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Central autonomic network 
alterations in male endurance 
athletes
Feliberto de la Cruz1,4, Maria Geisler2,4, Andy Schumann1, Marco Herbsleb1, Zora Kikinis3, 
Thomas Weiss2 & Karl‑Jürgen Bär1*

Physical exercise causes marked adjustments in brain function and the cardiovascular system. 
Brain regions of the so-called central autonomic network (CAN) are likely to show exercise-related 
alterations due to their involvement in cardiac control, yet exercise-induced CAN changes remain 
unclear. Here we investigate the effects of intensive exercise on brain regions involved in cardiac 
autonomic regulation using resting-state functional connectivity (rsFC). We explored rsFC of six core 
regions within CAN, namely ventromedial prefrontal cortex, dorsolateral anterior cingulate cortex, 
left/right amygdala, and left/right anterior insula, in 20 endurance athletes and 21 non-athletes. 
We showed that athletes had enhanced rsFC within CAN and sensorimotor areas compared to non-
athletes. Likewise, we identified two networks with increased rsFC encompassing autonomic and 
motor-related areas using network-based statistics analysis. In addition, rsFC displayed an inverse 
relationship with heart rate, where the stronger rsFC in athletes correlates with their slower heart 
rate. Despite this significant relationship, mediation analysis revealed that heart rate is a weak 
mediator of the effect of intensive physical training on rsFC. Our findings prove that physical exercise 
enhances brain connectivity in central autonomic and sensorimotor networks and highlight the close 
link between brain and heart.

Physical activity is beneficial for our health and well-being. Regular physical exercise influences the functioning 
of various body organs and ultimately translates into a reduced all-cause mortality risk1. It has been accepted 
that the brain and the heart might benefit most from physical activity. Evidence suggests that sports reinforce 
neural networks and induce plastic changes due to the acquisition and execution of motor skills during training2, 
while causing a specific combination of structural and cardiovascular changes with improved cardiac autonomic 
regulation at the heart level3. In this vein, a large body of research emphasizes the autonomic nervous system 
to play a major role in mediating the adaptive processes4,5. Regular exercise induces a shift of the autonomic 
balance towards parasympathetic predominance with a concurrent decrease in sympathetic modulation. As a 
result, athletes and physically very active individuals tend to have slower heart rates and higher heart rate vari-
ability (HRV) in comparison to the overall healthy population. These physiological adaptations are thought to 
be a sign of an efficient and health-promoting cardiovascular regulation6.

Recent studies on brain and heart function move away from the traditional view of single-organ research and 
instead commence to pay close attention to what is referred to as the brain-heart axis7–11. Such studies rely on 
the basic assumption that a bi-directional flow of information exists between the brain and heart, allowing both 
organs to influence one another ensuring body homeostasis. In this direction, novel methodological approaches 
such as time-delay analysis12, generative models13, Granger Causality14, functional connectivity analysis15 or 
multifractal16 have advanced the understanding of the brain-heart axis. Although most studies have focused on 
descending neural signals influencing the heart17,18, research into ascending signals has recently gained more 
attention, particularly from the perspective of neuroimaging studies19,20. It is well-accepted that peripheral signals, 
such as heart rate, modulate brain dynamics at rest and play a crucial role in shaping the activity of resting-state 
networks11,21. The ascending path begins at the heart, where fluctuations of the cardiac cycle are transformed 
into neural signals by mechanoreceptors located in the heart and aortic wall22, reaching numerous cortical and 
subcortical structures including the insula, the amygdala, the ventral anterior cingulate cortex (vACC) and the 
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somatosensory cortex. Thus, several studies have highlighted the involvement of ascending cardiac signals in 
cognitive and perceptual processes, such as self-consciousness, conscious visual experience, or memory23,24. On 
the other hand, modulation of the heart’s activity occurs through the parasympathetic and sympathetic branches 
of the autonomic nervous system. This top-down communication is orchestrated through the so-called central 
autonomic network (CAN25), a subgroup of regions mainly including cortico-limbic and brainstem structures. 
The most prominent CAN regions are the ventromedial prefrontal cortex (vmPFC), dorsolateral anterior cin-
gulate cortex (dACC), anterior insula (aINS) and the amygdala, which all form an interconnected network and 
modulate the activity of downstream regions. While the specific autonomic function of all these brain regions 
is not entirely understood, most authors agree that vmPFC and dACC are engaged in sympathetic regulation. 
In contrast, aINS and amygdala seem to be involved in both parasympathetic (vagal) and sympathetic control26.

