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An efficient and accurate 
interpolation method 
for parametric curve machining
Juan Wei1,2*, Chao Sun1, Xue‑jing Zhang1, Er‑jie Wang1 & Deify Law3

A subsection interpolation method based on the curve curvature threshold is proposed to resolve the 
incompatible problem of machining accuracy and machining efficiency in parametric curve machining. 
In the pre‑interpolation stage, the curve curvature threshold is calculated based on geometric and 
kinematic constraints. The subsection interpolation key points and their nominal velocities are then 
determined from the curvature threshold points and the start and end points of the curve, and the arc 
length of each subsegment can be calculated based on the adaptive Simpson method. As a result, the 
S‑type speed planning algorithm and the bidirectional speed scanning algorithm are used to update 
and realize the global speed curve to reduce the speed fluctuation. In the real‑time interpolation 
stage, the curve interpolation parameters are calculated using the parametric modified second‑order 
Runge–Kutta method, which could improve the interpolation accuracy significantly and also shorten 
the interpolation time. Finally, it is found using numerical cases that the proposed method can smooth 
the overall interpolation speed, reduce the speed fluctuation effectively and improve the real‑time 
performance of the interpolation.

The Non-Uniform Rational B-Spline (NURBS) has good local control ability and shape expression ability, and 
has been widely used in the construction of free curves and  surfaces1. The interpolation technology based on 
NURBS can directly interpolate parametric curves without separating the curves into a large number of straight 
lines and arcs, thus avoiding frequent acceleration and deceleration in the processing process. It would improve 
greatly the machining accuracy and efficiency. With the increasing demand for machining complex surface 
parts, complex surface modeling and machining technology based on NURBS technology has become the key 
technology for achieving high-efficiency precision machining and has attracted more and more attention from 
scholars. Wei et al.2 studied the integral impeller modeling and tool path planning based on NURBS curve and 
surface, and realized the design and processing of complex surface parts based on unified NURBS parameters, 
but its processing process depended on high-grade NC machine tools with NURBS interpolation function.

At present, the research on NURBS interpolation at home and abroad mainly focuses on two aspects: speed 
planning algorithm and real-time spline interpolation parameter calculation. In numerical control (NC) machin-
ing, the tool moves along the given path of the parameter curve, and due to the kinematic and geometric 
constraints, the preset speed planning method can ensure the smooth splicing of multiple speed curves. Wang 
et al.3–5 used constant feed speed to interpolate the parameter curve, the method is conducive to the stability of 
the processing process for the curve with little change in curvature, but for the parameter curve with variable 
curvature, the processing accuracy and processing efficiency cannot be considered. Nam et al.6–9 proposed an 
algorithm that self-adaptive S-type acceleration/deceleration planning for meeting the kinematic constraints 
of the machine tool to realize the smooth transition of feed speed, so this method is one of the most widely 
used speed planning algorithms in the field of NC  machining10–14. Lee et al.15 and Wang et al.16 put forward the 
speed planning method of trigonometric function to realize the smooth change of acceleration and jerk, but its 
processing process only reaches the extreme value of motion parameters at individual times, can not make full 
use of machine tools, and the motion efficiency is low. Liu et al.17 added positive and negative speed verification 
points in the forward-looking interpolation module based on S-type acceleration and deceleration planning, and 
determined whether to call the reverse interpolation verification point interpolation according to the speed judg-
ment conditions in the real-time interpolation stage. This method can effectively improve interpolation efficiency. 
Zhang et al.18 used five B-sample curves to generate a toolpath with smooth curvature based on theoretical feed 
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rate constraints bounded by axis acceleration and impact. Chen et al.19 proposed a five-polynomial acceleration/
deceleration control algorithm, which is able to achieve flexible control of acceleration. LI et al.20 used Sigmoid 
function feedrate profile, which is more concise compared with the polynomial profile and more efficient com-
pared with the trigonometric profile.

The relationship between NURBS curve arc length and parameters is nonlinear, so it is necessary to express 
the relationship by numerical method. When interpolating the curve, it is necessary to calculate the curve 
parameters corresponding to the interpolation point of each interpolation cycle according to the preset speed 
programming method. Usually, the interpolation point parameters are calculated by the direct method or iterative 
method, and the direct method mainly uses Taylor series expansion. Shipitalni et al.21 used the first-order Taylor 
expansion method to calculate the parameters of each interpolation point for the first time, but the interpola-
tion error was large because of abandoning the higher-order term. Yang et al.22 adopted the second-order Taylor 
expansion, which improved the interpolation accuracy. However, the introduction of the second-order derivative 
had a large amount of computation, which affected the real-time performance, and Taylor expansion inevitably 
introduced truncation errors. Han et al.23 used the Runge–Kutta method to calculate interpolation parameters. 
The accuracy of this method is relatively high, but the first derivative must be solved four times every time. Peng 
et al.24 and Ji et al.25 used Adams–Bashforth and Adams–Moultou methods to calculate interpolation parameters 
in the real-time interpolation stage, which can consider both interpolation accuracy and interpolation efficiency. 
The interpolation point parameter iteration method refers mainly to the "estimation–correction" method, which 
obtains the deviation between actual and ideal parameters through the estimation, and then corrects the devia-
tion to a given range through repeated iteration. Zhao et al.26 proposed an interpolation parameter calculation 
method with arc length correction and feedback correction, which can improve interpolation efficiency and 
accuracy. Ni et al.27 proposed a quintic polynomial prediction algorithm, and estimated the target arc length in 
the second-order Taylor expansion to improve the calculation accuracy and iterative convergence speed. The 
iteration method needs to be repeated in each interpolation cycle, and the number of iterations is not fixed, which 
affects the real-time performance of interpolation.

