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Schrödinger–Poisson systems 
under gradient fields
Kamel Ourabah

A singularity-free generalisation of Newtonian gravity can be constructed (Lazar in Phys Rev 
D 102:096002, 2020) within the framework of gradient field theory. This procedure offers a 
straightforward regularisation of Newtonian gravity and remains equally well applicable to other 
fields, such as electromagnetic fields. Here, with the aim of finding potentially measurable effects of 
gradient fields on the dispersion properties of various media, we present a quantum kinetic treatment 
of matter under gradient fields. The method is based on the application of the Wigner–Moyal 
procedure to the modified Schrödinger–Poisson equation emerging in the framework of gradient field 
theory. This allows us to treat, on equal footing, three different scenarios, namely self-gravitating 
systems, plasmas, and cold atoms in magneto-optical traps. We address the signature of gradient 
fields in the elementary excitations of these media. In particular, we estimate this effect to be 
accessible in state-of-the-art plasma-based experiments. We discuss in detail the classical kinetic and 
hydrodynamic limits of our approach and obtain a class of generalised Lane–Emden equations, in the 
context of gradient field theory, which remain valid in the three scenarios discussed here.

The important role of analogies has been demonstrated by many examples in the history of science as they per-
mit ideas from different realms of science to be applied in other fields. Arguably, the most studied analogies in 
modern physics concern analogue models of gravity which attempt to model various phenomena of gravitation 
using different physical systems, such as dielectric media, (super)fluids, Bose–Einstein condensates, etc. The 
motivation for studying such formal analogies, and unveiling their origins, is that these analogues may create 
new “and sometimes unexpected” avenues for practical experiments within the analogue that can be applied 
back to the source phenomenon. The concept of a condensed-matter gravity analogue was first considered in 
a little-known paper by  Gordon1, who noticed that moving isotropic media appear to electromagnetic fields as 
certain effective space-time geometries. Since then, several other analogue systems have been studied as possible 
platforms for emulating both general  relativity2–4 and Newtonian  gravity5–7 phenomena.

Here, we wish to exploit these analogies in the context of gradient field theory. The latter presents itself as a 
promising way to regularise the (gravitational or electromagnetic) fields, resulting in a theory free of singulari-
ties. In fact, the singularities in Newtonian gravity indicate the limits of applicability of the theory; a feature 
that has motivated a growing interest in recent years for studying small-scale generalisations of (and deviations 
from) Newtonian  gravity8–10. The same is true for classical Maxwell electrodynamics, which has led to the intro-
duction of various regularisation schemes; the most known being the so-called nonlinear electrodynamics of 
 Born11 and of Born and  Infeld12. An even simpler and easy-to-use alternative is provided by the formalism of 
gradient field theory. The concept of (second) gradient Newtonian gravity was thoroughly discussed recently 
by  Lazar13, while gradient field electrodynamics has a longer history; it has been studied for first gradient fields 
(viz. Bopp–Podolsky electrodynamics)  in14–16 and for second gradient fields  in17. This procedure appears very 
promising as it allows for a straightforward regularisation of the fields. To date, however, an experimental test is 
still lacking and appears to be extremely challenging given the difficulty of probing such a small-scale  effect13. 
In light of that, it may be relevant to change perspective and seek possible imprints on the dispersion properties 
of various media. This paper attempts to explore this possibility.

More precisely, we shall consider a class of systems that can be formally described by the Schrödinger–Poisson 
(SP) equation [also known as the Schrödinger–Newton equation]. The latter results from the combination of the 
Schrödinger equation and the Poisson equation describing the self-potential. Historically speaking, the SP equa-
tion was first advocated in the context of gravitation by Diósi18 and  Penrose19 as a simple quasi-classical model 
to introduce quantum effects in gravitational problems. It describes quantum matter confined by gravitational 
fields and, as such, finds many applications in astrophysics; it describes (hypothesized) boson  stars20,21 (which 
could be a source of ‘exotic’ Laser Interferometer Gravitational-Wave Observatory (LIGO)  detections22) and it is 
a central ingredient of scalar field dark matter  models23–26. Interestingly, the same equation applies equally well to 
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a variety of other systems, such as quantum  plasmas27–29 and atomic gases in magneto-optical traps (MOTs)30–32. 
A bridge with Bose–Einstein condensates can also be  established33–35 (see  also36 for a more general discussion). 
These similarities may inspire future laboratory experiments using gravity analogs.

