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Conductivity and size quantization 
effects in semiconductor δ‑layer 
systems
Juan P. Mendez* & Denis Mamaluy*

We present an open‑system quantum‑mechanical 3D real‑space study of the conduction band 
structure and conductive properties of two semiconductor systems, interesting for their beyond‑
Moore and quantum computing applications: phosphorus δ‑layers and P δ‑layer tunnel junctions in 
silicon. In order to evaluate size quantization effects on the conductivity, we consider two principal 
cases: nanoscale finite‑width structures, used in transistors, and infinitely‑wide structures, electrical 
properties of which are typically known experimentally. For devices widths W < 10 nm, quantization 
effects are strong and it is shown that the number of propagating modes determines not only the 
conductivity, but the distinctive spatial distribution of the current‑carrying electron states. For 
W > 10 nm, the quantization effects practically vanish and the conductivity tends to the infinitely‑
wide device values. For tunnel junctions, two distinct conductivity regimes are predicted due to the 
strong conduction band quantization.

Highly conductive δ-layer systems, i.e. thin, high-density layers of dopants in semiconductors are actively used as 
a platform for exploration of the future quantum and classical computing when patterned in plane with atomic 
 precision1–3. Such structures, with the dopant densities above to the solid solubility  limit4, have been shown to 
possess very high current  densities3,5 and thus have a strong potential for quantum computing  applications6,7 and 
advanced microelectronic  devices8,9. However, at the scale important for these  applications10, i.e. devices with 
sub-20 nm physical gate/channel lengths and/or sub-20 nm widths, that could compete with the future CMOS, 
the conductive properties of such systems are expected to exhibit a strong influence of size quantization effects. 
At the same time, experimental assessment of the conductivity of δ-layer systems is typically performed using 
Hall measurements on samples of macroscopic dimensions ( > 1 µm)5,11–13.

The electronic structure and conductive properties of Si:P δ-layer systems have been a subject of previous stud-
ies based on either effective  mass14–17, tight-binding18–22, density functional  theory23–25 formalisms or semiclassical 
Boltzmann  theory26. Recently it has been demonstrated  in15–17 that to accurately extract the conductive proper-
ties of highly-conductive, highly-confined systems, an open-system quantum-mechanical analysis is necessary. 
Such open-system treatment, that can be conducted for instance using the Non-Equilibrium Green’s Function 
(NEGF)  formalism27,28, allows to compute the current and conductivity directly from the quantum-mechanical 
flux, thus avoiding semi-classical approximations, which are intrinsic to the traditional charge self-consistent 
closed-system or periodic boundary conditions band-structure calculation methods. It has been also demon-
strated  in16 that an open-system treatment in highly P doped δ-layer in Si: i) permits to reveal the quantization 
in space and energy of the free electrons around the δ-layer; ii) permits to explain the existence of the shallow 
3 Ŵ sub-band, which has been observed  experimentally29, without any fitting parameters; iii) predicts significant 
quantum-mechanical dependence of the current on the δ-layer sheet thickness for a fixed dopant sheet density; 
and iv) provides a very good agreement with the experimental electrical  measurements5,11–13.

An accurate computational description of electron tunneling in semiconductor δ-layer tunnel junctions (such 
the one shown in Fig. 1) is additionally required because the tunneling rate at a δ-layer junction is affected not 
only by the gap length and the conductivity of the δ-layers, but also by quantization of the conduction electrons 
in energy and  space16. In this work we employ an efficient computational open-system quantum-mechanical 
treatment to explore the conductive band structure and the conductive properties of phosphorus δ-layer systems 
in silicon (Si:P δ-layer) for device widths, from nano-scale ( < 20 nm) to macro-scale ( > 1 µ m) dimensions, and 
to analyze the influence of size quantization effects on the conductive properties for sub-12 nm device widths. All 
simulations are carried at the cryogenic temperature of 4K, in which we can neglect inelastic scattering  events5,30. 
The analysis of the influence of different kinds of non-idealities on the tunneling current is presented  in31. The 
open-system treatment is based on an application of Keldysh  formalism27, known as  NEGF28, and the effective 
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mass theory. Generally for Si systems, the use of the effective mass approximation has been shown to be in a good 
agreement with tight-binding models for nanowire diameters down to 3  nm32,33; thus, the fidelity of this approxi-
mation start to decline for very narrow systems ( < 3 nm). Here we have employed an efficient implementation 
of NEGF, refereed to as the Contact Block Reduction (CBR)  method34–38, which allows accurate computation 
of all quantum-mechanical quantities of interest (local density of states, transmission probability, current) and 
scales linearly O(N) with the system size. We find that at the scale most interesting for applications, i.e. for device 
widths W < 10 nm, quantization effects strongly affect both the conductivity and the spatial distribution of the 
current-carrying electron states, which, similarly to the charge distribution in the hydrogen atom, is determined 
by a “quantum number”, i.e. the number of propagating modes. This strong spacial quantization of the current-
carrying states can be utilized in novel electronic δ-layer devices. Conversely, for W > 10 nm, the quantization 
effects practically vanish and the conductivity tend to the values of infinitely-wide devices. Finally, two distinct 
conductivity regimes are predicted due to the strong conduction band quantization for tunnel junctions.