The advent of functional magnetic resonance imaging (fMRI) has made it possible to track adaptive brain 
functional changes in response to regular physical training2. Sie and colleagues27 used rs-fMRI to examine the 
effect of several levels of exercise experience in baseball players on CAN connectivity. They showed that athletes 
had enhanced connectivity within and between CAN regions and sensorimotor network areas depending on the 
level of exercise experience, providing evidence that increasing levels of sporting experience can enhance intrinsic 
functional connectivity of CAN areas differently. To our best knowledge, this was the only study exploring the 
effect of physical activity on CAN connectivity; however, it did not evaluate how physical training may affect 
the brain-heart axis. Of note, physical and physiological characteristics of athletes vary across sport types28. For 
example, in endurance sports, which requires practice over long distances for prolonged periods like running, 
swimming or cycling, athletes might develop a different physiological profile than baseball players. Evidence 
suggests that longer-duration exercise increases oxidative capacity and impairs cognitive control and prefrontal 
cortex oxygenation29,30, while skilled baseball players have enhanced cognitive control, inhibitory functions, 
and visual skills31. Thus, to what extent CAN connectivity changes occur in other sport types remain unclear.

The present study aims to explore the effects of regular physical exercise on CAN connectivity and the brain-
heart axis in endurance athletes. Based on the previous findings of Sie and colleagues27, we hypothesized that 
endurance athletes have enhanced connectivity between CAN regions in comparison to non-athletes. To test this, 
we compared rsFC of core regions of the CAN, namely vmPFC, dACC, aINS and amygdala, between athletes and 
non-athletes. To yield a broader sense of how the whole-brain network might change in endurance athletes, we 
conducted a network-based statistics (NBS) analysis. NBS is a novel graph approach which does not require an 
apriori seed region to detect rsFC differences between groups32. To examine the influence of high-intensity train-
ing on spontaneous regional brain activity and to explore whether regional changes in brain activity may explain 
rsFC differences between athletes and non-athletes, we computed the (fractional) amplitude of low-frequency 
fluctuations (f)ALFF. ALFF is another well-validated data-driven technique used as an alternative to seed-based 
analysis to quantify spontaneous brain activity at the local level33. Finally, since regular physical exercise simul-
taneously affects heart rate and rsFC and the fact that heart rate can influence rsFC, we hypothesized that heart 
rate mediates the effect of regular physical exercise on CAN connectivity.

Results
Functional connectivity analyses.  Among the six seeds CAN regions, we found significant differences 
in rsFC between athletes and non-athletes groups when seeded from left and right aINS (aINS_L, aINS_R) and 
dACC seeds, as shown in Fig. 2 and Supplementary Table  S1. There were no differences detected when seeded 
from the three other seeds, namely the left and right amygdala and vmPFC. Compared to non-athletes, endur-
ance athletes showed significantly increased rsFC in all identified clusters. The differences in rsFC appeared in 
fourteen clusters, mainly located in autonomic and sensorimotor regions (see Fig. 1 and Table S1). Using aINS_L 
as seed region, significant rsFC differences were observed in the premotor cortex, posterior insula and CAN 
areas like the dorsolateral prefrontal cortex (dlPFC), vACC and angular gyrus (AG). Although to a lesser extent, 
similar clusters showing between group differences in rsFC were found using the right aINS as seed region. In 
this case, we observed clusters in the left posterior insula and vACC, as shown in Fig. 1 and other cluster in 
supramarginal gyrus listed in Supplementary Table S1. When seeded from dACC, we found one large cluster in 
primary sensorimotor cortex (S1/M1) in each hemisphere and other three clusters of smaller size in vACC, AG 
and premotor areas.

