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Development of a new and facile 
method for determination 
of chlorpyrifos residues in green 
tea by dispersive liquid–liquid 
microextraction
Hai Tian1, Yujie Feng2*, Xinfeng Yang1, Shuhuai Li1, Chaohai Pang1 & Chen Ma1

In this work a simple, rapid, and environmentally friendly method has been established for the 
determination of chlorpyrifos residue in green tea by dispersive liquid–liquid microextraction and 
gas chromatography-flame photometric detection. Some experimental parameters that influence 
extraction efficiency, such as the kind and volume of disperser solvents and extraction solvents, 
extraction time, addition of salt and pH, were investigated. And the optimal experimental conditions 
were obtained, quantitative analysis was carried out using external standard method. The correlation 
coefficient of the calibration curves was 0.999 with in 0.05 mg/kg to 5 mg/kg. The results showed 
that under the optimum conditions, the enrichment factors of the chlorpyrifos was about 554.51, 
the recoveries for standard addition fell in the range from 91.94 to 104.70% and the relative standard 
deviations was 4.61%. The limit of quantification of chlorpyrifos in green tea was 0.02 μg/mL at the 
signal/noise ratio of 3.

Tea originated in China and has a history of more than 6000 years. Together with cocoa and coffee, tea is one of 
the world’s top three beverages. Tea is produced by more than 45 countries and consumed by over two-thirds 
of the world 104.70%  and1, with China being the biggest tea producer and the second largest exporter in the 
 world2,3. There are many kinds of tea, green tea is an unfermented tea produced from fresh leaves of Camellia 
sinensis plant, green tea is the world’s leading tea, accounting for about 50% of the world’s total tea output. It has 
been a popular beverage for many centuries, particularly in East Asian countries, and is becoming increasingly 
popular worldwide mainly because of its flavour  quality4–6 and potential health  benefits7–9.

In the modern agricultural industry, owing to the occurrence of pests, diseases, and weeds, it is unavoidable 
to use plenty of pesticides (e.g. insecticides, fungicides, and herbicides) during the growth of crops to ensure 
high production and  quality10. During the period of tea growth and harvest, various of pesticides are applied to 
prevent injurious insect to guarantee the production and  cultivation11,12. Chlorpyrifos is a kind of broad spec-
trum, efficient, moderate toxicity, and long residual effect period of organophosphorus pesticides, has a good 
stomach toxicity and contact action, it is mainly used for the prevention and treatment of cotton, vegetables, tea, 
fruit and crops on the harmful insects and  mites13–15. However, the extensive use of chlorpyrifos in agriculture 
leaves chemical residues on food commodities, including tea leaves. This serves as source of chlorpyrifos residues 
in tea for  consumers16. Although pesticides play a significant role in increasing crop production, high levels of 
residual pesticides can result in adverse effects on the food safety and human  health17. In recent years, with the 
increasing concern on the health risks caused by pesticide residues, for the toxicity of chlorpyrifos has already 
had a relevant  research18–21, the safety of tea is receiving greater attention by both consumers and industry play-
ers. To ensure consumers’ health and safety, many countries and international organizations have established 
maximum residue levels (MRLs) for chlorpyrifos in tea. The MRLs of chlorpyrifos in tea set by European Union, 
United States, Japan and China are 0.01 mg/kg, 0.1 mg/kg, 10 mg/kg and 2 mg/kg, respectively.
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Detection of pesticide residues is essential in regulating and monitoring the levels of pesticide  contamination16. 
Currently. some classical analytical methods such as highperformance liquid  chromatography22, liquid chroma-
tography-mass  spectrometry23,24, gas chromatography-mass spectrometry (GC–MS)25,26 were used to analyze 
pesticide residue in  tea11. But, the factors such as low concentration of the analytes and the presence of different 
interferences in the matrices of samples limit the direct application of these instruments despite of their high 
 sensitivity27. Therefore, it is very important to extract/preconcentrate analytes from the sample matrix for sample 
pretreatment. Traditional extraction methods for pesticide residues are solid phase extraction (SPE)27,28 and 
liquid–liquid extraction (LLE)29. The main difficulties of these methods are the use of large amounts of toxic 
organic solvents (in LLE), the blocking of the cartridge, and the time consuming (in SPE)30,31.

To solve these problems, in 2006, Rezaee  etc32. first reported the dispersive liquid–liquid microextraction 
(DLLME) technology. In this technology, a mixture of extraction and dispersive solvents is hastily injected into 
the aqueous phase of the  analyte33. By doing so, analytes are extracted into the formed fine droplets of the extrac-
tion solvent. This sample pretreatment technology is integrates sampling, extraction and concentration into an 
organic whole, the extraction solvent is used only at μL-level, with a series of advantages including operation 
is simple, fast, low cost, high enrichment efficiency and environmentally  friendly34–36. At present, the DLLME 
method has been applied to the organophosphorus  pesticide37–43, carbamates  pesticide42–46,  neonicotinoid47, 
polycyclic aromatic  hydrocarbons48–51 and other organic pollutants analysis determination.

