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Machine learning models 
for identifying predictors of clinical 
outcomes with first‑line immune 
checkpoint inhibitor therapy 
in advanced non‑small cell lung 
cancer
Ying Li1*, Matthew Brendel2, Ning Wu1, Wenzhen Ge1, Hao Zhang3, Petra Rietschel1, 
Ruben G. W. Quek1, Jean‑Francois Pouliot1, Fei Wang3 & James Harnett1

Immune checkpoint inhibitors (ICIs) are standard‑of‑care as first‑line (1L) therapy for advanced 
non‑small cell lung cancer (aNSCLC) without actionable oncogenic driver mutations. While clinical 
trials demonstrated benefits of ICIs over chemotherapy, variation in outcomes across patients has 
been observed and trial populations may not be representative of clinical practice. Predictive models 
can help understand heterogeneity of treatment effects, identify predictors of meaningful clinical 
outcomes, and may inform treatment decisions. We applied machine learning (ML)‑based survival 
models to a real‑world cohort of patients with aNSCLC who received 1L ICI therapy extracted from 
a US‑based electronic health record database. Model performance was evaluated using metrics 
including concordance index (c‑index), and we used explainability techniques to identify significant 
predictors of overall survival (OS) and progression‑free survival (PFS). The ML model achieved c‑indices 
of 0.672 and 0.612 for OS and PFS, respectively, and Kaplan–Meier survival curves showed significant 
differences between low‑ and high‑risk groups for OS and PFS (both log‑rank test p < 0.0001). 
Identified predictors were mostly consistent with the published literature and/or clinical expectations 
and largely overlapped for OS and PFS; Eastern Cooperative Oncology Group performance status, 
programmed cell death‑ligand 1 expression levels, and serum albumin were among the top 5 
predictors for both outcomes. Prospective and independent data set evaluation is required to confirm 
these results.

Lung cancer is the second most common cancer with an estimated 236,740 new cases expected to be diagnosed 
in 2022 in the  US1. More than 80% of lung cancer cases are attributed to non-small cell lung cancer (NSCLC) 
and most of these cases are diagnosed at advanced stages. Lung cancer continues to be the leading cause of 
cancer-related death, with 130,180 such deaths expected in 2022 in the  US1. However, using data from Surveil-
lance, Epidemiology, and End Results (SEER), Howlader et al.2 reported a significant reduction in mortality for 
lung cancer between 2013 and 2016, especially for the NSCLC subtype. This reduction was potentially associ-
ated with major advancements in treatment, including the development and approval of targeted therapies and 
immunotherapies.

Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1) or its ligand (PD-L1) 
have become the standard of care for first-line (1L) treatment of advanced NSCLC (aNSCLC) without action-
able oncogenic driver  mutations3. However, survival benefits compared with chemotherapy were not consistent 
in randomized trials among all ICIs in  aNSCLC4. Further, while some trial subpopulations may have better 
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survival, the trials may not have been statistically powered for formal evaluation of these  subgroups4. Patients 
from randomized trials may not be fully representative of the population seen in clinical practice, since trial 
inclusion and exclusion criteria often select a younger population with fewer comorbidities and who are more 
likely to achieve better outcomes under the care and close supervision requirements of the clinical trial. Hence, 
a better understanding of how patient outcomes may vary in a real-world population and identifying predictors 
of outcomes in the clinical practice setting is important when considering treatment decisions.

There has been a substantial increase in the availability of real-world clinical data resulting from the adoption 
of electronic health records (EHRs). This availability offers a timely and valuable alternative to traditional cohort 
studies (e.g., registries)5, with the potential advantage of efficiently collecting detailed longitudinal measurements 
of clinical characteristics and patient care in large populations. EHRs can provide real-world treatment and 
follow-up data, clinical laboratory test results, and increasingly, genetic and molecular profiling data. However, 
the complexity, diversity, and incompleteness of EHR data may introduce difficulties in discovering novel insights 
related to clinical outcomes, noting the EHR is designed for clinical practice management rather than research.

The Cox proportional hazard (CPH) model is the most frequently used method in oncology to identify 
prognostic factors that impact disease progression or patient  survival6,7. However, as this model assumes that 
the outcome is a linear combination of covariates, it may not account for complex nonlinear relationships of 
the covariates nor interactions among covariates. In addition, it is an inadequate model for handling the high 
dimensional data that may be available from EHRs. In recent years, machine learning (ML)-based approaches 
have been shown to complement CPH for improving cancer diagnosis, detection, prediction, and  prognosis8. 
Several studies have found that ML methods can perform at least as well as CPH in predicting patient  survival8–10. 
Moreover, ML explainability technique has emerged as a means to improve the transparency and interpretability 
of complex ML models, which are increasingly being recognized as essential tools in the healthcare domain. In 
order to garner trust and then adopt ML models, it is important that healthcare stakeholders understand how 
ML models arrive at a  decision9.

SHapley Additive exPlanation values (SHAP) are a type of ML explainability  technique11. SHAP values 
describe the importance of a variable when making a prediction for a specific data point, with positive or nega-
tive values indicating the direction of the effect. SHAP values have been used in many oncology-related ML 
studies and have shown promising  results12–14.

Statistical and machine learning models have been applied to aNSCLC-related clinical trials, registries, and 
real-world data to predict clinical outcomes, recommend individualized treatment, and identify cancer patients 
in different  stages15,16. For example, Siah et al.16 used methods including penalized logistic regression, random 
forest models, and multilayer perceptrons to analyze aggregated patient-level data from 17 randomized clinical 
trials evaluating molecular-targeted therapy and immunotherapy in patients with aNSCLC. Their study reported 
that biomarker status (i.e., presence of PD-L1, epidermal growth factor receptor [EGFR], or anaplastic lym-
phoma kinase [ALK]) was the strongest predictor of objective response, progression-free survival (PFS), and 
overall survival (OS). They also found that the performance of predictive models was poorest when applying 
the predictive models to patients on anti-PD-1/PD-L1 therapy compared with model performance on patients 
with chemotherapy or targeted therapy. The authors hypothesized that other clinical factors and composite 
multiomic signatures beyond PD-L1 positivity were at work in response to anti-PD-1/PD-L1 ICI therapy, but 
such clinical trial data were absent. She et al. applied the DeepSurv approach to SEER data to predict survival 
and provide individualized treatment recommendations in a population of patients newly diagnosed with Stages 
I to IV NSCLC between January 2010 and December  201517,18. Yuan et al.19 used penalized Cox regression to 
predict OS and identify significant predictors of survival among patients newly diagnosed with any stage of 
NSCLC from January 2000 through January 2015 based on structured and unstructured longitudinal EHR data. 
The unstructured data were processed using natural language processing, and patients were classified as having 
NSCLC according to an ML-based classification algorithm.