Network‑based statistics.  We used the data-driven NBS analysis to detect whole-brain rsFC differ-
ences between groups not accounted for by the hypothesis-driven seed-based correlation analysis. This analysis 
revealed two network components with significantly higher rsFC in endurance athletes (Fig. 2, p < 0.01). The 
first network components consisted of 13 nodes and 13 edges. Nodes within this network were mainly motor 
and autonomic regions, distributed across the somatomotor (blue), frontoparietal (orange) and dorsal/ventral 
attention networks (green and violet). The frontoparietal and ventral attention networks included nodes within 
the insular and dorsolateral prefrontal cortices. The second network component consisted of 11 nodes and 13 
edges, comprising motor-related areas, such as visuomotor and premotor, and autonomic regions, namely AG 
and vACC, which were mainly distributed across dorsal/ventral attention and frontoparietal networks.

ALFF/fALFF.  We found no differences in ALFF or fALFF between endurance and non-athletes at voxel level 
p < 0.001. Even without controlling for age and BMI, there were no significant group differences in these meas-
ures in any brain region.

Mediation analysis.  We used a mediation analysis across subjects to investigate whether changes in seed-
based rsFC were a direct consequence of physical exercises or rather an indirect effect mediated by heart rate 
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reductions. The analysis was conducted on all fourteen clusters exhibiting differences in rsFC between groups 
(see Supplementary Table  S1) with age and BMI as covariates. Results based on 1000 bootstrapped samples 
indicated that heart rate did not significantly mediate the PWC150 - rsFC relationship in any cluster. All boot-
strap confidence intervals contained 0, indicating that the indirect effect of heart rate was not significant at α < 
0.05. Figure 3 shows a representative mediation analysis result for the cluster in ventral anterior cingulate cortex 
when using the right anterior insula as seed region. We also tested for reversal causal effects by interchanging the 
mediator and the outcome variable and so have the rsFC causes heart rate. There was also no significant media-
tion effect of rsFC on the relationship between PWC150 and heart rate in any cluster.

Figure 1.   Group differences between athletes and non-athletes in functional connectivity for aINS_L, aINS_R, 
and dACC seeds. All identified brain regions indicate significantly increased rsFC in athletes compared to 
non-athletes. The cool, warm and red colormaps illustrate the magnitude of the statistical significance (Z-score) 
in each voxel, where brighter color means higher Z-score. The light green color found in pINS and vACC 
regions occurs due to the overlapping in these areas of the cool and warm colormaps from aINS_L and aINS_R, 
respectively. aINS_L—left anterior insula, aINS_R—right anterior insula, dACC—dorsal anterior cingulate 
cortex, pINS—posterior insula, AG—angular gyrus, dlPFC—dorsolateral prefrontal cortex, vACC—ventral 
anterior cingulate cortex, M1/S1—primary sensorimotor cortex.