Results and discussion
Effects of the device width on the conductive properties. The conductivity of infinitely-wide Si:P 
δ-layers has been first studied  in15–17 using the open-system quantum-mechanical approach for infinite-width 
systems (see “From finite-width to infinite-width systems”). Here we apply the open-system treatment to more 
realistic/utilitarian devices of finite width and/or with an intrinsic or lightly-doped tunnel gap as shown in 
Fig. 1. The device consists of a semi-infinite source and drain (represented by the NEGF open boundary con-
ditions), in contact with a channel of length L, which is composed of a lightly doped Si body and Si cap and a 
very thin, highly P doped-layer with an intrinsic gap of length Lgap , as shown in Fig. 1. In this work we consider 
tunnel junction devices with an intrinsic gap of length Lgap , ranging from 0 nm to 12 nm, and width W, rang-
ing from 2 nm to infinity, paying a particular attention to nano-scale dimensions ( W , Lgap < 12 nm) which are 
most interesting for quantum and beyond-CMOS computing applications. The length of the channel is assumed 
to be L = 30 nm+ Lgap to avoid the boundary effects, between the source and drain contacts, and the height 
of the device is chosen to be H = 12 nm. We also assume δ-layer thicknesses raging from monoatomic layer, 
t = 0.2 nm, to few atomic layers, t = 1.0 nm, a doping density of the δ-layer of ND = 1.0× 1014 cm−2 and an 
acceptor doping densities in the Si cap and Si body of NA = 5.0× 1017  cm−3 . Note that the doping density 
in the δ-layer is given in cm−2 (i.e. sheet doping density) to be consistent with experiments’ nomenclature: 
N

(2D)
D = t × N

(3D)
D  , where t is the δ-layer thickness, N (3D)

D  is the doping density in cm−3 and N (2D)
D  in cm−2.

Figure 2 shows the computed conductivity in function of the device width W and for different gap lengths Lgap . 
The dashed lines represent the conductivity values for infinitely wide devices, W → ∞ . Details of the computa-
tional treatment for infinitely-wide systems are presented in “From finite-width to infinite-width systems”. The 
simulations suggest that quantization due to the finite size of the device width starts to appear for widths below 
to 7-10 nm. This size quantization is reflected as non-monotonic increase of the conductivity. Interestingly, there 
is a peak in the conductivity at W = 5 nm and a dip at W = 3 nm. Conversely, as W increases, the conductivity 
tends to the values for infinitely wide devices that therefore can be seen as lower bound limits. Additionally, 
the size quantization effect on the conductivity of δ-layer tunnel structures is most notable for large tunnel gaps 
Lgap > 7 nm. Indeed, in Fig. 2, one can see that the deviation from the conductivity values for infinitely wide 
devices is more significant for large tunnel gaps. As we will discussed later in “Quantization effects in δ-layer 
tunnel junctions”, this is due to the consequence of the quantization of the low-energy conduction band in δ-layer 
systems and the wave-functions decoupling between the left and right δ-layers in large tunnel gaps.

The oscillations of the conductivity for narrow device widths W arise due to a small number of the propa-
gating modes in a “waveguide”, created by the finite-size width of the δ-layer. The corresponding dependence 
of the current on the device width is shown in Fig. 3a for a gapless δ-layer structure Lgap = 0 . The existence of 
the conduction steps due to each new propagating mode is well known experimentally since 1980’s39. Here we 
show, however, that in highly-confined, highly-conductive δ-layer systems, the quantum number m, represent-
ing the number of propagating modes, determines not just the total current, but also the spatial distribution of 
the corresponding current-carrying electrons. The total number of propagating modes m is determined by the 
number of peaks in the density of states (DOS) below the Fermi level or the number of steps in the electronic 
transmission function below the Fermi level.