Here, we are interested in the gradient field extension of the SP equation. By applying the so-called 
Wigner–Moyal37,38 procedure, we develop a kinetic treatment of the SP equation under gradient fields. Such a 
treatment allows studying the collective behavior of systems of N self-interacting quantum particles, where the 
self-interaction formally obeys the Poisson equation. It covers gravitational  systems23–26, quantum  plasmas27–29,39, 
and cold atoms in  MOTs30–32. This allows us to reveal the “fingerprints” of gradient fields in the dispersion 
properties of these media and the corresponding elementary excitations, i.e., Jeans oscillations/instability in the 
case of a self-gravitating system (SGS), electron states or plasmons in the case of a quantum plasma, and hybrid 
oscillations in the case of MOTs. We estimate this effect to be accessible in present plasma-based experiments.

The paper progresses in the following fashion. For completeness, we lay out in “Gradient fields and Poisson-
like equations” the theoretical background of gradient field theory and present the resulting Poisson equation. 
In “Schrödinger–Poisson systems for gradient fields”, we derive and discuss the corresponding SP equation. In 
“Quantum kinetic approach”, we present the quantum kinetic treatment of the SP equation and analyze the cor-
responding dispersion relations. In  “Classical limit: the Vlasov–Poisson regime”, we analyze in more depth the 
classical kinetic limit of this approach, i.e., the Vlasov regime. In “Hydrodynamics and generalised Lane–Emden 
equations”, we present the hydrodynamic limit of this model and obtain a class of generalized Lane–Emden 
equations that remain valid in the three scenarios discussed here. We present our conclusions in “Conclusion 
and outlook”. For simplicity, we restrict the discussion in the main text to first gradient fields, involving a single 
internal length scale parameter. Second gradient fields (involving two internal length scale parameters) can be 
studied following similar lines of reasoning, at the cost of a more complex formalism, and will be discussed in 
the supplementary material.

Gradient fields and Poisson-like equations
We provide in this section the field-theoretical framework of (second) gradient modification of Newtonian gravity 
and Maxwell classical electrodynamics (more details may be found in Refs.13,17). We also discuss a bridge that 
can be established with atomic gases in MOTs.

The Lagrangian density for second gradient modification of Newtonian gravity reads  as13

where � , g , and ρ denote, respectively, the gravitational potential, the gravitational field strength vector, and the 
mass density, while ∇ denotes the del operator. In Eq. (1), we have the notations g · g = gigi , ∇g : ∇g = ∂jgi∂jgi , 
and ∇∇g

...∇∇g = ∂k∂jgi∂k∂jgi . The parameters ℓ1 and ℓ2 are two internal characteristic length scale parameters, 
whose values might be determined experimentally. From the Lagrangian density (1), the Euler–Lagrange equa-
tion follows as

The latter produces a modified Poisson equation for the gravitational potential � that reads  as13

with

where m is the mass, n(r) is the number density and � denotes the Laplacian. Similarly, in the case of second 
gradient electrodynamics, one arrives at the following generalized Poisson equation for the scalar potential φ17

where Q and ε0 denote, respectively, the electric charge and the permittivity of vacuum, and

with

being the d’Alembertian. We will restrict ourselves here to the non-relativistic regime which can be formally 
obtained by setting c → ∞ . In this case, Eq. (5) reduces to
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The modified Poisson equations (3) and (8) can be used, respectively, to describe a system of particles con-
fined by gravitational forces or a plasma where the species interact via electrostatic interactions. Other scenarios, 
formally obeying the same class of equations, can also be considered in relation with cold atom physics. In fact, 
in the case of an atomic cloud confined and cooled in a MOT, two main forces emerge, which formally obey a 
Poisson-like equation; hence the regularization scheme provided by gradient field theory applies in this case as 
well. First, one has the absorption force FA , associated with the gradient of the incident laser intensity due to laser 
absorption by the atomic cloud. It is an attractive force which can be determined by a Poisson type of equation  as40

where σL , I0 and c denote, respectively, the laser absorption cross section, the intensity of laser beams, and the 
speed of light. In addition to the absorption force FA , one has the radiation trapping force FR , describing atomic 
repulsion due to the radiation pressure of scattered photons on nearby atoms, given  by41

where σR is the atom scattering cross section. Combining Eqs. (9) and (10), one arrives at the equation describing 
the collective force Fc = FA + FR ≡ −∇Vc or, equivalently, the associated potential Vc , as follows

with Q playing the role of an effective charge (as first noticed  in30). In typical experimental conditions, one 
 has30,42 σR > σL , and the effective charge Q is positive. The system then behaves as a plasma as one can define a 
typical frequency

