Supplementary Information.
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