Figure 1.  Geometry of the Si:P δ-layer tunnel junction. Our device consists of a semi-infinite source and drain, 
in contact with the engineering channel. The channel is composed of a lightly doped Si body and Si cap and a 
very thin, highly P doped-layer with an intrinsic gap of length Lgap.
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The spatial distribution of the current-carrying electron states, ncurr.−carr.(y, z) , can be obtained by performing 
the energy integration of the local density of electron states (LDOS) weighted by the corresponding current spec-
trum ie(E) as: ncurr.−carr.(y, z) =

∫

LDOS(y, z,E)ie(E)dE/
∫

ie(E)dE . The current spectrum and the local density 
of states can be obtained by expression in Eqs. (1) and (7), respectively. The spatial current-carrying electrons for 
the different modes is shown in Fig. 3a as insets in blue color, as well as the corresponding number of propagating 
modes. Additionally, the total electron density is also included in the figure as an inset in green color, demon-
strating only weak spatial quantization along the y-direction. However, the specific portion of electrons with 
energies close to the Fermi level, i.e. the current-carrying states, do exhibit a strong spatial quantization. Indeed, 
for m = 1 the propagating mode reaches the maximum concentration at the center of the structure, the mode the 
corresponds to m = 2 is “excited” into the further penetration along the confinement direction (z-axis), leaving 
the center relatively depopulated (in terms of the current-carrying states), the mode m = 3 is again “pushed out” 
of the center along both z- and y- axis. One can further note that the modes m = 1, and m = 4, 6, etc. tend to 

Figure 2.  Conductivity for Si: P δ-layer devices. The conductivity is shown in function of the device width 
W for different tunnel gap lengths Lgap . The corresponding conductivity values for infinitely-wide devices are 
indicated in dashed lines. ND = 1.0× 1014 cm−2 , NA = 5.0× 1017 cm−3 , t = 1.0 nm and for an applied voltage 
of 1 mV.

Figure 3.  Propagation modes for Si: P δ-layer systems. (a) Current I vs device width W for δ-layer systems with 
L gap = 0 nm: the insets in blue color show the spatial distributions of current-carrying modes across a y-z plane, 
indicating the corresponding number of propagating modes m; Inset in green color shows the total electron 
density that includes all (not just current-carrying) occupied electron states for a device width of W = 12 nm 
(Note that ntotal ∼ 1020 cm−3 ≫ ncurr.−carr. ∼ 1016 cm−3 ). (b) Detail of the spatial distribution of current-
carrying states ncurr.−carr.(y, z) for a device width of W = 9 nm . For all calculations, ND = 1.0× 1014 cm−2 , 
NA = 5.0× 1017 cm−3 , t = 0.2 nm and an applied voltage of 1 mV.
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form a regular “phase” distribution of the current-carrying states (i.e. the states distributed closer to the center of 
the δ-layer along z-axis), while the modes m = 2, and m = 3, 5, etc. form “anti-phase” distributions (i.e. the states 
distributed further from the center of the δ-layer along z-axis) that have the maximum current being carried in 
the different regions of space, separated by a few nanometers. When W → ∞ , the number of propagation modes 
in y-direction becomes infinite m → ∞ as expected. Fig. 3b shows the density of current-carrying electron states 
for the anti-phase case of δ-layer doping ND = 1014 cm−2 , thickness t = 0.2 nm (to approximate a monoatomic 
δ-layer) and device width W = 9 nm, which corresponds to m = 5 . As final remark, the number of propagating 
modes m in δ-layer structures is mainly determined by three factors: (1) the δ-layer doping level ND , (2) the the 
δ-layer doping thickness t and (3) the device width W.

Peculiarities of finite‑width vs infinitely‑wide devices. Next it is to get an insight into the transition 
from infinite-width to finite-width devices, before the quantum effects arise on the conductivity properties, i.e. 
the transition marked with a black arrow in the right upper part of Fig. 3. In the following, therefore, we will 
compare the free electron energy distribution, the transmission function and the current spectrum for devices of 
12 nm-width, in which the size quantum effects on the conductivity are minimum as was seen in Fig. 2, and the 
corresponding infinitely wide counterparts. All results of infinitely wide devices are scaled to an effective device 
width of 12 nm for comparison purposes.

Figure 4 shows the free electron energy distribution of δ-layer structures of 12 nm-width (in continuous 
lines), together with the result of infinitly wide δ-layer structure with Lgap = 0 nm (in dashed line), for differ-
ent gap lengths Lgap . The free electron energy distribution corresponds to the total density of states multiplied 
by the the Fermi-Dirac distribution function, which determines the probability of a state to be occupied. First 
we notice that in contrast to the infinite-width δ-layer systems, the finite size along the y-direction manifests 
itself in splitting of the occupied 1Ŵ sub-band, that is located around − 0.18 eV, and 2Ŵ sub-band, that is located 
around − 0.033 eV, into additional modes. Interestingly, for tunnel junctions ( Lgap > 0 ), two of 2Ŵ modes are 
immediately dampened as manifested in the reduction of the corresponding peaks compared to the gapless case 
as shown in Fig. 4. In addition, as it is evident from Fig. 4, the free electron distribution in tunnel junctions is 
almost independent of the tunnel gap length Lgap.