(n0 being the unperturbed density), which is a straightforward generalization of the electron plasma frequency. 
For σR < σL,which may occur ina quasi 1D  configuration5, the effective charge Q becomes negative and the 
typical frequency becomes imaginary, indicating an unstable mode; the system then behaves as a self-gravitating 
medium. Hence, atomic clouds trapped in MOTs can be regarded as an intermediate case between the two 
scenarios and can mimic the dispersion properties of both media, as detailed next. This offers new avenues for 
probing gravitational models in condensed-matter analog systems.

In what follows, we will show how a generic Schrödinger–Poisson equation can be constructed for gradient 
fields and used to unveil the signature of internal length scale parameters on the elementary excitations taking 
place in these media. For simplicity, we restrict ourselves in the main text to first gradient theory, that is for 
ℓ42 → 0 , in which case Eq. (4) reduces to

involving a single length scale parameter ℓ1 ≡ ℓ . This is a good approximation of second gradient  theory13 and 
appears as well as a limit of non-local theories of exponential  type13,43,44, where one has

The case of second gradient theory, involving two characteristic length scale parameters, can be studied fol-
lowing the same lines of reasoning and will be discussed in the supplementary material..

Schrödinger–Poisson systems for gradient fields
The SP equation results from the coupling of the Schrödinger equation, for a quantum particle in the non-
relativistic regime, and the Poisson equation describing the self-gravitating potential � . That is,

where n ≡ |ψ |2 is the (number) density. The two equations in (15) can be combined in a single integro-differential 
equation as follows

By considering the (first) gradient modification of the Poisson equation (3), combined to the Schrödinger 
equation, one obtains (see supplementary material. the following integro-differential equation
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The latter is an extension of the SP equation (16) to first gradient theory. We note in passing that the SP equa-
tion has interesting fundamental implications on the interpretation of quantum mechanics (see for  instance18,19) 
as it describes how gravitation introduces a kind of wavefunction collapse; hence the modified SP equation (17) 
may shed new lights on the effect of an intrinsic length scale on that process. We avoid this digression here and 
follow a more pragmatic route. Rather, we are interested in the formal analogy that can be drawn by this equa-
tion between different media exhibiting similar excitations. By considering the two other systems discussed in 
“Gradient fields and Poisson-like equations”, one may write the following generic equation

where V0 accounts for the possible presence of a background potential. Equation (18) covers the three scenarios 
discussed here: In the case of (i) a self-gravitating medium, one has g ≡ −Gm2/4πℓ2 while the background 
potential V0 can be safely ignored by invoking the so-called ‘Jeans swindle’45; for (ii) electrons in a quantum 
plasma, one has g ≡ e2/16π2ε0ℓ

2 and L(�)�V0 = −e2n0/ε0 accounts for the ionic background potential; and 
(iii) for an atomic cloud trapped in a MOT, one has g ≡ Q/16π2ℓ2 and L(�)�V0 = −Qn0 , where n0 is the 
equilibrium density imposed by some unspecified confinement force. Equation (18) enables us to study, in a 
very general context, the effect of a gradient field in the collective processes taking place in these media, namely 
Jeans oscillations/instability in the case of a SGS, electron states in a quantum plasma and hybrid-phonon modes 
in MOTs, as discussed in the next section.

Quantum kinetic approach
In order to apply the (modified) SP equation to a system of N self-interacting particles, one has to construct 
transport equations. There are two possibilities for doing so: the hydrodynamic and the kinetic approaches (see 
for  instance46,47 for a general discussion). In the hydrodynamic approach, one uses the so-called Madelung trans-
formation to transform the SP equation into a set of hydrodynamic equations while in the kinetic representation, 
one relies on the use of Wigner functions to represent quantum states in a classical phase space. Those are the 
quantum analogs of the hydrodynamic and kinetic approaches to classical systems of N self-interacting particles. 
We follow here a kinetic treatment while we discuss the hydrodynamic formulation in “Hydrodynamics and 
generalised Lane–Emden equations”.