Figure 2.   Athletes showed higher rsFC than non-athletes in two distinct network components. Network 
component #1 consisted of 13 nodes and 13 edges, and network component #2 consisted of 11 nodes and 13 
edges, and were distributed across the somatomotor, dorsal/ventral attention and frontoparietal networks. 
Nodes are color-coded according to the 7 Yeo network parcellation 54. Somatomotor (blue), ventral attention 
(magenta), dorsal attention (orange) and frontoparietal (pink) networks. pINS—posterior insula, dlPFC—
dorsolateral prefrontal cortex, vACC—ventral anterior cingulate cortex, M1—primary motor cortex, PreM—
premotor cortex, VisM—visuomotor cortex, S1—primary sensory cortex, A1—primary auditory cortex, SMG—
supramarginal gyrus, STG—superior temporal gyrus, AG—angular gyrus, Fus—fusiform gyrus.
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Discussion
To investigate the effect of regular endurance training on CAN connectivity and the brain-heart axis, we exam-
ined differences in rsFC patterns of six core regions of the CAN between endurance athletes and non-athletes. 
We used the NBS technique to explore potential whole-brain differences in rsFC not accounted for in the seed-
based approach, performed group comparisons of (f)ALFF to investigate regional changes in brain activity, and 
explored the role of heart rate in mediating the influence of regular physical training on rsFC. Using left and right 
aINS and dACC as seeds, we found higher rsFC within CAN and sensorimotor areas in endurance athletes. The 
NBS method agreed with most of the results obtained from the seed-based correlation analysis. We found two 
network components with higher connectivity in athletes mainly encompassing autonomic regions, including 
dlPFC, insula, vACC, and AG, and motor-related areas distributed across four major resting-state networks, 
namely somatomotor, ventral and dorsal attention, and frontoparietal networks. Finally, we demonstrated that 
heart rate did not significantly mediate the influence of physical exercise on CAN connectivity.

Our findings confirm that intensive physical training might enhance brain connectivity within CAN. Previ-
ously, Sie and colleagues27 showed enhanced rsFC in autonomic brain areas while investigating patterns of CAN 
connectivity in baseball players. The rsFC group differences found in the current study mainly occurred within 
CAN regions and sensorimotor networks, largely mirroring the functional characteristics that distinguish the 
athlete from the non-athlete brain. Both anterior insulae seeds showed significant rsFC group differences with 
classical CAN areas in the prefrontal, cingulate cortices or angular gyrus. For example, the presence of clusters 
in the dlPFC and vACC is not surprising as they are major centers of sympathetic control26 and crucial for heart 
rate regulation. Moreover, a large body of neuroimaging studies suggests that functional changes in dlPFC and 
vACC occur in response to physical exercise34,35. The right anterior insula showed group differences over a 
greater volume of voxels than its contralateral counterpart in line with the lateralization of these brain regions. 

Figure 3.   Representative mediation analysis for a given cluster of seed-based rsFC differences (aINS_R-vACC) 
between athletes and non-athletes adjusted by age and BMI. Alterations in rsFC are due to regular physical 
exercises and are not mediated by heart rate. Path “a” is the effect of PWC150 (causal variable) on heart rate 
(mediator). Path “b” is the effect of heart rate (mediator) on aINS_R-vACC connectivity (outcome variable), 
partialling out the effect of PWC150 . The indirect effect a*b measures the amount of mediation, and the direct 
effect c’ is the effect of PWC150 on rsFC after controlling for heart rate. The total effect is the sum of direct and 
indirect effects. All path estimates are depicted as standardized regression coefficients with their respective 
p-value and 95% confidence interval (CI). The dashed gray line indicates the non-significant result obtained 
for path “b.” Icons for bike, heart and heart rate signal were obtained from frees​vg.​org. aINS_R - right anterior 
insula, vACC—ventral anterior cingulate cortex, rsFC—resting-state functional connectivity, PWC150—physical 
working capacity at a heart rate of 150 beats per minute, BMI—body mass index.

https://freesvg.org/
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Independently of the functional hemispheric asymmetry associated with regular physical training36, it has been 
hypothesized that both anterior insulae might subserve differential functions and are linked to separate circuits. 
While the right anterior insula communicates with more brain regions and has a specific role in heartbeat 
awareness and sympathetic activity, the left side is thought to play an essential role in language functions and 
parasympathetic processing37,38.

Interestingly, the NBS analysis yielded a component integrated by regions that are part of the dorsal atten-
tion network, e.g. visuomotor (BA 7) and fusiform regions39. This result was unexpected as the dorsal attention 
network is mainly recruited in types of sport requiring fine attentional skills, such as tennis or badminton. 
Although the function of fusiform and visuomotor areas in the CAN is not entirely established, a recent study 
revealed that fusiform gyrus appears to be part of a subnetwork specialized in complex autonomic control of 
the heart40. In addition, some of the regions labeled as visuomotor exactly lie within the precuneus cortex which 
has multiple roles in sympathetic and parasympathetic cardiac control. Thus, the presence of these regions may 
obey the general functional changes that occur in the CAN of an athlete’s brain.