Figure 5 shows the transmission function of infinite-width devices (in dashed lines) and 12 nm-width devices 
(in continuous lines) for different tunnel gap lengths Lgap . The transmission function provides the sum of the 
probabilities for each mode of a carrier at certain given energy E to carry current from the source to drain. As 
can be seen, the transmission function is fairly similar for both systems, infinite and finite width, especially for 
wider tunnel gaps. The transmission function is reduced exponentially for the low-energy modes with the length 
of the tunnel gap. Additionally, the transmission function strongly dependent on the gap length: the energy 
window in which the carrier can be transmitted is quickly reduced with the increase of the tunnel gap length.

Figure 6 shows the current spectrum, ie(E) : in dashed lines, for infinite-width devices and, in continuous lines, 
for 12 nm-width devices. It is evident that the current spectrum of infinite-width devices differs from the current 
spectrum of finite-width counterparts. The finite size along y-axis significantly affects the current spectrum limit-
ing the current-carrying states in all cases, including the gapless case, to only a narrow energy window around 
the Fermi level, with the size of the energy window being proportional to the applied voltage. The mechanism of 
such current spectra limitation for finite-width devices can be understood referring to the derivation in “From 
finite-width to infinite-width systems”: for finite-width devices, the sum in Eq. (41) contains only a limited 
number of quantized values of ky , therefore the contribution of the corresponding propagation modes with low 

Figure 4.  Free electron energy distribution for Si:P δ-layer systems. It shows a comparison of the free electron 
energy distribution for infinite and 12 nm-width δ-layer devices. The free electron energy distribution for 
the infinite-width δ-layer is normalized to a width of the device of W = 12 nm for comparison purpose. 
ND = 1.0× 1014 cm−2 , NA = 5.0× 1017 cm−3 and t = 1.0 nm.
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energies Em is dampened, while only modes with the high energy (near Fermi level) can affect the current. The 
difference in the current spectra between finitely and infinitely-wide devices is diminished for very large tunnel 
junctions, as Fig. 6 indicates for Lgap > 9 nm. Indeed, for sufficiently large tunnel gaps, the tunneling current 
spectrum is exponentially suppressed for all low-energy modes, since the effective tunnel barrier height is larger 
for them than for higher-energy modes. Consequently, only the modes in the immediate vicinity of the Fermi 
level contribute to the total current for both finite and infinite-width tunnel junctions.

Despite the seemingly significant differences between finite-width systems and the corresponding infinitely 
wide counterparts, evidenced in the free electron energy distribution (see Fig. 4) and in their respective cur-
rent spectra (see Fig. 6), the computed total currents, obtained by integrating the current spectra, only differ 
by about 20% . We thus conclude that while the density of states and the current spectra significantly differ, the 
sheet conductance (i.e. conductivity) calculations are accurate enough for finite-size systems at least down to 
12 nm-widths. At the same time, for tunnel junctions with sufficiently large gaps, both the total current and the 
current spectra are very similar between infinite-width and finite-width systems, since in both cases the current 
is carried only by the high-energy electrons in the vicinity of system’s Fermi level.

Quantization effects in δ‑layer tunnel junctions. The tunneling current vs the tunnel gap 
length Lgap is shown in Fig.  7 for three different voltages V = 1  mV, 10  mV and 100  mV. In the range 
of gap lengths Lgap = 0, ..., 7  nm, the I vs Lgap trend is practically exponential for all three voltages, i.e. 
ln I ∼ ln ILgap=0 − Lgap/Bvoltage , where ILgap=0 is the current when Lgap = 0 , Lgap is the tunnel gap length and 
Bvoltage is a proportional constant related with the barrier height. Indeed, in this range of gap values we get 
B1−10 mV ≈ 1.9 nm and B100 mV = 2.9 nm , which can be translated into the effective barrier heights of an equiv-
alent rectangular barrier ( Lgap × hvoltage ), where hvoltage = dval�

2/(8B2voltagemt) , � is the reduced Planck’s con-
stant, dval is the valley degeneracy, and mt is the transverse effective electron mass. Substituting the correspond-
ing Bvoltage values, we obtain h1−10mV ≈ 80 meV and h100mV ≈ 30 meV , which agrees well with the effective 
barrier height shown in Fig. 8 for a tunnel gap of Lgap = 7 nm, i.e. the barrier height from the Fermi level to the 
maximum value of the effective 1D electrostatic potential, computed using our charge self-consistent scheme. 
However, a deviation from the exponential trend can be seen for large tunnel gaps, Lgap > 7 nm, and it is the 
consequence of the quatization of the low-energy conduction  band16 and the resulting mismatch between occu-
pied and unoccupied quasi-discrete electron states in the left and right δ-layers, respectively, at low bias. Figure 8 
shows the LDOS along x-direction for a tunnel junction of Lgap = 7 nm, i.e. the available states which can be 
occupied by the free electrons in space-energy dimension; in the low-temperature regime, only the states below 
the Fermi level are occupied. As one might observe from Fig. 8, the low-energy LDOS are quasi-quantized, 
highlighted with dashed lines in the figure, however, for high energies, the states are not quantized anymore, the 
LDOS are practically continuous in space-energy, as can be seen above the Fermi level for high energies. When 
the occupied quasi-discrete states from the left side overlap most with the unoccupied quasi-discrete states 
(corresponding to the ones above the Fermi level) from the right side, it results in a considerably increase of the 
tunneling current as shown in Fig. 7 for Lgap = 10 nm; on the contrary, if the overlap is reduced, as it happens 
for Lgap = 11 nm, there is a reduction of the current as the result of the mismatch. For low biases ( � 10 mV ), the 
mismatch can only exist for sufficiently large tunnel gaps, Lgap > 7 nm, because the existing coupling of the left 
and right δ-layer wave-functions for narrow tunnel gaps ( Lgap < 7 nm) effectively equalizes the electron states 
on both sides, thus reducing this mismatch. Conversely, the quantization effect of the conduction band on the 