A kinetic approach, similar to the one provided by the Boltzmann equation, is possible in the quantum regime, 
by relying on the Wigner function, which allows representing quantum systems in a classical phase space. The 
Wigner function can be defined as

It is simply the Fourier transform of the autocorrelation function corresponding to the wave function ψ . It 
should be noted that the Wigner function is not a bona fide distribution, since it can take negative values, and 
should be rather regarded as a quasi-distribution. It is nonetheless a very useful mathematical tool, especially well 
suited for understanding the quantum/classical  transition48,49 and collective phenomena in a variety of quantum 
 systems35,36,50,51. The Wigner function (19) is normalized here such that

To apply the Wigner approach to the SP equation in the context of gradient fields, instead of the integro-
differential equation (18), it is more convenient to work with the coupled system composed of the Schrödinger 
equation and the (modified) Poisson equation. By applying the so-called Wigner–Moyal37,38 procedure, the system 
reduces to (see for  instance52 for detailed calculations)

where the sine operator is defined in terms of its Taylor expansion and the arrows indicate the sense according 
to which the operators act. Above, V stands for the (generic) potential energy term, that is (1) V ≡ m� for a 
self-gravitating system, (2) V ≡ −eφ for electrons in a plasma, and (3) V ≡ Vc (viz. Eq. (11)) for MOTs. Besides, 
we have defined (i) G = 4πGm2 and A = 0 for a self-gravitating medium, (ii) G ≡ −e2/ε0 and A = e2n0/ε0 
for electrons in a quantum plasma, and (iii) G ≡ −Q and A = Qn0 for atomic clouds in MOTs. We restrict 
ourselves here to the linear regime and follow the standard approach to derive the dispersion relations (see for 
 instance52,53 for technical details); we introduce small perturbations around the stationary and spatially homo-
geneous equilibrium, given by the equilibrium distribution W0(p) and a constant background potential V0 , and 
express the perturbations in Fourier modes with frequency ω and wave vector k . That is,
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with |W̃ | ≪ |W0| . By linearizing Eq. (21), we obtain (In the case of a self-gravitating medium, this procedure 
is supplemented by invoking the so-called “Jeans swindle”, i.e., by considering that the gravitational potential 
is sourced only by the density perturbations and not by the density background n0 (see for  instance45 for more 
details).)

where G0(p) is the projected (marginal) distribution along the axis parallel to the wave-vector k . That is,

where p and p⊥ stand for the parallel and perpendicular components of the momentum respectively, i.e.,

Upon observing that

Equation (23) simplifies to the following integral dispersion relation

where G±
0 ≡ G0(p± �k/2) . Equation (27) is a generic dispersion relation that remains valid for first gradient 

fields in the three scenarios discussed above and for arbitrary equilibrium distributions G0(p) . One may check 
that, in the limit ℓ → 0 , it reduces to the standard dispersion relation (see for  instance47 for plasma oscillations 
 and51 for gravitational systems). It is interesting to study the zero-temperature limit, in which case there is no 
dispersion in the momentum (velocity) space and the distribution G0(p) shrinks to a Dirac delta. That is,

In this case, after simple algebraic manipulations, the generic dispersion relation (27) reduces to

In the case of a SGS ( G = 4πGm2 ), it reads as

where �J ≡
√
4πGρ0  is the so-called Jeans frequency. In the case of electrons in a quantum plasma 

( G ≡ −e2/ε0 ), one has

where �p ≡
√

e2n0/mε0 is the electron plasma frequency. In the case of cold atomic gases in MOTs, the same 
equation holds for Q > 0 with a characteristic frequency �0 ≡

√
Q/m , while for Q < 0 , one has formally Eq. 