We observed a negative relationship between heart rate and rsFC of CAN regions, i.e., athletes have slower 
heart rate and higher rsFC while non-athletes have higher heart rate and lower rsFC. In a recent study of our 
group15, we reported this relationship using different sample cohorts and scanner parameters. Thus, based on this 
finding and studies on brain-heart interaction7,8,10,11, we hypothesized that heart rate mediates the effect of regu-
lar physical activity on rsFC. However, our mediation analysis revealed that the brain-heart axis is negligible in 
physically trained people because the role of heart rate as a mediator was not significant. Yet, it is worth recalling 
that at rest, the brain-heart interaction is weak and easily confounded by other physiological processes. Indeed, 
the autonomic outflow has scarcely been investigated at rest but rather via stimuli, which can elicit elevated auto-
nomic responses41. The low evoked autonomic response at rest is the reason why most neuroimaging researchers 
focus on bottom-up investigations of brain-heart interaction in which heart rate fluctuations confound brain 
functional connectivity and, therefore, treated as physiological noise19,20. Following this line of reasoning, we 
initially used heart rate as the mediator variable between PWC150 and rsFC in our mediation analysis. The above-
mentioned weak influence of heart rate changes on rsFC can explain the non existent mediation effect of heart 
rate on the relationship between PWC150 and rsFC. Heart rate fluctuations explain on average less than 15% of the 
BOLD signal variance19,42, and this amount is likely accounted for in path ”a” of the mediation model due to the 
strong collinearity between PWC150 and heart rate, which leave no unique variance in heart rate to explain rsFC.

We believe that the combined findings of increased CAN connectivity in athletes and no mediation effect of 
heart rate on the relation between physical training and rsFC could be specific for the type of sports investigated 
and the cardiac metric used, i.e. endurance and heart rate. First, we should emphasise that our decision for choos-
ing heart rate is because of its easy interpretability, wide use, and the fact that it indexes both sympathetic and 
parasympathetic activity. However, other cardiovascular measures may be more appropriate in some instances 
for assessing the brain-heart axis in athletes. For example, HRV-derived autonomic variables are consistently 
elevated in elite athletes with ventricle hypertrophy43, suggesting that vagal indices may be better markers for 
quantifying cardiac autonomic changes in these individuals than heart rate. Moreover, we should consider the 
training load as a key factor for remodeling neural circuitry2 and cardiovascular responses44. Intermediate levels 
of training loads are associated with increased vagal drive, whereas intense training volumes shift the cardio-
vascular autonomic modulation from a parasympathetic toward a sympathetic predominance44,45. In addition, 
exercise-related autonomic changes are also likely to differ across sports modalities. Accumulating evidence 
indicates that sports with high dynamic demands like endurance promote a physiological profile different to 
those less physically intense, e.g. golf or billiards28.

In contrast to earlier studies, we report no differences in (f)ALFF between athletes and non-athletes. These 
findings should be carefully interpreted as differences in methodology like physiological noise correction or 
preprocessing steps order may be the reason for such discrepancies. Another plausible explanation might be the 
type of sport investigated. It seems that endurance sports cause changes in rsFC by enhancing the coherence of 
resting-state low-frequency fluctuations between brain regions without regionally altering its amplitude. This is 
not surprising since (f)ALFF reflects the local properties of specific brain regions, while rsFC reflects the temporal 
correlation of low-frequency fluctuation between distant brain regions. For example, in a recent study, Zhang 
and colleagues reported rsFC alterations between the cerebellum and fusiform gyrus in ice-skating athletes not 
detected by fALFF46.