Figure 5.  Electronic transmission for Si:P δ-layer systems. It shows a comparison of the transmission 
function (logarithmic scale) for an applied voltage of 1.0 mV for infinite and 12 nm-width δ-layer devices. The 
transmission function for the infinite-width δ-layer is normalized to a width of the device of W = 12 nm for 
comparison purpose. ND = 1.0× 1014 cm−2 , NA = 5.0× 1017 cm−3 and t = 1.0 nm.
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conductivity vanishes for high applied voltages ( � 100 mV ) as shown in Fig. 7 for an bias of 100 mV. When a 
high bias is applied, e.g. to the right side (or drain) of the tunnel junction, it effectively makes the unoccupied 
high-energy continuous states of the right side available for the tunneling from the left side, thus negating the 
effects of the quantization of the occupied left side states on the current, as can be seen in Fig. 8b.

Conclusions. In this work, we have used an efficient open-system quantum-mechanical treatment to explore 
the conductive band structure and the conductive properties in Si:P δ-layers for device widths ranging from 
nano-scale to macro-scale dimensions, and analyze the influence of size quantization effects on the conductive 
properties for sub-12 nm device widths. For device widths W < 10 nm, quantization effects strongly affect not 
only the conductivity, but also the spatial distribution of the current-carrying electron states. Conversely, for 
W > 10 nm, the quantization effects practically vanish and the conductivity tends to the values of infinitely-wide 
devices. Additionally, we have revealed and discussed the mechanism of two conductivity regimes in δ-layer tun-
nel junctions with Lgap > 7 nm: a low-voltage regime, where conduction band quantization effects play a very 
significant role, and a high-voltage regime, where the quantum effects on the current are negligible.

Finally, we point out that the strong spacial quantization of the current-carrying states could be utilized in 
novel electronic δ-layer switches, where the number of propagating modes and their match/mis-match could 
be controlled by external electric fields, thus strongly affecting the current. In regular δ-layer conductors the 

Figure 6.  Current spectrum for Si:P δ-layer systems. (a) Comparison of the current spectrum ie (logarithmic 
scale) for an applied voltage of 1.0 mV between infinite and 12 nm-width δ-layer devices. (b) Close-up of the 
current spectrum within the Fermi level. The currents for the infinite-width δ-layer systems are normalized to a 
width of the device of W = 12 nm for comparison purpose. ND = 1.0× 1014 cm−2 , NA = 5.0× 1017 cm−3 and 
t = 1.0 nm.
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particular distribution of current-carrying states directly affects their penetration depth into Si body and cap, 
which typically has a large concentration of impurities (see e.g.3). Thus, the control of the number of propagating 
modes may give an additional degree of control over the rate of impurity scattering.

Methods
Open‑system treatment. The open-system framework used in this work is based on an application of 
Keldysh  formalism27, known as Non-Equilibrium Green Function (NEGF)28 (“Non-equilibrium green’s func-
tion formalism”), and the effective mass theory (“Device effective-mass Hamiltonian”). The NEGF formalism, 
described in “Non-equilibrium green’s function formalism”, defines the Green’s function matrix through the 
inverse G(E) = [1−H0 −�(E)]−1 , which allows to compute the electron density and current through a charge 
self-consistent scheme as described in “Charge self-consistency”. However, the computation of an inverse matrix 

Figure 7.  Characteristic tunneling current curves. The total current (logarithmic scale) I vs. tunnel gap length 
Lgap for three different applied voltages of V = 1 mV, 10 mV and 100 mV is shown. ND = 1.0× 1014 cm−2 and 
NA = 5.0× 1017 cm−3 , W = 12 nm and t = 1 nm. Dashed lines represent least-square fits to the exponential 
trend.