In this work, for the first time, an efficient sample pretreatment method based on DLLME was established for 
the extraction of chlorpyrifos residue in green tea, and then quantified by gas chromatography-flame photometric 
detector (GC-FPD). It should be pointed out, that DLLME technology has been reported for the determination of 
chlorpyrifos residue in fruits, vegetables and Chinese herbal  medicine52,53, but the application of this technology 
in the determination of chlorpyrifos residue in green tea has been rarely reported. The study screened efficient 
dispersant (acetone) and extracting agent (trichloroethane), by evaluating the salt concentration, extraction time, 
extraction volume, and so on factor’s influence on the extraction effect, such as to establish the best extraction 
conditions. For the first time, the method was applied to detection of chlorpyrifos in complex matrix sample-
green tea, the accuracy and sensitivity of the method satisfies the requirement of pesticide residue analysis. Ease 
of operation, low-cost, and rapidity can be the main advantages of the proposed method. This method was solved 
the problem of DLLME appaly to the analysis of complex matrix sample-green tea, and has important research 
value for the efficient extraction and detection of chlorpyrifos in green tea.

Materials and methods
Instruments and reagents. Gas chromatography was an Shimadzu GC-17A (Shimadzu, Japan com-
pany), equipped with a FPD detector and an analytical column DB-1701 Ultra Inert capillary column (30 m 
length × 0.53 mm I.D. × 1 μm film thickness, Agilent Technologies, USA); Pipetting gun 10–100 μL (German 
Brand); 10 mL glass centrifuge tube plug pointed bottom; 1 μL injection needle (Hamilton, Switzerland com-
pany).

Chlorpyrifos (certified analytical standard, 98%) was purchased from Dr. Ehrenstorfer company (Germany); 
Carbon tetrachloride(CTC), trichloroethane (TCE), chlorobenzene (MCB), acetone (analysis of pure) was pur-
chased from Shanghai chemical reagent co., LTD (Shanghai, China); Acetonitrile (chromatography, American 
Fesher company); Experiment with water for Milli-Q pure water (Milipore companies in the United States). 
Green tea to buy in a store.

Chlorpyrifos solution. The confecting of chlorpyrifos standards: according to samples from 102.0  mg 
chlorpyrifos standards in 100 mL volumetric flask and dissolved in acetone and constant volume, the mixture of 
1000 mg/L standard stock solution; Take the standard stock solution with acetone diluted 10 mg/L chlorpyrifos 
standard solution.

GC-FPD analytical condition. Injector temperature, 220 °C, splitless; detector temperature, 250 °C; oven 
temperature program starting at 170 °C, and ramp 20 °C  min−1 to 210 °C, 0.5 min at 210 °C, and then ramp 10 °C 
 min−1 to 230 °C, 3 min at 230 °C, a total of 7.5 min. Under these conditions chlorpyrifos retention times were 
approximately 4.4 min (Fig. 1).

Sample preparation. Take green tea sample 20 mL into 100 mL measuring cylinder, then add 4 g NaCl 
and 50 mL of acetone solution. thermal agitation after 3 min, room temperature let stand for 30 min, take 1 mL 
solution (dispersant), to be the next step.

DLLME procedure. Take 1 mL dispersant and 22 μL extraction solvent, in turn, add to 10 mL Sharp bottom 
plug centrifuge tube, gently shake. Then add 5 mL ultrapure water, gently oscillation, extracting agent evenly 
dispersed in the water phase, the formation of water/dispersant/extraction agent emulsion system, place 2 min 
at room temperature. Then to 3500 r/min 2 min, the centrifugal extraction agent deposit in the bottom of the 
centrifuge tube, trace sampler has absorbed 1 μL sedimentary facies, the GC analysis (Fig. 2).

Results
Effect of the type and volume of extraction solvent. This experiment select 3 kinds of organic sol-
vent is chlorobenzene (density of 1.10 g/mL), carbon tetrachloride (density of 1.59 mg/L) and trichloroethane 
(density of 1.35 g/mL), according to section 1.5 steps, the extraction effect of 3 kinds of extraction solvent on of 
chlorpyrifos has tested. The results show that (as shown in Fig. 3), trichloroethane has the highest concentra-
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Figure 1.  Chromatogram of chlorpyrifos.

Figure 2.  The schematic diagram of the sequential DLLME method.