(30), with �2
J → Qn0/m . In this sense, MOTs can be regarded as an intermediate case between SGSs and plasmas, 

regarding their dispersion properties.
The above dispersion relations can be written in a dimensionless form as

where W ≡ ω/�0 ( �0 being the characteristic frequency of the medium), K ≡ �k , and L ≡ ℓ/� , with 
� ≡

√
�/2m�0 . In Eq. (32), the (+) sign corresponds to plasmas and MOTs for Q > 0 while the (−) sign cor-

responds to SGSs and MOTs with Q < 0 . The generic dispersion relation (32) is depicted in Fig. 1, showing the 
effect of gradient fields in the dispersion properties of these three media.

The dispersion relation for a SGS is worthy of a closer examination. In fact, because of the (−) sign in front of 
the first term in Eq. (30) (or Eq. 32), the frequency ω may become imaginary for small wave-numbers k, leading 
to unstable modes, i.e., Jeans instability. More precisely, there is a critical wave-number, or equivalently a critical 
wavelength, such that for perturbations with wavelengths smaller than this critical wavelength, ω is real and the 
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perturbations correspond to sound modes, i.e., ∼ exp iωt , whereas for perturbations with wavelengths larger 
than the critical wavelength, ω becomes imaginary ( ω = iγ ), producing two modes ∼ exp±γ t , one of them 
growing with time yielding a gravitational collapse.

In the absence of an intrinsic length scale parameter ( ℓ = 0 ), Eq. (30) simply translates the fact that quantum 
pressure forces (proportional to �2 ) act against gravity, saturating the instability for large wave-numbers. In this 
case, the critical wave-number, delimiting between stable and unstable modes, follows as

For ℓ  = 0 , one obtains, by setting ω2 = 0 in Eq. (30), the critical wave-number k∗ . In a dimensionless form, 
one has

where

Figure 2 shows the (dimensionless) wave-number (34) as a function of the dimensionless internal length 
scale parameter L . It shows that, in gradient gravity, SGSs remain stable for smaller (larger) wave-numbers 
(wavelengths); a feature that may be attributed to the regularisation, introduced by gradient gravity, on the 
gravitational interactions at small length scales.

It may be interesting to compare the dispersion relations produced by gradient fields with the case of a pure 
Yukawa potential,

which has been used to promote alternative theories of  gravitation54 and occurs naturally in plasma  physics55,56. 
In this case, the zero-temperature dispersion relation reads as  (see57 for the special case of a SGS)

with L ≡ �/� . In the case of a SGS, Yukawa-type gravity implies stability for larger wavelengths perturbations. 
More precisely, the (dimensionless) critical wave-number reads in this case as
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Figure 1.  Dimensionless dispersion relations (32), covering the three scenarios of SGSs, plasmas, and MOTs. 
Solid lines correspond to L = 0 while dashed lines represent L = 0.2
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which reduces to unity in the limit L → ∞ . The main difference between Eqs. (37) and (32) is that the effect 
of the Yukawa potential appears in the long wavelength limit while the effect of gradient fields is dominant for 
short wavelengths.

A natural question is whether the deviations produced by gradient fields in the dispersion relations can be 
measured experimentally. From the generic dispersion relation (32), it is clear that such a deviation is significant 
only if the characteristic length of the medium � is of the same order of magnitude as ℓ . In the case of a SGS, this 
condition is hardly conceivable since the characteristic length (essentially the Jeans length) takes astronomical 
values. In the two other media discussed here, however, the characteristic length � can be in the micrometer–mil-
limetre range and a measurable effect with today spectroscopic methods is perfectly conceivable, especially in 
plasma-based experiments. In fact, in plasma-based experiments, one relies on the use of inelastic light scattering 
(ILS), which proved to be a powerful method for the investigation of collective excitations of a plasma, because 
it enables measuring energy and wave-vector dispersion of the  excitations58. Such measurements have been pio-
neered by Egeler et al.59 and Goñi et al.60 who measured plasmon dispersion in GaAs quantum wire structures, 
using resonant ILS techniques. In our case, for such a technique to unveil a deviation from the usual dispersion 
relation, due to gradient fields, the characteristic length of the medium � (the Debye length for a plasma) has to 
be of the same order of magnitude as ℓ , which requires extremely dense plasma conditions. Given the impressive 
development in the field of short pulse petawatt laser technology, such plasma conditions can be achieved by 
intense laser pulse compression using powerful X-ray  pulses61,62. In fact, recently, spectrally resolved X-ray scat-
tering measurements have been performed in dense plasmas, enabling for accurate measurements of plasmons 
in the dense matter  regime63. To give a numerical estimate, for a typical discharge plasma, one has n0 ∼ 109