The main limitation of this study is the reduced number of participants. A larger sample size would be par-
ticularly important to power the statistical analyses conducted to determine group differences in rsFC and (f)
ALFF. The elevated threshold of PWC150 used as criterion to include endurance athletes also limited the number 
of available athletes that could participate in the study. Nevertheless, the significant group differences found in 
rsFC, the use of conservative statistical thresholds and the agreement with a previous study in the field27 suggest 
that our results are reliable. A further limitation was the absence of athletes with different sports experiences. 
Varying sporting experiences would have helped to investigate whether the level of endurance experience affects 
CAN connectivity. Moreover, the exclusive presence of male participants raises the question of whether the results 
are generalizable to female endurance athletes. However, given the known gender differences in functional brain 
connectivity47, including females and males would have made the interpretation of results challenging. Our CAN 
model does not cover all brain regions putatively involved in heart rate regulation, such as small nuclei located 
in the brainstem26. In particular, we decided not to include brainstem nuclei given the challenges of defining 
them anatomically and the high sensitivity of the brainstem to physiological and motion artefacts. Furthermore, 
although we controlled for age and BMI, we cannot exclude the influence of other potential confounders in our 
results. Finally, we should consider that a longitudinal and not a cross-sectional study is the correct way to test 
causality between regular exercise training and functional brain changes. In a cross-sectional study as ours, 
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there is always doubt whether functional connectivity changes result from sports adjustments or are instead a 
precondition for effective and efficient motor performance.

Increased CAN connectivity seems to be a common feature in sportspersons. The present study of seed-based 
correlation analysis showed that athletes have higher rsFC in autonomic areas like the insula, dACC, vACC, 
and AG and sensorimotor regions. These results were further confirmed by network-based statistical analysis, 
where we found two network components with higher connectivity in athletes encompassing autonomic regions 
and motor-related areas. We report that endurance exercise enhances brain connectivity but does not induce 
regional changes in brain activity. Overall, our findings provided further evidence that people exercising on a 
regular basis have increased brain functional connectivity for central autonomic and sensorimotor processing.

Methods
Participants.  We recruited 20 male endurance athletes and 21 male non-athletes through advertisements 
posted at the University of Jena, social networks and sports clubs in Jena and its surroundings. This cohort was 
part of another research project of our group investigating pain-processing in runners and triathletes48. The 
study was approved by the Ethics Committee of the Faculty of Social and Behavioral Sciences of the Friedrich 
Schiller University Jena in accordance with the ethical guidelines of the current official version (from 2013) of 
the Helsinki Declaration. All participants provided written informed consent and were compensated for their 
participation.

Inclusion criteria for all participants were: male (to reduce variability based on gender), age range 18-50 years; 
no current or past psychiatric, neurological or other medical disease interfering with the investigation. Specific 
inclusion criteria for endurance athletes were: endurance training for at least 6 hours per week for the last 3 
years without any sign of exercise dependence; physical work capacity during heart rate of 150 beats per minute 
( PWC150) ≥ 3.0 W/kg. PWC is a test to assess the person’s aerobe performance capacity and was performed 
using an electronically braked bicycle ergometer (Ergometrics 900, Ergoline, Bitz, Germany). Specific inclusion 
criteria for non-athletes were: no regular participation in any kind of endurance sports; PWC150 ≥ 2.2 W/kg. 
Three athletes were not included in the current study due to missing physiological data. Demographic data for 
the final study sample are listed in Table 1.

rs‑fMRI data acquisition.  We collected data on a 3T whole body-system equipped with a 12-element head 
matrix coil (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany). Participants were instructed to 
keep their eyes open during the entire measurement. 1900 whole-brain volume sets were acquired using a multi-
band multislice GE-EPI sequence (TR = 484 ms, TE =30 ms, flip angle = 90◦ , multiband factor = 8, matrix size = 
78 x 78 pixels, voxel size = 2.5 x 2.5 x 2.5 mm3 and with 56 contiguous transverse slices). A high-resolution ana-
tomical T1-weighted volume scan was obtained after fMRI using a magnetization prepared - rapid gradient echo 
(MP-RAGE) sequence in sagittal orientation (TR = 2300 ms, TE = 3.03 ms, TI = 900 ms, flip angle = 9 ◦ , matrix 
size = 256 x 256 pixels, number of sagittal slices = 192, voxel size = 1 x 1 x 1 mm