To our knowledge, there is a lack of studies exploring the performance of ML methods with the aim of iden-
tifying significant predictors of clinically relevant outcomes in real-world patients with aNSCLC who initiate 
1L ICI therapy using point of care data collected in the EHR. We developed ML-based survival models using a 
large US-based, nationally representative EHR-derived aNSCLC database to predict clinical outcomes includ-
ing OS and PFS among populations of interest. We compared the performance of multiple ML models using 
concordance index, hinge loss, hinge loss at 1 year, hinge loss at 2 years, and margin loss. Moreover, we identified 
significant predictors of clinical outcomes and used SHAP values to facilitate model interpretation based on the 
ML model with the best performance.

Methods
Data source and patient selection. This was a retrospective cohort study of patients with aNSCLC ini-
tiating 1L ICI treatment in the Flatiron Health aNSCLC database. The Flatiron Health EHR-derived database 
is a longitudinal database comprising de-identified patient-level structured and unstructured data curated via 
technology-enabled  abstraction20,21. During the study period (2015–2021), the Flatiron Health network con-
sisted of approximately 280 US cancer clinics (~ 800 sites of care). The data are subject to obligations to prevent 
re-identification and protect patient confidentiality. The institutional review board of WCG IRB, Puyallup, WA, 
approved the study protocol for data collection from the real-world cohort prior to conduct of the study and 
waived the need of informed consent.

A cohort of patients was selected who were newly diagnosed with aNSCLC between January 1, 2015, and 
November 30, 2020, and met the following inclusion and exclusion criteria: age ≥ 18 years at the time of aNSCLC 
diagnosis, received an ICI(s)-containing regimen as 1L therapy within 90 days after aNSCLC diagnosis (index 
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date = 1L initiation date), had ≥ 1 PD-L1 test on or before the index date, had no positive test results or receipt of 
targeted therapies for ALK/EGFR/ROS1/BRAF/KRAS oncogene alteration(s), and no clinical trial participation.

Two clinical outcomes were evaluated, of which the first was OS, defined as time from the index date to death. 
Patient-level structured data (EHRs, obituaries, and the Social Security Death Index) and unstructured EHR 
data (abstracted) were already linked to generate a composite mortality variable that has high sensitivity and 
specificity when compared to the National Death Index (NDI)22. The second outcome was PFS, defined as time 
from index date to the first real-world progression event or death. Real-world progression was available based on 
already abstracted information from the medical charts and defined as distinct episodes in the patient journey 
at which time the treating physician or clinician concluded that there was spread or worsening of the disease. 
Flatiron Health uses a clinician-anchored approach supported by radiology reports for assessing real-world 
progression, since this has been reported to be the optimal and most practical method for such  assessment23.

Variable pre‑processing. Several categories of candidate variables were considered in our models for 
predicting clinical outcomes, including demographics, medical history, tumor characteristics, comorbidities, 
metastatic sites, types of 1L treatment, concomitant medications, and laboratory measurements. The assessment 
time windows, which were determined by clinical experts, varied across variables, and their details are described 
below and in Table S1.

The demographic variables that were considered included age on the index date (i.e., initiation of 1L therapy), 
sex, payer type, race, and geographic region. Medical history included year of aNSCLC diagnosis, smoking status, 
number of different types of medical visits 90 days prior to index date, and the baseline Eastern Cooperative 
Oncology Group (ECOG) score, which was defined as the most recent value prior to or on the index day or 
the highest of the values if more than one ECOG score was reported on the same day. Tumor characteristics 
included diagnosis status, histology, and PD-L1 expression level, which was assessed based on all valid PD-L1 
percentage stain results on or before the index date; the highest PD-L1 percentage staining level was abstracted 
for each patient. Comorbidities, presence of other primary cancer, and site of metastasis were assessed based on 
all ICD-10 and ICD-9 diagnoses documented on or before the index date. Furthermore, comorbidities based on 
ICD-10 and ICD-9 codes were summarized using the Elixhauser comorbidity index score and categorized into 29 
different groups excluding 2 groups of metastatic cancer and solid tumor without  metastasis24. The concomitant 
medications used during the 90 days before or on the index date were grouped by the third level of anatomical 
therapeutic chemical (ATC3) codes and the number of different kinds of drugs was captured. For example, if a 
patient was on abacavir (J05AF06), dolutegravir (J05AJ03) and lamivudine (J05AF05), then the ATC3 variable 
of J05A for this patient was 3. ATC3 codes were removed if the ATC3 class was taken by < 10% of patients. Vital 
signs and laboratory tests were limited to those most frequently measured among the study population and 
were assessed in > 50% of patients within 90 days prior to or on the index date. Outliers were defined as lowest 
and highest 0.1% of the distribution for each assessed laboratory value, and as lowest 10% and highest 0.1% of 
the distribution for each assessed vital value using empirical analysis; outliers were then set as missing. Missing 
values were imputed using the following rules: (1) imputed mode value for categorical and binary variables; 
(2) imputed mean value for most continuous variables; (3) imputed zero for PD-L1 level variable, and then a 
binary variable was introduced to indicate missingness; (4) imputed zero for metastatic sites and comorbidities. 
If multiple values were available during the 90-day window prior to or on index date, the frequency of assess-
ments, average value, variation (i.e., standard deviation), and direction and magnitude of changes (i.e., slope) 
were calculated. Categorical integers were used for initial stage at diagnosis with Stage 0/I = 0, Stage II = 1, Stage 
IIIA = 2, Stage IIIB/C = 3, and Stage IV = 4. The other categorical variables were one-hot encoded and a category 
from the same categorical variable was dropped to minimize collinearity. We further excluded a set of features 
that showed > 85% correlation with the other features as measured using Pearson correlation.

Models. Survival modeling for time-to-event prediction was necessary due to right-censoring, or drop-out 
of patients from the cohort prior to event occurrence. Survival modeling requires a set of data in the form 
D = {(xi , δi , ti)}

N
i=1 where N is the total number of patients in the cohort, xi represents the features, δi represents 

the indicator variable with δi = 1 representing that an event occurred and δi = 0 indicating right-censoring, and 
ti is either the time of censoring or time of the event for patient  i25. We used 5 different approaches to perform 
time-to-event prediction in the presence of the right-censored data. The predicted median survival time from 
models was used for the evaluation.