–1010 cm−3 and the characteristic length is of the order of the micrometer. For Tokamak ( n0 ∼ 1014 cm−3 ), 
we estimate � ∼ 10−7 m, while for a solid-state plasma ( n0 ∼ 1018 cm−3 ), we estimate � ∼ 10−9 m. Hence, a 
modification in the fields, at this scale, is potentially detectable in today plasma-based experiments. This is also 
potentially feasible in the case of MOTs for Q > 0 . The experimental realisation of MOTs with Q < 0 , however, 
remains a new field but experiments in a quasi 1D configuration with a pancake geometry, as discussed  in5, are 
expected to be realised in the near future, and may open up new prospects for future laboratory experiments.

Before closing this section, it should be recalled that the results presented so far correspond to the zero-
temperature limit, i.e., to a Dirac delta distribution (viz. Eq. (28)). To address finite-temperature effects, we 
assume an even distribution G0(p) , which is characteristic for equilibrium and nearly equilibrium situations, and 
consider small quantum effects ( �k/2 ≪ p ). In this case, one can Taylor expand the functions W±

0  and writes the 
integral in the dispersion relation (29) as

We consider the limit of long wavelengths ( p ≫ mω/k ), so that the singularity in the denominator is avoided. 
By performing a Taylor expansion of (p−mω/k)−1 and keeping only terms with small values of k (long wave-
length), one obtains the following dispersion relation

The latter generalises Eq. (29) and remains valid as long as quantum effects are small. It shows that, in addition 
to quantum effects, thermal effects also induce a dispersion term. In the case of a SGS, this dispersion term acts, 
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together with quantum pressure effects, to saturate the gravitational instability. Note that for a Maxwell–Boltz-
mann distribution (see next section), one has �p2�/m2 = kBT/m while for a Fermi–Dirac distribution, one has 
(in the fully degenerate case) �p2�/m2 = kBTF/5m , where TF is the Fermi temperature.

Classical limit: the Vlasov–Poisson regime
It is worth studying in more depth the classical limit of the Wigner kinetic approach. In this limit, the system of 
equations (21) reduces to a (modified) Vlasov–Poisson system, describing the evolution of the classical phase 
space distribution f (r, v; t) under the generic potential V. That is

where we have preferred working with the velocity v instead of the momentum p = mv . Following the same 
lines of reasoning presented in the previous section, i.e., linearising the set of equations (41) and performing a 
Fourier transform, we arrive at the following generic dispersion relation

where f0(v) is the equilibrium distribution function. Eq. (42) is the classical counterpart of the dispersion rela-
tion (27), and can be recovered from it by taking the formal limit � → 0.

It should be noted that, because of the singularity in the denominator, the integral in Eq. (42) is notoriously 
challenging. This singularity induces an imaginary contribution to the frequency ω which can be addressed 
by making the analytic continuation of the integral over v, along the real axis, which passes under the pole at 
v = ω/k . In the long wavelength limit ( v ≪ ω/k ) however, the singularity is avoided. By Taylor expanding 
(v − ω/k)−1 , one obtains the following (dimensionless) dispersion relation

where K ≡ �k and L ≡ ℓ/� , with � ≡
√

�v2�/�2 (the latter corresponds to the Debye length in the case of a 
plasma and to the Jeans length in the case of a SGS). Equation (43) is the classical finite-temperature analogue 
of the quantum dispersion relation (32). As in its quantum counterpart, the (+) sign refers to plasmas while the 
(−) sign refers to SGSs. Cold atoms in MOTs have to be discarded here as, in this case, quantum effects always 
dominate over thermal effects.