Figure 8.  Local density of states for δ-layer tunnel junctions. The LDOS(E, x) for a tunnel junction of 
Lgap = 7 nm is shown in (a) and (b) when a voltage of 1 mV and 100 mV is applied to the right side of the 
tunnel junction, respectively. Subfigure a indicates that the quantized states around the Fermi level might affect 
the conductivity for low applied biases due to a possible mismatch between the left and right quasi-discrete 
states, i.e., when the corresponding quasi-discrete peaks from the left and right sides are not aligned. Subfigure 
(b) shows that for high applied voltages the mismatch becomes impossible due to the availability of unoccupied 
continuum states on the right side for tunneling from the left side. In (a) and (b), the corresponding effective 
1D potentials are also shown, calculated by integrating over the (y,z)-plane the actual charge self-consistent 3D 
potentials weighted with the electron density. ND = 1.0× 1014 cm−2 , NA = 5.0× 1017 cm−3 , W = 12 nm and 
t = 1 nm.
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generally also scales as O(N3) , with N being the size of the device Hamiltonian matrix H0 (“Device effective-
mass Hamiltonian”). For instance, for a device of dimensions 12 nm× 15 nm× 50 nm with a uniform grid of 
0.2 nm, N > 106 and N3 > 1018 , making a direct computation of the inverse very challenging. Here we have 
employed an efficient implementation of NEGF, refereed to as the Contact Block Reduction (CBR) method, 
which allows accurate computation of all quantum-mechanical quantities of interest (the local density of states, 
transmission probability, current) and scales linearly O(N) with the system size. The CBR method in 3D real-
space is summarized in “Contact block reduction method” and “Incomplete set of CBR eigenstates”.

Non‑equilibrium Green’s function formalism. The current for two-contact device (D) from source (s) 
to drain (d) can be computed within the Landauer–Buttiker formalism through the transmission function

where ie(E) is the current spectrum, e is the electron charge, h is the Planck’s constant, E is the energy, 
fs(d)(E) = f (E + qVs(d)) is the Fermi-Dirac distribution function within source (drain), to which a voltage 
Vs(d) is applied, and Tsd(E) is the electronic transmission from source to drain. Within the Green’s function 
 formalism28, the transmission function is given by

with

where Ŵs(d) are the coupling ( ND × ND)-matrices between the device and the source (drain), �s(d) are the self-
energy ( ND × ND)-matrices, which describe the effects of the source (drain) on the electronic structure of the 
device by providing the appropriate open-system boundary conditions, GD and G†

D are the retarded and advanced 
Green’s function ( ND × ND)-matrices of the coupled device with the source and drain (open-system device), 
respectively. ND is the total number of grid points of the discretized device domain. The retarded Green’s func-
tion matrix is defined by

where H0
D +�s +�d is the non-Hermitian effective Hamiltonian ( ND × ND)-matrix of the open device. 

Eq. (4) can be also expressed in terms of the Green’s function of the decoupled device (i.e. the closed system) 
G
0 = [E+ −H

0
D]−1, where E+ = I(E + iε), with ε → 0+ , via the Dyson equation:

The decoupled device Green function GD can be computed using its spectral representation:

and Eα and |ψα� are the eigenvalues and eigenvectors of H0
Dψα = Eαψα . The electron density n(ri) is given by

where LDOS(ri ,E) is the local density of states. Note that the dimension of GD and Ŵ� is ( ND × ND).

Contact block reduction method. We next review the Contact Block Reduction (CBR) method pre-
sented in Mamaluy et  al.34–36, which allows a very efficient calculation of the density matrix, transmission 
function, etc. of an arbitrarily shaped, multiterminal two- or three-dimensoinal open device within the NEGF 
formalism. In the following we apply the CBR method to the two-contact device shown in Fig. 9. The device 
consists of two semi-infinite contacts, source (s) and drain (d), which are in contact to the engineering channel, 
named as device (D).

We first discretize the domain of the device in ND grid-points, and subdivide them into NC = NCs + NCd
 

boundary grid-points and into NDi = ND − NC interior grid-points. NCs(d)
 corresponds to the boundary grid-

points between the device and source (drain). Furthermore, we assume that the real-space Hamiltonian matrix 
that corresponds to this discretization only couples sites within some finite range with one another, typically first 
nearest-neighbors. The total grid-points in the device domain is described by the following set
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With this discretization of the device domain, the self-energy matrices �s(d) , which represent the coupling 
of the source (drain) to the device, is given by

where WDs(d) are the Hamiltonian coupling matrices between the device D and contact s(d) and G0
s(d) are the 

retarded Green’s function matrix of decoupled source (drain). The total self-energy matrix ( ND × ND)-� can be 
expressed by the following block-diagonal matrix of the form

where

is of dimension of ( NC × NC ). Analogously, the retarded Green’s function matrix for the device can be also 
rewritten by the following submatrices

where GC is of dimension of ( NC × NC ), GDi is of dimension of ( NDi × NDi ) and GCDi is of dimension of 
( NC × NDi).