(a) (b)

Figure 3.  Different type of extraction solvent, (a) Enrichment factors of different type of extraction solvent, (b) 
Recoveries of different type of extraction solvent.
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tion coefficient and good recovery, extraction effect was better than the other two. so choose trichloroethane as 
extracting agent in this project.

The extraction solvent volume affect the enrichment ratio of DLLME directly, thus affecting recovery, 5 extrac-
tion volume have selected in this experiment: 20, 22, 25, 30 and 35 μL. Results shows, that with the increase of 
the extractant volume, recoveries first increases then decreases by chlorpyrifos, 22, 25 μL are can achieve ideal 
recovery, but with increase of the extractant volume, the enrichment factor decreases obviously. As 22 μL of the 
extractant volume, the recoveries and enrichment factor are better (Figs. 4, 5).

Effect of the type and volume of dispersant solvent. This experiment choose acetonitrile and ace-
tone as dispersant, mix with 22 μL trichloroethane respectively, and add 5 mL water. The acetone extraction 
efficiency highest, the acetonitrile extraction rate is lower than acetone, and the peak has interference (Figs. 6, 
7). So the experiment choose acetone as dispersant.

Experiment with different volume (700, 800, 900 and 1000 μL) of acetone and 22 μL trichloroethane as extraction 
system, after extraction of centrifugal, sample injection 1 μL sedimentation volume, of the peak area increased with the 
increase of dispersing agent volume. The result is due to the volume of acetone increased, makes a certain amount of 
trichloroethane more dispersed in water, the the extraction efficiency relative higher. When acetone volume is 1000 μL, 
peak area reached the highest. So select volume of acetone is 1000 μL (Figs. 8, 9).

Effect of extraction time and centrifugal time. For this study, chose 3500 r/min, and the centrifugal 
time is 2, 5, and 10 min, with the increase of the centrifugal time, the peak area of chlorpyrifos keep the same 
level, centrifugal time had no significant effect on the extraction efficiency. extraction agent of scattered in the 
mixture as long as through the short time of centrifugal can deposit to the bottom of the tube, it is one of the 
great advantages in this DLLME method, so choose 2 min is more timesaving (Fig. 10).

Effect of concentration of salt. In this experiment, add NaCl change salt concentration in the water 
phase, concentration of 0%, 2% and 5%. Results (Fig. 11), a mixture of the increase of the extraction solvent 
solubility in the aqueous phase with the salt concentration increased, but volume of precipitated phase increased 
in the end, affecting the extraction efficiency of method, so the experiment without salt.

Figure 4.  Enrichment factors of different volume of extraction solvent.

Figure 5.  Recoveries of different volume of extraction solvent.
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Method validation. Th linear range of chlorpyrifos was 0.1–10 mg/L. Results show, in the optimized con-
ditions, the peak area of chlorpyrifos had good linear relationship within a certain range, the Regression equa-
tion was Y = 16086x − 1448, the regression coefficients were greater than 0.999. The LOD was 0.02 μg/mL. The 
enrichment factor was 554.51. The recoveries for standard addition was 98.07%, the intra-day relative standard 
deviations (RSD, n = 4) was 4.61%, the veracity and accuracy of the method can meet the requirement of pesti-
cide residue analysis (Table 1).

)  
   

Figure 6.  Enrichment factors of different type of dispersant.

)

Figure 7.  Recoveries of different type of dispersant.

)

Figure 8.  Enrichment factors of different volume of dispersant.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15542  | https://doi.org/10.1038/s41598-022-20021-0

www.nature.com/scientificreports/

Discussion
In the DLLME method, extracting agent is one of the important factors affecting the extraction efficiency, then 
the main principle of choose it is: the extraction ability of extracting agent on the target have higher; Density 
is greater than the water and insoluble in water; To target without interference, the qualitative and quantitative 
analysis of the target will not affected.

)

Figure 9.  Recoveries of different volume of dispersant.

Figure 10.  Recoveries of different centrifugal time.

Figure 11.  Recoveries of different salinity.
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Dispersing agent should be able to dissolved extraction agent completely, and soluble in water. Effect of dis-
persant is maximize for extraction agent with the contact area of the sample solution, its solubility in water, the 
greater the formation of droplets will be smaller, and the bigger with the target contact area, and the extraction 
efficiency higher. Volume of dispersant will affect the dispersion degree of extraction agent in water, which affects 
the sedimentation volume, which influence the extraction efficiency.

The extraction time in this method, refers to after the dispersant, extraction agent and ultrapure water mixture 
to before the centrifugal a period of time. This experiment select extraction time is 1, 3, and 5 min. The results 
showed extraction time had no significant effect on the extraction efficiency, and extraction time 1 min enough 
to form emulsion to the water phase of target transfer to the organic phase to two phase equilibrium.