In the case of a plasma, Eq. (43) represents a gradient field generalisation of the Bohm–Gross dispersion 
 relation64 for electron oscillations in a classical plasma, valid in the long wavelength limit. In general, the sin-
gularity in Eq. (42) induces an imaginary contribution to the frequency ω , responsible for the phenomenon of 
Landau damping. One can however easily check that the internal length ℓ does not affect this process. In fact, by 
noting the dispersion relation (42) as D(k,ω) = 0 where D(k,ω) is known as the dielectric function, the real and 
imaginary parts of the dispersion relation (42) read, respectively, as

where PV
∫

 denotes the Cauchy principal value. Assuming that the imaginary part of the frequency γ is small 
as compared to the real part ωr , one  has65

The effect induced by the internal length ℓ appears only in the real part of the dispersion relation, thus it does not 
affect the process of Landau damping. This can be easily explained on physical grounds; in fact, Landau damping 
is a purely kinetic (rather that a dynamical) effect, and is ultimately produced by the shape of the distribution 
function f0(v) . For a single humped distribution (viz., the Gardner theorem), there are more particles having 
velocities slightly less than the phase velocity ω/k , hence gaining energy from the wave, than particles having 
velocities slightly greater, hence losing energy to the wave. This asymmetry is the origin of Landau damping.

The case of a SGS deserves further investigation because, in this case, one has unstable modes associated with 
Jeans instability. By setting W2 = 0 in Eq. (43), one may obtain the critical wave-number k∗ , separating between 
stable and unstable modes. In a dimensionless form, one has

where
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is the standard Jeans number and σ 2 ≡ �v2� . From the critical wave-number (46), one may define the cor-
responding critical wavelength �∗ ≡ 2π/k∗ and critical mass, i.e., the mass initially contained in a sphere of 
diameter �∗ , as

where

is the standard Jeans mass. Figure 3 shows the critical mass M∗ as a function of the dimensionless internal length 
L . One may observe that the presence of the internal length tends to saturate the instability, preventing the 
gravitational collapse to occur for masses larger than MJ.

In addition to the threshold wave-number k∗ , separating between stable and unstable modes, the presence of 
the internal length ℓ also affects the growth rate of the instability. To see that, we assume a Maxwell–Boltzmann 
distribution

in which case, the dispersion relation (42) becomes

where we have assumed, without loss of generality, the x axis to be along the direction of the wave vector k and 
have denoted u ≡ vx . Equation (51) can be expressed in a dimensionless form as

where

with β := ω/kσ and x := u/σ . As we are concerned with unstable modes, we set ω = iγ and R[ω] = 0 . Upon 
using the  identity66
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Figure 3.  The dimensionless critical mass (48) versus the dimensionless characteristic length L.
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where

is the Gauss error function, we may rewrite the dispersion relation (52) in the following form

where Ŵ := γ /�J is the dimensionless growth rate of the instability. We have solved numerically Eq. (56). As 
shown in Fig. 4, the presence of the internal length scale ℓ reduces also the growth rate of the instability.

Hydrodynamics and generalised Lane–Emden equations
In addition to the kinetic approach, discussed above, the other route for studying collective phenomena consists 
in the hydrodynamic approach. Although the latter is less accurate than the former, it may be easier to implement 
in numerical simulations and has the advantage of making more explicit the interplay between the (gravitational 
or electrostatic) interactions and pressure forces. In the classical context, the set of hydrodynamic equations can 
be obtained by taking the moments of the Vlasov equation (viz. the first equation in Eq. (41)). The equations 
governing the evolution of the zeroth order (i.e., the density n(r) ) and first order (i.e., the velocity field u(r) ) 
moments, follow from the Vlasov equation as

where V is a generic potential. The first equation in (57) is the continuity equation while the second one is the 
Euler (momentum balance) equation. In hydrostatic equilibrium, the interactions are counterbalanced by the 
pressure force, that is

Assuming a polytropic equation of state, one may derive, from the condition of hydrostatic equilibrium (63) 
and the Poisson equation, the Lane–Emden equation, allowing to study self-gravitating  spheres67. Likewise, a 
Lande–Emden equation can also be formally derived for other media, such as plasmas, MOTs, and Bose-Einstein 
 condensates68–70. In this section, we derive a generalised Lane–Emden equation, in the presence of gradient fields, 
that remains valid for SGSs, plasmas, and MOTs. We assume a polytropic equation of state
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where Cγ = P0/n
γ
0  is a constant depending on the conditions of the thermodynamic transformation, and P0 

and n0 represent, respectively, the pressure and the density at the centre of the cloud. The polytropic exponent γ 
is related to the polytropic index α through