Using the new representation for the above matrices, the Dyson equation can be then rewritten as

where the matrices have the following forms:

and

The submatrices AC = 1− G
0
C�C and G0

C are of dimension of ( NC × NC ), the submatrices R = −G
0
DiC

�C 
and G0

Di
 are of dimension of ( NDi × NC ), and G0

CDi
 is of dimension of ( NC × NDi ). Thus, the retarded Green’s 

function of the open system is given by

(7)
� = {C ∪ {interior of device}} = {Cs ∪ Cd ∪ Di}

= {{1, ...,NCs } ∪ {NCs + 1, ...,NCs + NCd
} ∪ {NC + 1, ...,ND}}

(8)�s(d)(i, j) =
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†
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,
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Figure 9.  Schematic computational model for the CBR method. The two-contacts model is composed of two 
semi-infinite contacts, source (s) and drain (d), and a channel or device (D).
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and the Green’s function within the contact region by

The electron transmission from source s to drain d can be rewritten as

where

We note that the dimension of all submatrices involved in Eqs. (16) and (17) is of ( NC × NC).
Similarly, the electron density can also be written as

where the density matrix due to source(drain), �s(d)
α,β (E) , is given in the closed-system basis (indexed by α,β)

with

and

where 1C is the identity matrix of dimension of ( NC × NC ). Note that the dimension of �C and G0
C is ( NC × NC ) 

as well.

Incomplete set of CBR eigenstates. The major feature of the CBR method is the ability to use a greatly 
reduced, incomplete set of specially defined eigenstates to represent the true open-system solution. As was 
shown in Mamaluy et al.34, it can be accomplished by imposing a special kind boundary condition to the decou-
ple device. The idea is to be able to rewrite the Green’s function matrix of the open system GD(E) , Eq. (4), as

where HN
D is independent of the energy, and �N

s (E) and �N
d (E) tend toward zero for values of E that lies not far 

from the band edge. This enables us to solve the Dyson equation with an incomplete basis.
We start assuming that all nonzero coupling matrix elements of W s(d)D is equal to a real constant value, Ws(d) . 

This leads to the following expression for the self-energy matrix �s(d) within each source(drain) contact, s(d), 
see e.g.  Datta28

where as(d) = a is the constant parameter of the lattice, MT is the total number of propagating modes, and 
χ
m
s(d) are the modes of the Schrödinger equation H0

s(d)
χ
m
s(d) = εms(d)χ

m
s(d) . The wave vectors kms(d) are functions of 

energy E as

The exponential term in Eq. (22) can be approximated in power of kms(d) as

which leads to
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Thus, the self-energy matrix in each contact, s and d, consists of a first term, which is an independent-energy 
diagonal matrix, and a second term, that vanishes not too far from the low energy band edge. The total self-energy 
matrix can be then rewritten as

where

and the retarded Green’s function matrix as

The self-energy �N (E) is small for E close to the band edge, and the Hamiltonian matrix of the device is defined 
by HN

D = H
0
D − K  . It can be shown that this Hamiltonian matrix corresponds to generalized Neumann bound-

ary conditions for its  eigenfunctions36. Thus, the eigenfunctions of HN
D are approximate solutions of the open-

boundary problem in the low-energy limit. As a consequence it suffices to include an incomplete set in the 
spectral representation of HN

D in the calculation of the open-system quantities of interest within some limited 
energy range.

Device effective‑mass Hamiltonian. The effective mass Schrödinger equation for Ŵ-valley electrons in 
Si is given by

where H0
D is the effective-mass Hamiltonian operator

and φH (ri) is the Hartree potential and φXC(ri) is the exchange-correlation potential.
We discretize the 3D domain in Nx equidistant grid-points along the x-axis, in Ny equidistant grid-points 

along the y-axis and in Nz equidistant grid-points along the z-axis. For all directions, the separation between 
grid-points is chosen to be �x = �y = �z = 0.2 nm. A grid-point is defined by the following triple indices 
(i, j, k), with i = 1, ...,Nx , j = 1, ...,Ny and k = 1, ...,Nz , and the global index n = k + Nz(Nx(j − 1)+ i − 1) . 
Therefore, the effective mass Hamiltonian matrix for the decoupled device can be expressed with seven non-zero 
diagonals as follows

where
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and

The number of zero diagonals between the diagonals l and b is (Nz − 2) and between the diagonals b and g is 
(Nx − 1)Nz − 1 . The exchange-correlation potential φXC(ri) that accounts for electron-electron interaction is 
computed using the terms given in Perdew and  Zunger40.

Charge self‑consistency. We solve charge self-consistently the open-system effective mass Schrödinger 
equation and the non-linear Poisson  equation37,38,41. We employ a single-band effective mass approximation with 
a valley degeneracy of dval = 6 . For the charge self-consistent solution of the non-linear Poisson equation we use 
a combination of the predictor-corrector approach and Anderson mixing  scheme37,38.