The CPH model is a standard semi-parametric approach that computes the impact of a set of given features on 
the risk of an event occurring, and assumes the features are  independent26. We used a penalized Cox regression 
whereas the regularization parameter and the method to handle tied event times were  tuned27,28.

The accelerated failure time (AFT) model is a parametric model that can be used as an alternative to CPH 
 models29. There are several known distributions that have been used for this model including Weibull, log-
normal, log-logistic, and exponential. We used quantile–quantile (QQ) plots to examine which distribution 
fit our 2 outcomes, and chose the log-logistic AFT model, which considers the relationship between recovery 
time and covariates as a linear relationship. The rate of false positives and weights of penalization were tuned.

Survival support vector machine (SSVM) used in the study is able to handle right-censored survival data by 
combining ranking-based and regression-based loss, and its computational efficiency was improved by the use 
of kernel  functions30. Weights of penalization, the mixing parameter between ranking and regression loss, and 
optimizers were tuned.

Gradient-boosted decision tree (GBDT) was used to evaluate whether non-linear relationships identified by 
increasing model complexity would improve model  performance31. We used Cox loss for GBDT (GBDT-CPH). 
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Learning rate, number of regression trees, maximum depth of the individual regression estimators, and the frac-
tion of samples to be used for fitting the individual regression estimators were tuned.

DeepSurv is a CPH deep neural network and state-of-the-art survival method that can model increasingly 
complex relationships between patients’ characteristics and their risk of  failure18. We used modern deep learning 
techniques to optimize the training of the network including tuning hyper-parameters of learning rate, dropout 
rate, number of hidden layers, and number of nodes in each hidden layer.

The related hyperparameters for the above models were tuned using randomized searches of different param-
eter settings and fivefold cross-validation, and the results were reported based on held-out validation sets from 
cross-validation, also known as testing set.

Evaluation. Several metrics were used to quantify how well the model fit the data. First, we used the con-
cordance index (c-index), which measures how well the model ranks patients based on risk score compared to 
clinical outcomes of  interest32. Second, we used 2 metrics derived from Haider et al.33 called margin loss and 
hinge loss. Specifically, these are metrics that can handle censored data and quantify model performance in 
terms of distance of predicted time-to-events and actual time-to-events. Third, since most patients had an event 
within 2 years post-index, hinge and margin loss scores for patients with an event prior to 1 and 2 years post-
index were also reported to reveal whether a model could predict time-to-events accurately.

Explainability. Understanding how models generate their predictions is important in the clinical domain. 
We applied 2 different approaches to identify significant predictors. First, model-based importance scores were 
generated by different models, such as coefficients from Cox regression or tree-based feature importance scores 
from GBDT. However, a limitation of model-based scores is that some models only report whether a feature is 
important but do not show the directionality of the association, such as whether higher values lead to higher 
risk. To address this, we used SHAP values that are model  agnostic11. Specifically, we used KernelSHAP to assign 
SHAP values for important variables based on test data.

Results
Clinical characteristics. Figure 1 shows the attrition of the study population after applying inclusion and 
exclusion criteria. A total of 7868 patients met the study criteria for the OS cohort, of whom 6303 also had real-
world progression data and were included in the PFS cohort. As shown in Table 1, the mean follow-up time for 
the OS cohort was 350.5 days, and 4879 deaths were observed. The mean follow-up time for the PFS cohort was 
260.3 days, and 5073 progression events were observed, among whom 3809 died by the time of progression. 
The demographic and clinical characteristics were similar between the OS and PFS cohorts except for systemic 
treatment. For systemic treatment, the OS cohort had a lower proportion of patients who received ICI alone 

Figure 1.  Population attrition after applying inclusion and exclusion criteria. ALK, anaplastic lymphoma 
kinase; BRAF, B-Raf proto-oncogene; EHR, electronic health record; ICI, immune checkpoint inhibitor; KRAS, 
Kirsten rat sarcoma virus; NSCLC, non-small cell lung cancer; OS, overall survival; PFS, progression-free 
survival; ROS1, C-ROS oncogene 1.
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Variable
OS cohort
(n = 7868)

PFS cohort
(n = 6303)

Age on index date, years, mean ± SD 69.6 ± 9.4 69.6 ± 9.5

Sex, n (%)

Female 3371 (42.8) 2736 (43.4)

Male 4496 (57.1) 3567 (56.6)

Race, n (%)

Asian 117 (1.5) 92 (1.5)

Black or African American 703 (8.9) 568 (9.0)

Other 731 (9.3) 584 (9.3)

White 5514 (70.1) 4402 (69.8)

Unknown 803 (10.2) 657 (10.4)

Ethnicity, n (%)

Hispanic or Latino 239 (3.0) 194 (3.1)

Non-Hispanic 7629 (97.0) 6109 (96.0)

Practice type, n (%)

Academic 551 (7.0) 476 (7.6)

Community 7317 (93.0) 5827 (92.4)

Payer, n (%)

Commercial 4279 (54.4) 3460 (54.9)

Medicare 1693 (21.5) 1348 (21.4)

Medicaid 129 (1.6) 107 (1.7)

Other/unknown 1767 (22.5) 1388 (22.0)

Region, n (%)

Midwest 1085 (13.8) 854 (13.5)

Northeast 1504 (19.1) 1183 (18.8)

South 3505 (44.5) 2831 (44.9)

West 1090 (13.9) 860 (13.6)

Unknown 684 (8.7) 575 (9.1)

ECOG performance status before or on the index date, n (%)

0 1829 (23.2) 1476 (23.4)

1 2806 (35.7) 2241 (35.6)

2 1140 (14.5) 907 (14.4)

3 246 (3.1) 191 (3.0)

4 13 (0.2) 11 (0.2)

Missing 1834 (23.3) 1477 (23.4)

Histology, n (%)

NSCLC histology NOS 367 (4.7) 288 (4.6)

Non-squamous cell carcinoma 5155 (65.5) 4310 (68.4)

Squamous cell carcinoma 2346 (29.8) 1705 (27.1)

Smoking status, n (%)

History of smoking 7225 (91.8) 5792 (91.9)

No history of smoking 638 (8.1) 507 (8.0)

Unknown/not documented 5 (0.1) 4 (0.1)

Stage at initial diagnosis, n (%)

Stage 0/I 573 (7.3) 459 (7.3)

Stage II 467 (5.9) 298 (4.7)

Stage IIIA 1071 (13.6) 631 (10.0)

Stage IIIB/C 281 (3.6) 231 (3.7)

Stage IV 5264 (66.9) 4546 (72.1)

Unknown 212 (2.7) 138 (2.2)

Year of initial NSCLC diagnosis 2017.8 (1.9) 2018.1 (1.7)

Year of advanced NSCLC diagnosis 2018.3 (1.3) 2018.5 (1.2)

Systemic treatment, n (%)

ICI only 2685 (34.1) 2685 (42.6)

ICI and chemotherapy 4328 (55.0) 3592 (57.0)

ICI and other 855 (10.9) 26 (0.4)

Outcome

Continued
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and a higher proportion who received ICI in combination with drugs other than platinum-based chemotherapy 
including anti-VEGF and non-platinum-based chemotherapy (10.9% vs. 0.4% in the PFS cohort).