Salt effect is often in the process of microextraction evaluation of a parameter, the change will change the 
concentration of salt in the water solution of ionic strength, is different of the extraction effect. The increase of 
ionic strength makes increase solubility of extractant in the aqueous phase, to improve recovery, but increase the 
volum of the sedimentary facies after the centrifugal, the concentration decreases of the target in sedimentary 
facies, enrichment coefficient dropped significantly.

Comparison of the method with other approaches. The analytical characteristics (Recovery, EF, 
RSD, and LOD) of the method and other previously published approaches for the analysis of the target analytes 
in different samples are compared and summarized in Table 2. The repeatability of the method is good and the 
RSDs are comparable or better than the others. The Recoverys of the method are comparable or better than 
those of the other mentioned methods. As it is seen from the results, in comparison with other approaches, this 
method shows very high EFs. In addition, compared with other methods, this method also has the advantages of 
less solvent consumption, less pretreatment time, and less sample requirement.

Conclusions
In the present work, a simplified and rapid sample pretreatment procedure based on DLLME was introduced 
as an efficient method for the extraction of chlorpyrifos from green tea sample before their determination 
by GC-FPD. In this research, for the first time, the acetone was used not only as solvent to extract but also 
dispersant, trichloroethane was used as the extractant. the flame photometric detector is highly selective to 

Table 1.  Recovery assay, Recovery assay, precision (repeatability) and trueness of target compounds in 
greentea.

Spiked sample

RSD (%) (N = 4)1 2 3 4 Average

Volume (μL) 9.50 8.20 8.50 9.40 8.90 6.31

Sampling concentration (ng/mL) 9.68 12.77 11.51 10.41 11.09 10.52

Enrichment factor 483.90 638.39 575.25 520.51 554.51 10.52

Recovery (%) 91.94 104.70 97.79 97.86 98.07 4.61

Table 2.  Comparison of the presented method with the other methods used in preconcentration and 
determination of the studied pesticides. a Directly suspended droplet microextraction–gas chromatography–
electron capture detector. b Multi-walled carbon nanotubes–solid phase extraction–gas chromatography–
nitrogen phosphorus etection. c Poly (ε-caprolactone) grafted graphene quantum dots–based dispersive 
solid phase extraction–dispersive liquid–liquid microextraction–gas chromatography–flame ionization 
detection. d Dispersive solid phase extraction–dispersive liquid–liquid microextraction–gas chromatography–
flame ionization detection. e Sequential dispersive liquid–liquid microextraction–high performance liquid 
chromatography–ultraviolet detector. f Headspace–solid phase microextraction–gas chromatography–
mass spectrometry. g Dispersive solid phase extraction–dispersive liquid–liquid microextraction–gas 
chromatography–flame ionization detection. h Dispersive liquid–liquid microextraction–gas chromatography–
flame ionization detection.

Sample Pesticide LOD (ng/mL) EF RSD (%) Recovery (%) Method Ref.

Tea Fenpropathrin 0.3 – 12.4 86.9–98.3 DSDME–GC–ECDa 54

Fruit juices Chlorpyrifos 2.89 – 7.3 73–82 MWCNTs–SPE–GC–NPDb 55

Fruit juices Chlorpyrifos 0.63 714 4.8 87–94 PCL–g–GQDs–based DSPE–
DLLME–GC–FIDc

56

Fruit juices Chlorpyrifos 0.98 663 5.2 86–99 DSPE–DLLME–GC–FIDd 57

Water Haloxyfop-R-methyl 4.35 171 3.12 78.4 SDLLME–HPLC–UVe 58

Wine Oxadiazon 0.1 – 13.5 – HS–SPME–GC–MSf 59

Different drinks and liquids Phthalate esters and antioxidants 0.67–1.24 205–235 3.8–5.7 80–115 DSPE–DLLME–GC–FIDg 60

Tea Chlorpyrifos 20 554.51 4.61 98.07 DLLME-GC-FPDh This method
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organophosphorus compounds, so the organic solvent can directly into the chromatographic instrument analysis 
after DLLME operation, the interference of the impurity on the analysis is quite small, and a better extraction 
effect was obtained under the optimized extraction condition. As the outcomes indicate, the method has some 
remarkable characteristics such as high EF (554.51), low RSD (4.61%), and good Recovery (98.07%). These char-
acteristics reveal that the established analytical approach can be reliably used for the determination of trace levels 
of chlorpyrifos in green tea sample, and all kinds of analysis parameters meet the requirements of the pesticide 
residues analysis for agricultural products and the sensitivity, it to broaden the application range of the DLLME 
techniques also is of great significance.
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