We assume spherical symmetry and express the density as n(r) ≡ n0θ(r)
α . By inserting the polytropic equa-

tion of state (59) in Eq. (63) and making use of the generalised Poisson equation, we obtain the following gen-
eralisation of the Lane–Emden equation

where we have defined the dimensionless variable ξ ≡ r/� , and L ≡ ℓ/� , with the characteristic length defined 
as

We recall that we have (1) G = 4πGm2 for a SGS, (2) G ≡ −e2/ε0 for electrons in a quantum plasma, and 
(3) G ≡ −Q for atomic clouds in MOTs. Equation (61) is a generalisation of the Lane–Emden equation in 
the presence of gradient fields, and remains valid in the three physical scenarios discussed here, namely, SGSs, 
plasmas, and MOTs. In the absence of an internal length scale parameter, L = 0 , it reduces to the standard 
Lane–Emden  equation67.

A word of caution on the applicability of Eq. (61) to draw physically meaningful conclusions is however in 
order here. It should be noted that the standard Lane–Emden equation is a differential equation of second order. 
Physically relevant solutions are those satisfying θ(0) = 1 and θ ′(0) = 067, which amounts to fix the density at 
the centre of the cloud to n0 , as an extremum (typically, a peak density). Finding physically relevant solutions to 
the higher-order generalised Lane–Emder equation (61) requires extra-information on the boundary conditions. 
In typical situations, the density is maximum at the centre, which amounts to impose θ(0)′′ < 0 . Figure 5 shows 
examples of numerical solutions of Eq. (61) for two polytropic indices, namely α = 0 and α = 5 , and different 
conditions on θ ′′(0) , together with the analytic solution of the standard Lane-Emden equation, which is analyti-
cally solvable for these polytropic indices.

It should be also noted that equation (61) has been derived here in the classical regime. Quantum effects 
can nonetheless be incorporated in the generalised Lane–Emden equation (61) by accounting for the quantum 
pressure force in the condition of hydrostatic equilibrium (63). That is,
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The effect produced by the quantum pressure force is however negligibly small and can be safely neglected. 
Likewise, in the presence of an external potential, for example a trapping potential in the case of MOTs, the latter 
has to be accounted for in the condition of hydrostatic equilibrium, and will contribute through an extra term 
in the generalised Lane–Emden equation (61) (see for  instance68).

Conclusion and outlook
We have addressed, in this paper, the imprints of gradient field theory—a procedure allowing for a straightfor-
ward regularisation of the  fields13–17—in the dispersion properties of various media. To put the discussion on 
very general grounds, we considered the general scenario of systems obeying the Schrödinger–Poisson equation 
and relied on the Wigner–Moyal kinetic approach. This allowed us to treat, on equal footing, three physical 
situations, namely, self-gravitating systems, plasmas, and ultra-cold atomic gases in magneto-optical traps. We 
addressed the signature of gradient fields in the elementary excitations taking place in these media, namely Jeans 
oscillations/instability, electron states or plasmons, and hybrid-phonon modes. This opens new opportunities to 
experimentally test gradient fields, especially in plasma-based experiments where we have estimated this effect 
to be accessible in state-of-the-art laboratory experiments. We have discussed in more detail the classical kinetic 
and hydrodynamic limits of our approach and derived a class of generalised Lane–Emden equation that remain 
valid in these three scenarios.

This work may open up new prospects for future research, both at the experimental and the theoretical lev-
els. At the experimental level, it may inspire future laboratory experiments to test gradient fields through their 
effects on elementary excitations. At the theoretical level, several generalisations of our approach seem worthy 
of further investigation. First, it may be interesting to go beyond the linear regime, discussed here, and seek the 
signature of gradient fields in the dynamics of nonlinear structures taking place in these media, such as solitons, 
shock waves, voids, etc. This may open up new possibilities for laboratory tests with, potentially, a higher degree 
of precision. Second, it may be interesting to generalise our approach to the relativistic domain. For spinless 
particles, the Schrödinger equation has to be replaced by the Klein–Gordon equation, and the relativistic ana-
logue of Eq. (18) reads as

The latter can equally well be treated using the Wigner–Moyal approach (see for  instance71), which enables 
studying the effect of gradient fields on the dispersion properties of relativistic quantum systems. This may be 
relevant for self-gravitating systems and plasmas. The case of cold atoms in magneto-optical traps, however, has 
to be discarded since it always belongs to the non-relativistic domain.
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information files.
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