Model performance. The held-out validation set (also known as testing set) results presented in Table 2a 
for OS and Table 2b for PFS reflect the best performing models. Each model was parameterized using a rand-
omized search of different parameter combinations with a fivefold cross-validation to maximize the c-index. The 
parameter space for tuning is reported in Table S2. No single model consistently achieved the best performance. 
GBDT-CPH had better performance than the other models for OS and PFS on 7 out of 8 performance metrics. 
The regularized CPH model demonstrated performance similar to GBDT-CPH for the c-index in the testing 
data set but not for the other metrics. We used the median value of the predicted median survival time derived 
from the training data to categorize the test data into high- and low-risk  groups34. The Kaplan–Meier survival 
curves showed that the difference in both OS and PFS between the low- and high-risk groups was significant 
(log-rank test p < 0.0001 in Fig. 2), and the hazard ratios (HRs) for OS and PFS were 2.05 and 1.62 between high- 
and low-risk groups, respectively. The distribution of values for important predictors to differentiate high- and 
low-risk groups for both OS and PFS are shown in Table S3.

Explainability of GBDT‑CPH model. As shown in Tables 3 and 4, we extracted the top 20 significant 
predictors from the GBDT-CPH model and the SHAP values for predicting OS and PFS. Many of these predic-
tors were common between the models, including 18 out of 20 between GBDT-CPH and SHAP for OS (Table 3), 
and 17 of 20 between GBDT-CPH and SHAP for PFS (Table 4). The  R2 between OS and PFS was 0.408 (Fig. S1). 
The summary plots of the SHAP values for the top 20 most significant predictors of OS and PFS are shown in 
Fig. 3A and B, respectively. Furthermore, the Kaplan–Meier curves, HRs, and p values are reported for the top 
20 predictors of OS and PFS in Fig. S2.

Table 1.  Demographic and clinical characteristics of the OS and PFS cohorts. ECOG, Eastern Cooperative 
Oncology Group; ICI, immune checkpoint inhibitor; NOS, not otherwise specified; NSCLC, non-small cell 
lung cancer; OS, overall survival; PFS, progression-free survival; SD, standard deviation.

Variable
OS cohort
(n = 7868)

PFS cohort
(n = 6303)

Follow-up days, mean ± SD 350.5 ± 346.4 260.3 ± 297.4

Observed events, n (%) 4879 (62.0) 5073 (80.5)

Table 2.  Comparison of the models for OS and PFS based on held out validation sets. AFT, accelerated failure 
time; CPH, Cox proportional hazard; GBDT, gradient-boosted decision tree; SSVM, survival support vector 
machine.

(a) Overall survival

Model Hinge Loss Margin Loss
Hinge Loss—1 
Year

Hinge Loss—2 
Year

Hinge Loss—
Uncensored

Hinge Loss—
Censored

Concordance 
Index Train

Concordance 
Index Test

CPH 209.0 (204.2, 
213.9)

386.1 (376.6, 
395.7)

149.3 (139.5, 
159.1)

155.3 (146.2, 
164.3)

227.5 (219.5, 
235.5)

178.3 (160.5, 
196.1)

0.687 (0.685, 
0.689)

0.671 (0.660, 
0.681)

LogLogisticAFT 212.7 (208.3, 
217.1)

387.6 (377.7, 
397.5)

153.5 (144.3, 
162.8)

161.5 (153.7, 
169.4)

234.6 (227.7, 
241.5)

176.4 (160.2, 
192.7)

0.691 (0.689, 
0.693)

0.671 (0.662, 
0.679)

GBDT (CPH) 206.8 (199.1, 
214.5)

384.3 (371.7, 
396.9)

142.7 (135.6, 
149.8)

149.3 (142.4, 
156.2)

219.8 (211.4, 
228.1)

185.2 (170.1, 
200.4)

0.715 (0.712, 
0.719)

0.672 (0.654, 
0.689)

SSVM 349.5 (338.1, 
360.9)

527.6 (508.3, 
546.9)

146.2 (142.5, 
149.9)

236.0 (234.2, 
237.7)

255.4 (242.3, 
268.5)

502.5 (486.8, 
518.2)

0.692 (0.690, 
0.694)

0.671 (0.661, 
0.680)

DeepSurv 209.1 (203.3, 
215.0)

386.3 (377.0, 
395.5)

146.9 (139.1, 
154.8)

154.8 (146.0, 
163.6)

224.9 (214.6, 
235.3)

182.9 (166.1, 
199.7)

0.698 (0.691, 
0.706)

0.669 (0.656, 
0.681)

(b) Progression-free survival

Model Hinge Loss Margin Loss
Hinge Loss—1 
Year

Hinge Loss—2 
Year

Hinge Loss—
Uncensored

Hinge Loss—
Censored

Concordance 
Index Train

Concordance 
Index Test

CPH 176.7 (171.6, 
181.8)

263.8 (253.4, 
274.1) 81.5 (79.1, 83.9) 117.3 (114.8, 

119.8)
133.0 (128.2, 
137.9)

356.1 (327.4, 
384.7)

0.635 (0.633, 
0.638)

0.611 (0.598, 
0.624)

LogLogisticAFT 178.0 (173.7, 
182.4)

265.3 (255.7, 
274.8) 88.8 (85.0, 92.7) 120.9 (118.0, 

123.7)
137.8 (132.7, 
142.8)

343.3 (314.6, 
372.1)

0.642 (0.640, 
0.645)

0.612 (0.597, 
0.626)

GBDT (CPH) 176.0 (169.9, 
182.1)

262.9 (252.0, 
273.9) 77.6 (76.1, 79.1) 115.2 (113.2, 

117.2)
130.6 (127.8, 
133.3)

362.7 (333.7, 
391.7)

0.666 (0.663, 
0.668)

0.612 (0.602, 
0.622)

SSVM 259.3 (251.3, 
267.2)

346.3 (333.4, 
359.2)