Firstly, the Schrödinger equation is solved in a specially defined (see generalized Neumann BC in “Incomplete 
set of CBR eigenstates”) closed-system basis taking into account the Hartree potential φH (ri) and the exchange 
and correlation potential φXC(ri) . It is found that out of more than 1,000,000 eigenstates only about 700 ( < 0.1% ) 
of lowest-energy states is needed (see “Incomplete set of CBR eigenstates”), which is generally determined by 
the material properties (e.g. doping level), but not the device size. Then, the LDOS of the open system, ρ(ri ,E) , 
and the electron density, n(ri) , are computed using the CBR method. The potential and the carrier density are 
then used to calculate the residuum F of the Posisson equation

where A is the matrix derived from the discretization of the Poisson equation and ND and NA are the total donor 
and acceptor doping densities arrays, respectively. If the residuum is larger than a predetermined threshold ε , the 
Hartree potential is updated using the predictor-corrector method, together with the Anderson mixing scheme. 
Using the updated Hartree potential and the corresponding carrier density, the exchange-correlation is computed 
again for the next step, and an iteration of Schrodinger-Poisson is repeated until the convergence is reached 
with 

∣

∣
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∣ < ε = 10−6 eV. A typical convergence rate for Si:P δ-layer structures of different thicknesses 
is shown in Fig. 10. It illustrates that the proposed charge self-consistent scheme has a robust convergence for 
different structures, providing the residuum error reduction of 5 orders of magnitude within 40 iterations. In all 
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Figure 10.  Convergence evaluation of the method. The convergence rate of the charge self-consistent open-
system Schrodinger-Poisson equations for different δ-layer thicknesses (t) is shown.
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simulation in this work the standard values of electron effective masses ml = 0.98×me , mt = 0.19×me and 
the dielectric constant εSi = 11.7 of Silicon were employed.

From finite‑width to infinite‑width systems. In the scenario that the width of a conducting structure 
along the y-direction is assumed to be infinite (see Fig. 9) with a flat electrostatic potential, we can write the 
solutions of the Schrödinger equation as the product of plane-waves along y-axis and the solutions of the 2D 
Schrödinger equation in the X-Z plane of the device.

which is normalized to a length of Ly , and

The electron density can be expressed by summing over all (generally - open-system) states α as

where kB = 8.617× 10−5 eV K−1 is the Boltzmann constant, T is the temperature of the system and f(E) is the 
Fermi-Dirac distribution function, which provides the probability that a state is occupied or unoccupied. The 
Fermi-Dirac distribution function is given by

Using Eqs. (37), (38) and (39) we get

where we denote the term in parenthesis as the effective 2D Fermi-Dirac distribution function f 2D(E) . Replacing 
the summation over ky with an integral as 1Ly

∑

ky
→

∫∞
−∞

dky
2π  , we can get the distribution function in an integral 

form as follows

Finally, performing a variable change l = �
2k2y

2mtkBT
 we obtain

where f−1/2(x) is the Fermi-Dirac Integral of the order of −1/2 . It can be expressed, for instance, through the 
polylogarirthm special function as f−1/2(x) = −Li1/2(− exp(x))42.

Figure 11a shows the Fermi-Dirac distribution function, Eq. (40), and the effective 2D Fermi-Dirac dis-
tribution function, Eq. (43), in equilibrium conditions and a temperature of 4.0 K. In both cases the occupied 
states exists only below the Fermi level, but the occupation rate for the effective 2D distributions increases as 
∼

√
−E for E → −∞ . We next examine the behaviour of the current integral given in the Eq. (1) at low tem-

peratures. In general, the difference in the distribution functions fs(E)− fd(E) = f (E)− f (E + qVbias) deter-
mines the energy range of non-zero contributions to the total current. The difference between Fermi-Dirac 
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distributions is non-zero only in a small range of energies in the vicinity of the Fermi level as the result in 
red line in Fig. 11b indicates. Furthermore, the energy range for non-zero contribution is proportional to 
the applied voltage Vbias = 0.1 V. On the contrary, the difference in the effective 2D distribution functions 
is non-zero for all energies below the Fermi level as the plot in blue color in Fig. 11b illustrates. This is a 
reflection of the asymptotic behaviour of f 2D(E) at E → −∞ ; for the difference in the distributions one gets 
f 2Ds (E)− f 2Dd (E) = f 2D(E)− f 2D(E + qVbias) ∼ qVbias/

√
−E.

We thus conclude that, within the Landauer–Buttiker/NEGF formalism, finite size structures in the transverse 
directions have a principally different current spectrum from the structures that are infinite along a transverse 
direction (e.g. when W → ∞ in δ-layer structures shown in Fig. 1).

Data availability
The data that support the plots within this paper are available from the corresponding authors upon reasonable 
request.
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