3 ). Heart rate and respiratory 
activities were recorded during rs-fMRI data acquisition using the scanner’s physiological monitoring system.

rs‑fMRI preprocessing.  We used the afni_proc.py command in the AFNI software package49 to preprocess 
the rs-fMRI data. The AFNI’s afni_proc.py command is a widely used tool to create single-subject processing 
scripts for fMRI. For reproducibility purposes, we show in the Supplementary Materials the processing steps and 
options passed to afni_proc.py to set up our pipeline. Briefly, after discarding the first twenty volumes, artifacts 
time-locked to the cardiac and respiratory cycles and slow blood oxygenation level fluctuations were respec-
tively modeled via RETROICOR50 and respiration volumes per time (RVT) regressors51. Further preprocessing 
included alignment of each EPI volume to the volume with minimum outlier fraction, spatial registration of the 
aligned time series data to the anatomical scan, and warping of the anatomical scan to Montreal Neurological 
Institute (MNI) template. This transformation was also applied to the functional data, which were subsequently 

Table 1.   Demographic and physiological data. p values are given for group comparisons using Mann-Whitney 
U test. BMI—body mass index, PWC150—physical work capacity during a heart rate of 150 (watt per kg body 
mass), LT—lactate threshold (watt per kg body mass), bpm—beats per minute, RMSSD—root mean squared of 
successive difference (miliseconds).

Athletes Non-athletes

p value(n=17) (n=21)

Biographical data

Age (years) 28.8±4.8 26.0±6.1 0.1

BMI (kg/m2) 23.0±1.6 24.1±3.1 0.24

Aerobic fitnes

PWC150 (W/kg) 3.5±0.5 1.6±0.3 < 0.001

LT (W/kg) 2.7±0.5 1.1±0.2 < 0.001

Autonomic indices

Heart rate (bpm) 54.0±8.7 72.7±9.8 < 0.001

RMSSD (ms) 63.3±27.4 46.1±17.4 < 0.05



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16743  | https://doi.org/10.1038/s41598-022-20064-3

www.nature.com/scientificreports/

smoothed with a 6-mm full-width half-maximum Gaussian kernel. Additionally, we applied a bandpass filter to 
retain frequencies between 0.01 - 0.1 Hz and reduced contributions of non-neural sources by regressing the fol-
lowing nuisance variables: (1) 12 motion regressors, (2) voxelwise local white matter regressors, and (3) 3 prin-
cipal components of ventricle signals (ANATICOR52). For the generation of white matter and ventricles masks, 
we used Freesurfer 7.1.0 on the MP-RAGE data (http://​surfer.​nmr.​mgh.​harva​rd.​edu).

Functional connectivity analysis.  We defined six CAN regions-of-interest (ROIs), vmPFC, dACC, and 
one on each hemisphere of the aINS and amygdala, as seed regions for rsFC. Our previous publication15 give 
details of how ROIs were defined. Briefly, the VMPFC and dACC ROIs were drawn as a sphere of 10 mm radius, 
respectively centered at MNI-coordinates, x = 0, y = 44, z = 14 and x = 5, y = 32, z = 36. Left and right aINS and 
amygdala ROIs were created using the Wake Forest University Pick Atlas tool for SPM. Figure 4 shows the loca-
tions of all six ROIs.

The average time series of each ROI was correlated via Pearson’s correlation with all brain voxels to generate 
rsFC maps. These rsFC maps were then transformed to Z maps using Fisher’s Z transformation and compared 
between groups, controlling for age and body mass index (BMI). The resulting statistical maps were corrected 
for multiple comparisons using cluster correction with AFNI’s 3dClustSim. This program computes a cluster-size 
threshold for a given voxelwise p-value threshold, so the probability of anything surviving the dual thresholds is 
at some α . To do this, 3dClustSim uses a Monte Carlo simulation procedure (10000 simulations) that considers 
the volume size and the level of smoothness associated with the rs-fMRI data. A minimal cluster-size threshold 
of 59 voxels was necessary for identifying significant differences at α <0.05 with an initial voxelwise threshold 
of p < 0.001.