128.7 (126.1, 
131.3)

187.8 (182.4, 
193.3)

196.6 (190.3, 
202.8)

517.1 (484.1, 
550.1)

0.643 (0.640, 
0.645)

0.612 (0.599, 
0.625)

DeepSurv 176.3 (170.7, 
182.0)

263.4 (252.7, 
274.1) 79.0 (75.6, 82.4) 115.6 (112.8, 

118.4)
131.0 (127.3, 
134.7)

362.5 (330.8, 
394.2)

0.652 (0.650, 
0.653)

0.612 (0.598, 
0.625)
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Discussion
We developed predictive models for OS and PFS in patients with aNSCLC receiving 1L ICI-containing regimens 
using regularized CPH and AFT models, and 3 different ML-based models including survival SVM, GBDT-CPH, 

Figure 2.  Kaplan–Meier curves for risk stratification. (A) Gradient-boosted Cox proportional hazard model 
for overall survival. (B) Gradient-boosted Cox proportional hazard model for progression-free survival. The 
average curves were generated using observed survival time.
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Table 3.  Top 20 predictors of overall survival identified by the gradient-boosted Cox proportional hazard 
model and SHAP values. SHAP indicates directionality of the importance (bold: higher values indicate better 
overall survival; italics: lower values indicate better overall survival). ECOG, Eastern Cooperative Oncology 
Group; PD-L1, programmed cell death-ligand 1; SHAP, SHapley Additive exPlanation.

Gradient-boosted Cox proportional hazard model SHAP

ECOG performance  status38 ECOG performance status38

Albumin serum  mean39 Albumin serum mean39

Body weight  slope38 Cough suppressants, excluding combinations with expectorants

PD-L1  percentage38 PD-L1 percentage38

Hematocrit  mean41 Body weight slope38

Cough suppressants, excluding combinations with expectorants Hematocrit mean41

Chloride  mean41 Chloride mean41

Neutrophil per  lymphocyte38 Age at index4

Lymphocyte count (fractionated)  mean38 Neutrophil per lymphocyte38

Alkaline phosphatase (ALP) mean Albumin serum slope39

Age at  index4 Lymphocyte count (fractionated) mean38

Urea nitrogen mean Metastasis site: bone/bone marrow

Albumin serum standard  deviation39 Albumin serum standard deviation39

Albumin serum  slope39 Body weight standard deviation38

White blood cell count mean Alkaline phosphatase (ALP) mean39

Metastasis site: liver/bile duct Total bilirubin serum mean

Body weight standard  deviation38 Lymphocyte count (fractionated) slope38

Metastasis site: bone/bone marrow Metastasis site: liver/bile duct

Lymphocyte count (fractionated)  slope38 Sex female

Monocyte count mean White blood cell count mean

Table 4.  Top 20 predictors of progression-free survival identified by the gradient-boosted Cox proportional 
hazard model and SHAP values. SHAP indicates directionality of the importance (bold: higher values 
indicative of better progression-free survival; italics: lower values indicative of better progression-free survival). 
ECOG, Eastern Cooperative Oncology Group; PD-L1, programmed cell death-ligand 1; SHAP, SHapley 
Additive exPlanation.

Gradient-boosted Cox proportional hazard model SHAP

PD-L1  percentage38 PD-L1 percentage38

Body weight  slope38 Chloride mean41

Lymphocyte count (fractionated)  mean38 Albumin serum mean39

ECOG performance  status38 ECOG performance status38

Albumin serum  mean39 Metastasis site: bone/bone marrow

Alkaline phosphatase (ALP)  mean39 Lymphocyte count (fractionated) mean38

Chloride  mean41 Alkaline phosphatase (ALP) mean39

Metastasis site: bone/bone marrow Body weight slope38

Neutrophil per  lymphocypte38 Neutrophil per lymphocypte38

Number of medication order Number of medication order

Urea nitrogen mean Cough suppressants, excluding combinations with expectorants

Cough suppressants, excluding combinations with expectorants ICI and chemotherapy42–44

Hematocrit  mean41 Urea nitrogen mean

Lymphocyte count (fractionated)  slope38 Total bilirubin serum mean

Protein total serum mean Lymphocyte count (fractionated) slope38

Lymphocyte count (fractionated) standard deviation Hematocrit mean41

Body weight standard  deviation38 Protein total serum mean

Total bilirubin serum mean Metastasis site: liver/bile duct

ICI and  chemotherapy42–44 Glucose mean

Albumin serum slope Opioids
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Figure 3.  Summary plots for SHAP values. (A) Overall survival. (B) Progression-free survival. For each 
predictor, one point corresponds to a single patient, and the x-axis represents the impact of the feature on the 
model’s output for the specific patient. A positive SHAP value contributes to death or disease progression, while 
a negative value contributes to OS or PFS. Predictors are arranged along the y-axis based on their ranking: the 
higher the feature is positioned in the plot, the more significant it is in the model. ECOG, Eastern Cooperative 
Oncology Group; ICI, immune checkpoint inhibitor; PD-L1, programmed cell death-ligand 1; SHAP, SHapley 
Additive exPlanation.
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and DeepSurv. We compared model performance using the c-index, hinge loss, hinge loss at 1 year, hinge loss 
at 2 years, and margin loss. The results showed that ML-based models can perform as well as or better than the 
regularized CPH approach on survival prediction tasks shown in Table 2. Summary plots of SHAP values for 
regularized CPH model were shown in Fig. S3. The regularized CPH model assumes that variables are completely 
independent and can only capture linear relationships between the variables and the clinical outcomes. This is 
unlikely the case for cancer progression, as prior literature reported that the interaction effect of different patient 
characteristics, demographics, and treatment choices would increase or decrease OS or progression  time35,36. 
Therefore, ML models that can consider non-linear relationships may be preferable. Our GBDT-CPH model 
achieved a c-index of 0.672 (95% CI, 0.654–0.689) and 0.612 (95% CI, 0.597–0.626) for OS and PFS, respectively. 
These findings are consistent with other results reported for ML applications in oncology, although those studies 
were based on different data sets and patient cohorts. For example, Siah et al.16 reported a c-index of 0.561 (95% 
CI, 0.516, 0.603) for PFS based on aNSCLC patients who were PD-L1 positive and receiving anti-PD-1/PD-L1 ICI 
therapy in a clinical trial. Similarly, She et al.17 reported a c-index of 0.739 (95% CI, 0.713–0.764) for OS based on 
newly diagnosed NSCLC patients in SEER, and Yuan et al.19 reported a c-index of 0.726 for OS based on newly 
diagnosed NSCLC patients using structured and unstructured EHR data. The patient populations in the latter 2 
studies were more heterogeneous than in our study since they used broader inclusion criteria (e.g., not limited 
to aNSCLC and a particular type of systemic treatment), which is easier to differentiate in terms of survival. It 
is worth mentioning that DeepSurv did not outperform any of the other methods for 7 metrics predicting OS 
and PFS. Shwartz-Ziv et al.37 compared neural network-based methods versus XGBoost for multiple different 
tabular data sets, and they found that deep learning models based on tabular data did not outperform XGBoost.

We found that the predictors identified by the GBDT and SHAP values highly overlapped with 18 and 17 of 
the top 20 predictors that were common for OS and PFS, respectively (Tables 3 and 4). This overlap indicates 
that SHAP value-based variable importance is consistent with the implicit variable importance scores derived 
by GBDT-CPH. The most significant predictors of OS were ECOG performance status at index, mean serum 
albumin, use of cough suppressants, PD-L1 percentage, and body weight slope, while for PFS, PD-L1 percentage, 
mean chloride, mean serum albumin, ECOG performance status at index, and bone/bone marrow metastases 
were most significant. It is also worth noting that some predictors were related to different aspects of the same 
clinical characteristics such as body weight slope and body weight standard deviation, and mean lymphocyte 
count (fractionated) and lymphocyte count (fractionated) slope.

The SHAP technique can potentially provide a personalized interpretation regarding each patient’s risk of 
progression and/or death. A higher SHAP value represents a greater contribution to predicted patient outcomes. 
Figure 3 shows that predictors tend to have long tails in both the OS and PFS models. For example, ECOG per-
formance status score at index has long right tails, indicating the same high ECOG value may contribute to high 
but different chance of death or progression for individual patients, which intuitively makes sense. Similarly, 
PD-L1 percentage has long left tails, indicating that similarly high percentages of PD-L1 expression contribute 
to low but different chance of death or progression for each patient.

Most of the top 20 predictors of OS are supported by the  literature4. Patients who are younger, have higher 
PD-L1 expression levels, and have lower ECOG performance status are known to have better outcomes with 
 ICIs38. A high neutrophil-to-lymphocyte ratio (NLR) has been associated with poorer OS and is hypothesized to 
reflect inflammation caused by the tumor and associated increased neutrophil infiltration that promotes cancer 
 progression38. Further, the potential protective effect of a higher body weight has been reported and may be 
attributed to the white adipose tissue involved in the host defense and inflammatory response that may increase 
sensitivity to anti-PD-1/PD-L1  therapies4,38. Decreased albumin is often associated with systemic inflammatory 
responses and reflects a poor nutritional status, while elevated alkaline phosphatase (ALP) levels are often found 
when cancer extends to the bone or  liver39. Both decreased albumin and elevated ALP levels have been inde-
pendently associated with cancer progression, and more recent research has demonstrated the potential role of 
the albumin-to-ALP ratio (AAPR) as a prognostic factor in NSCLC and small cell lung cancer, with decreasing 
AAPR associated with poorer  survival40. Limited information is available on the potential protective effects of 
higher chloride and hematocrit levels, and although elevated chloride has been reported to benefit survival, the 
rationale was not clearly  identified41. As cough is a common and early symptom of NSCLC that is often captured 
as a patient-reported outcome in clinical trials, one may expect that lower cough suppressant use is associated 
with better clinical outcomes, although this association has not been well documented.

The predictors identified for OS and PFS were similar, and 14 of 20 predictors identified by SHAP values 
were common between OS and PFS. The ECOG performance status score at index, PD-L1 percentage, and mean 
serum albumin were among the top 5 predictors for both OS and PFS. As PFS is often a surrogate endpoint for 
OS in cancer trials, it is not surprising that there was substantial overlap between predictors of PFS and OS and, 
therefore, similar clinical interpretation of the above OS predictors may be applied to those for PFS. Interest-
ingly, medication use including ICI + chemotherapy, number of medication orders, and opioid use were among 
the top 20 PFS predictors but not OS predictors. The latter 2 variables are likely indicators of comorbidity and 
management of pain symptoms due to metastases in more advanced cases, and thus, lower values of these vari-
ables are associated with better PFS as indicated by SHAP values. Use of chemotherapy with ICI has been shown 
to provide significant benefits over chemotherapy alone in randomized trials supporting FDA approvals for 
patients regardless of PD-L1  status42–44. Network meta-analyses also suggest that ICI + chemotherapy may offer 
advantages over ICI monotherapy in OS and  PFS45,46, hence, the association of ICI + chemotherapy with better 
PFS in our study appears to be consistent with the literature. However, it is unclear why this was not observed for 
OS; ICI + chemotherapy was ranked 82nd in significance for OS prediction and should be further evaluated. In 
addition, the frail patients tended to be treated with ICI monotherapy. It is also interesting to note that age and 
sex were among the top 20 predictors for OS, in contrast to PFS. These findings are consistent with those from 
a meta-analysis of 6 randomized trials comparing first-line ICI + chemotherapy versus chemotherapy alone in 
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which the authors reported only PD-L1 expression level (and neither age nor sex) was a significant predictor of 
PFS treatment benefit while younger age and female sex (as well as nonsquamous vs. squamous histology and 
anti-PD1 vs. anti-PD-L1 antibody therapy) were associated with greater OS benefit with ICI +  chemotherapy47. 
In contrast, Fig. S3 shows that among the top 20 predictors of regularized CPH for OS, being on a Medicare or 
commercial insurance plan and early stage (Stage I, II) at initial diagnosis but not at the index date were associ-
ated with longer survival. Similarly, among the top 20 predictors of regularized CPH for PFS, missing PD-L1 
value, being on a Medicare plan, and diagnosed as early stage (Stage I, II) of aNSCLC at initial diagnosis but not 
at the index date were associated with better PFS.

Our study has several limitations. First, since this study utilized a single, large US-based EHR data set where 
most of the data are contributed by community oncology practices, the results may not be generalizable to other 
practice settings. Second, EHR data are designed for clinical documentation rather than research, thus, missing 
data such as for ECOG performance status is not uncommon and misclassification is possible. Third, since this 
study did not extract all information from unstructured EHR data, comorbidities were based on diagnosis codes 
that may have been under- or mis-coded and not fully reflect the patient’s comorbidity status without further 
evaluation of physician notes. Fourth, the assessment window for candidate variables, the methods to exclude 
variables highly correlated with other variables, and exclusion of variables with high volume of missing values 
were not based on established criteria. The potential biases can be analyzed by introducing sensitivity analysis 
in future studies. Validation in other clinical data sets linked to a variety of other data types including genomic, 
patient reported, socioeconomic, etc. and ideally in a prospective study will confirm the generalizability of our 
findings.