Network‑based statistical analysis.  In addition to the seed-based rsFC approach, we investigated sig-
nificant between-group differences in the whole-brain network connectivity using the NBS framework32. The 
main goal of using NBS in our study was to identify potential differences in rsFC not accounted for by the pre-
defined seed regions. Individual connectivity matrices were generated by extracting the mean time series from 
400 ROIs based on the Schaefer parcellation53. With the NBS procedure, we identified components, or networks, 
using a two-sample t-test at each connection and applying a primary component-forming threshold at t > 5. To 
assign a statistical significance to each identified component, NBS first permutes n times the group assignments 
for participants, then identifies components from each permutation using the same t-threshold and generates 
an empirical null distribution of maximal component sizes. This distribution is then compared against the com-
ponent sizes identified without permuting the group labels to compute family-wise error (FWE)-corrected p 
values. We performed 10000 permutations and considered components with p < 0.01 FWE-corrected as statisti-
cally significant.

Figure 4.   Locations of ROIs used for seed-based rsFC analysis. dACC—dorsal anterior cingulate cortex, 
vmPFC—ventrolateral prefrontal cortex, aINS—anterior insula, AMYG—amygdala.
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Amplitude of low‑frequency fluctuations.  We calculated ALFF and fALFF using the afni_proc.py 
script. These are well-validated, data-driven metrics used to measure the intensity of regional spontaneous neu-
ral activity. fALFF is the fraction of ALFF in a given frequency band (here 0.01-0.1 Hz) and is less sensitive to 
physiological noise than ALFF33. fALFF/ALFF differ from rsFC in that they measure spontaneous local brain 
activity, while rsFC statistically assesses the degree of temporal coherence between spatially separated brain 
regions. We obtained fALFF/ALFF maps for each subject as part of the standard pipeline described above in 
the rs-fMRI preprocessing section. fALFF/ALFF computation is done after nuisance regression and prior pass-
band filtering steps in the pipeline. To compute both indices, the BOLD time series was first converted to the 
frequency domain using a Fast Fourier Transform, and the square root of the power spectrum averaged across 
the entire frequency interval. Finally, fALFF/ALFF were standardized by transforming each individual data to 
z-scores and then compared across groups, controlling for age and BMI.

Mediation analysis.  Given the relationship between heart and brain function, and the influence of regu-
lar physical training on both organs, we performed a mediation analysis across subjects to explore whether 
seed-based rsFC variations (outcome variable) might be driven by physical exercises (causal variable; PWC150 ) 
through heart rate (mediator). To this end, we used the mediate function implemented in the mediation R-pack-
age. Here, the mediation analysis proceeds in two steps. In the first step, we specified two statistical models: the 
mediator model for the conditional distribution of the mediator (heart rate) given the causal variable ( PWC150 ) 
and a set of the observed covariates (BMI and age) and the outcome model for the conditional distribution of 
the outcome (rsFC) given the causal variable, mediator and covariates. The validity of the assumptions for linear 
regression of the two models was ascertained using the gvlma function (gvlma R-package). In the second step, 
we fitted separately the mediator and outcome models and then entered their fitted objects into the mediate 
function which computes the indirect (amount of mediation of heart rate), direct (effect of PWC150 on rsFC after 
controlling for heart rate) and total effects (sum of indirect and direct effects). Considering the small sample size, 
we estimated confidence intervals for indirect, direct, and total effects using a percentile-based nonparametric 
bootstrap procedure with 1000 resamples to yield more valid estimates of the above quantities.

Data availability
The datasets used during the current study available from the corresponding author on reasonable request.
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