Conclusions
We developed a GBDT-CPH model in combination with explainability techniques to identify predictors of 
OS and PFS among patients with aNSCLC who used ICI-containing regimens as 1L therapy. The GBDT-CPH 
model improved performance relative to traditional survival models for both OS and PFS. Predictors identi-
fied by GBDT-CPH and SHAP significantly overlapped for OS and PFS. Furthermore, we demonstrated that 
the identified predictors are mostly consistent with the published literature and/or clinical expectations. These 
results confirm that the application of ML models in combination with EHR data can provide insight regarding 
clinical outcomes among aNSCLC patients treated with 1L ICIs.

Data availability
The data that support the findings of this study have been originated by Flatiron Health, Inc. and are not publicly 
available, in order to safeguard the terms that ensure that the data remain de-identified. These de-identified 
data may be made available upon request and are subject to a license agreement with Flatiron Health; interested 
researchers should contact DataAccess@flatiron.com to determine licensing terms.

Received: 27 May 2022; Accepted: 8 September 2022

References
 1. National Cancer Institute. Cancer stat facts: Lung and Bronchus Cancer, accessed 3 May 2022); https:// seer. cancer. gov/ statf acts/ 

html/ lungb. html.
 2. Howlader, N. et al. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med. 383(7), 640–649 

(2020).
 3. Thai, A. A., Solomon, B. J., Sequist, L. V., Gainor, J. F. & Heist, R. S. Lung cancer. Lancet 398(10299), 535–554 (2021).
 4. Raphael, J. et al. Predictors of survival benefit from immune checkpoint inhibitors in patients with advanced non-small-cell lung 

cancer: A systematic review and meta-analysis. Clin. Lung Cancer 21(2), 106–113 (2020).
 5. Casey, J. A., Schwartz, B. S., Stewart, W. F. & Adler, N. E. Using electronic health records for population health research: A review 

of methods and applications. Annu. Rev. Public Health 37, 61–81 (2016).
 6. Altman, D. G., De Stavola, B. L., Love, S. B. & Stepniewska, K. A. Review of survival analyses published in cancer journals. Br. J. 

Cancer 72(2), 511–518 (1995).
 7. Mallett, S., Royston, P., Waters, R., Dutton, S. & Altman, D. G. Reporting performance of prognostic models in cancer: A review. 

BMC Med. 8, 21 (2010).
 8. Kim, D. W. et al. Deep learning-based survival prediction of oral cancer patients. Sci. Rep. 9(1), 6994 (2019).
 9. Moncada-Torres, A., van Maaren, M. C., Hendriks, M. P., Siesling, S. & Geleijnse, G. Explainable machine learning can outperform 

Cox regression predictions and provide insights in breast cancer survival. Sci. Rep. 11(1), 6968 (2021).
 10. Kurt Omurlu, I., Ture, M. & Tokatli, F. The comparisons of random survival forests and Cox regression analysis with simulation 

and an application related to breast cancer. Expert Syst. Appl. 36(4), 8582–8588 (2009).
 11. Lundberg, S., Lee, S. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on 

Neural Information Processing Systems (Long Beach, 2017).
 12. Liu, R. et al. Evaluating eligibility criteria of oncology trials using real-world data and AI. Nature 592(7855), 629–633 (2021).
 13. Cho, H. J. et al. ECMO use in COVID-19: Lessons from past respiratory virus outbreaks-a narrative review. Crit. Care. 24(1), 301 

(2020).
 14. Jansen, T. et al. Machine learning explainability in breast cancer survival. Stud. Health Technol. Inf. 270, 307–311 (2020).
 15. Esposito, D. B. et al. Development of predictive models to identify advanced-stage cancer patients in a US healthcare claims 

database. Cancer Epidemiol. 61, 30–37 (2019).
 16. Siah, K. W., Khozin, S., Wong, C. H. & Lo, A. W. Machine-learning and stochastic tumor growth models for predicting outcomes 

in patients with advanced non-small-cell lung cancer. JCO Clin. Cancer Inf. 3, 1–11 (2019).
 17. She, Y. et al. Development and validation of a deep learning model for non-small cell lung cancer survival. JAMA Netw. Open 3(6), 

e205842 (2020).
 18. Katzman, J. L. et al. DeepSurv: Personalized treatment recommender system using a Cox proportional hazards deep neural network. 

BMC Med. Res. Methodol. 18(1), 24 (2018).

https://seer.cancer.gov/statfacts/html/lungb.html
https://seer.cancer.gov/statfacts/html/lungb.html


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17670  | https://doi.org/10.1038/s41598-022-20061-6

www.nature.com/scientificreports/

 19. Yuan, Q. et al. Performance of a machine learning algorithm using electronic health record data to identify and estimate survival 
in a longitudinal cohort of patients with lung cancer. JAMA Netw. Open 4(7), e2114723 (2021).

 20. Ma, X., Long, L., Moon, S., Adamson, B. J. S. & Baxi, S. S. Comparison of Population Characteristics in Real-World Clinical 
Oncology Databases in the US: Flatiron Health, SEER, and NPCR. medRxiv. https:// www. medrx iv. org/ conte nt/ 10. 1101/ 2020. 03. 
16. 20037 143v2 (2020).

 21. Birnbaum, B., Nussbaum, N., Seidl-Rathkopf, K. et al. In Model-Assisted Cohort Selection with BIAS Analysis for Generating Large-
Scale Cohorts From the EHR for Oncology Research. arXiv: 2001. 09765 (2020).

 22. Zhang, Q., Gossai, A., Monroe, S., Nussbaum, N. C. & Parrinello, C. M. Validation analysis of a composite real-world mortality 
endpoint for patients with cancer in the United States. Health Serv. Res. 56(6), 1281–1287 (2021).

 23. Griffith, S. D. et al. Generating real-world tumor burden endpoints from electronic health record data: Comparison of RECIST, 
radiology-anchored, and clinician-anchored approaches for abstracting real-world progression in non-small cell lung cancer. Adv. 
Ther. 36(8), 2122–2136 (2019).

 24. Elixhauser, A., Steiner, C., Harris, D. R. & Coffey, R. M. Comorbidity measures for use with administrative data. Med. Care 36(1), 
8–27 (1998).

 25. Manduchi, L., Marcinkevičs, R., Massi, M.C. et al. In A deep variational approach to clustering survival data. arXiv: 2106. 05763 
(2021).

 26. Collett, D. Modelling Survival Data in Medical Research 3ed (Chapman and Hall/CRC, 2014).
 27. Breslow, N. Covariance analysis of censored survival data. Biometrics 30(1), 89–99 (1974).
 28. Efron, B. The efficiency of Cox’s likelihood function for censored data. J. Am. Stat. Assoc. 72(359), 557–565 (1977).
 29. Wei, L. J. The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis. Stat. Med. 

11(14–15), 1871–1879 (1992).
 30. Pölsterl, S., Navab, N., Katouzian, A. Fast training of support vector machines for survival analysis. In Paper presented at: Machine 

Learning and Knowledge Discovery in Databases (Cham, 2015).
 31. Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002).
 32. Harrell, F. E. Jr., Lee, K. L. & Mark, D. B. Multivariable prognostic models: Issues in developing models, evaluating assumptions 

and adequacy, and measuring and reducing errors. Stat. Med. 15(4), 361–387 (1996).
 33. Haider, H., Hoehn, B., Davis, S. & Greiner, R. Effective ways to build and evaluate individual survival distributions. J. Mach. Learn. 

Res. 21, 1–63 (2020).
 34. Wang, W. & Liu, W. PCLasso: A protein complex-based, group lasso-Cox model for accurate prognosis and risk protein complex 

discovery. Brief Bioinform. 22, 6 (2021).
 35. Johansson, A. L. V. et al. In modern times, how important are breast cancer stage, grade and receptor subtype for survival: A 

population-based cohort study. Breast Cancer Res. 23(1), 17 (2021).
 36. Sandler, A. et al. Treatment outcomes by tumor histology in Eastern Cooperative Group Study E4599 of bevacizumab with pacli-

taxel/carboplatin for advanced non-small cell lung cancer. J. Thorac. Oncol. 5(9), 1416–1423 (2010).
 37. Shwartz-Ziv, R., Armon, A. In Tabular data: Deep learning is not all you need. arXiv: 2106. 03253 v2 (2021).
 38. Brueckl, W. M., Ficker, J. H. & Zeitler, G. Clinically relevant prognostic and predictive markers for immune-checkpoint-inhibitor 

(ICI) therapy in non-small cell lung cancer (NSCLC). BMC Cancer 20(1), 1185 (2020).
 39. Sandfeld-Paulsen, B., Aggerholm-Pedersen, N. & Winther-Larsen, A. Pretreatment albumin-to-alkaline phosphatase ratio is a 

prognostic marker in lung cancer patients: A registry-based study of 7077 lung cancer patients. Cancers (Basel) 13, 23 (2021).
 40. Prelaj, A. et al. EPSILoN: A prognostic score using clinical and blood biomarkers in advanced non-small-cell lung cancer treated 

with immunotherapy. Clin. Lung Cancer 21(4), 365–377 (2020).
 41. Julian, C. et al. Real-world data prognostic model of overall survival in patients with advanced NSCLC receiving anti-PD-1/PD-L1 

immune checkpoint inhibitors as second-line monotherapy. Cancer Rep (Hobok.) 2022, 1578 (2022).
 42. KEYTRUDA (pembrolizumab) injection fiupi (Merck & Co., 2022).
 43. TECENTRIQ (atezolizumab) injection fiu (Genentech, Inc., 2022).
 44. OPDIVO (nivolumab) injection fiu (Bristol-Myers Squibb Company, 2022).
 45. Udayakumar, S. et al. Pembrolizumab alone or with chemotherapy for metastatic non-small-cell lung cancer: A systematic review 

and network meta-analysis. Crit. Rev. Oncol. Hematol. 173, 103660 (2022).
 46. Wang, L. et al. Efficacy and safety of anti-PD-1/PD-L1 in combination with chemotherapy or not as first-line treatment for advanced 

non-small cell lung cancer: A systematic review and network meta-analysis. Thorac. Cancer. 13(3), 322–337 (2022).
 47. Zhou, Y. et al. Immune-checkpoint inhibitor plus chemotherapy versus conventional chemotherapy for first-line treatment in 

advanced non-small cell lung carcinoma: A systematic review and meta-analysis. J. Immunother. Cancer. 6(1), 155 (2018).

Acknowledgements
Editing support was provided by E. Jay Bienen, PhD, an independent medical writer, funded by Regeneron 
Pharmaceuticals, Inc.

Author contributions
All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship 
of this article, take responsibility for the integrity of the work as a whole, and have given their approval for this 
version to be published. Conceptualization: Y.L., J.H., N.W., W.G., R.G.W.Q. Data analysis: Y.L., M.B., N.W., H.Z., 
F.W. Data interpretation: Y.L., J.H., N.W., W.G., R.G.W.Q., J.-F.P., P.R. Visualization: Y.L., M.B. Writing—original 
drafting: Y.L., M.B., J.H. Writing—revision and approval: Y.L., M.B., J.H., N.W., W.G., R.G.W.Q., J.-F.P., P.R.

Funding
This study was funded by Regeneron Pharmaceuticals, Inc.

Competing interests 
Ying Li, Ning Wu, Wenzhen Ge, Petra Rietschel, Ruben G. W. Quek, Jean-Francois Pouliot, and James Harnett 
are employees and shareholders of Regeneron Pharmaceuticals, Inc. Matthew Brendel contributed to the work 
through a paid internship at Regeneron Pharmaceuticals, Inc. Hao Zhang and Fei Wang have no conflicts of 
interest to declare.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 20061-6.

https://www.medrxiv.org/content/10.1101/2020.03.16.20037143v2
https://www.medrxiv.org/content/10.1101/2020.03.16.20037143v2
http://arxiv.org/abs/2001.09765
http://arxiv.org/abs/2106.05763
http://arxiv.org/abs/2106.03253v2
https://doi.org/10.1038/s41598-022-20061-6
https://doi.org/10.1038/s41598-022-20061-6


13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17670  | https://doi.org/10.1038/s41598-022-20061-6

www.nature.com/scientificreports/

Correspondence and requests for materials should be addressed to Y.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Machine learning models for identifying predictors of clinical outcomes with first-line immune checkpoint inhibitor therapy in advanced non-small cell lung cancer
	Methods
	Data source and patient selection. 
	Variable pre-processing. 
	Models. 
	Evaluation. 
	Explainability. 

	Results
	Clinical characteristics. 
	Model performance. 
	Explainability of GBDT-CPH model. 

	Discussion
	Conclusions
	References
	Acknowledgements