In this paper, the data sampling interpolation algorithm is used to process the parameter curve in two stages: 
pre-interpolation and real-time interpolation. In the pre-interpolation phase, the minimum value of the chord 
error constraint and the velocity, acceleration and acceleration constraints are used as the curve curvature thresh-
old. Setting the points on the curve where the curvature equals and exceeds the curvature threshold as key points, 
dividing the curve into curve segments based on the key points and calculating the nominal velocity at each key 
point according to the constraints. The S-shaped velocity planning method is used to achieve continuous and 
bounded acceleration within each curve segment; at each key point the velocity two-way scanning method is used 
to achieve continuous and bounded acceleration in adjacent curve segments. At the same time, in order to further 
improve the interpolation calculation accuracy and efficiency, a parametric modified second-order Runge–Kutta 
method is proposed in the real-time interpolation stage, which uses only three first-order derivative calculations 
after introducing the parameter correction values to obtain a high calculation accuracy, avoiding the complex 
calculation volume of traditional interpolation algorithms. The combination of the proposed velocity planning 
method and the parametric interpolation algorithm can also reduce the amount of interpolation calculations 
while ensuring interpolation accuracy and improving interpolation real time performance. Finally, the validity 
of the proposed interpolation algorithm is discussed by simulation.

NURBS curve interpolation
NURBS curve definition. The general expression of the NURBS  curve28:

where k is the number of times of the NURBS curves, u is the curve parameter, Pi is the control vertex, and these 
points can form a NURBS curve control polygon, ωi represents the weight corresponding to the control vertex, 
Ni,k(u) is the ith k-degree B-spline basis function defined on the non-periodic and non-uniform node vector U. 
Defined by the De-Boor recursion as:
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0, . . . 0,
� �� �

k+1

uk+1, . . . , un, 1, . . . , 1
� �� �

k+1






 is a monotonous sequence of reduced real numbers.

NURBS interpolation parameters calculation. Since there is no exact precise analytical relation-
ship between curve parameters and arc length, it is necessary to select an appropriate numerical interpola-
tion method to obtain curve parameters, and then generate interpolation position instructions. In this paper, a 
parameter-modified second-order Runge–Kutta interpolation algorithm is used to calculate real-time interpola-
tion parameters. Firstly, the second-order Runge–Kutta method can be used to calculate the initial value ũi+1 of 

(1)C(u) =

n∑

i=0

Ni,k(u)wiPi

n∑

i=0

Ni,k(u)wi

, 0 ≤ u ≤ 1.

(2)
Ni,0 =

{
1, ui ≤ u ≤ ui+1

0, otherwise

Ni,k(u) =
u− ui

ui+k − ui
Ni,k−1(u)+

ui+k+1 − u

ui+k+1 − ui+1

Ni+1,k−1(u).



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16000  | https://doi.org/10.1038/s41598-022-20018-9

www.nature.com/scientificreports/

the interpolation parameters in the next interpolation cycle, which is based on the interpolation speed V(ui) and 
interpolation parameter ui in the current interpolation cycle:

where T is the interpolation period, C′(ui) is the first order derivative of the NURBS curve, K1 and K2 are given by

According to Eq. (3), the initial parameter value of the new interpolation point can be obtained, and then the 
parameter modification value �ui+1 can be calculated. To minimize the speed fluctuation, the actual interpola-
tion displacement in the interpolation period should be equal to the ideal interpolation displacement, that is, 
the following equation should be satisfied:

The first-order Taylor series expansion of the NURBS curve parameter equation C(u) at the initial parameter 
value ũi+1 can be obtained as:

Substituting Eq. (7) into Eq. (6) yields

With the help of the previous relation, Eq. (8) can then be written as

In the Eq. (9), the coefficients c1 , c2 and c3 are defined as

Two roots �ui+1,1 and �ui+1,2 of the parameter correction value �ui+1 can be obtained by solving the quad-
ratic Eq. (9):

Since the Runge–Kutta method can achieve second-order accuracy, the coefficient c3 ≈ 0 holds. Therefore, 
�ui+1,1 ≈ 0 , �ui+1,2 ≈ − c2

c1
 . To meet the stability requirements of the interpolation algorithm, if Eq. (9) has 

no real solution, the parameter correction value is set to 0, if Eq. (9) has a real solution, the smaller solution is 
taken as the parameter correction value. That is, the parameter modification value �ui+1 can be calculated as:

Therefore, the parameter of the next interpolation point of the curve can be obtained by adding the initial 
parameter value and the parameter correction value:

Remark According to the above calculation process of interpolation parameters, it can be found clearly that the 
parametric modified second-order Runge–Kutta interpolation algorithm developed here only performs three first-
order derivative calculations and does not carry out higher-order derivative operations. As a result, the calculation 
accuracy can be improved on the premise of reducing the cost of computations.
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Acceleration and deceleration control method
The real-time control and planning of the feed speed are the two key factors to realize the high precision and 
high efficiency of CNC machining. The flexible acceleration and deceleration control can make the tool and 
machine tool parts run smoothly in the machining process, without the phenomenon of shock, impact, out-of-
step, and so on.

In this paper, the S-type curve acceleration/deceleration planning method is chosen to realize curve inter-
polation speed control, and the parameter-modified second-order Runge–Kutta method is adopted to calculate 
interpolation point parameters to realize real-time interpolation. The interpolation process is shown in Fig. 1.

In the pre-processing stage, through the bow of conditions such as high error and normal acceleration calcu-
lated curvature threshold, and then find out the point of maximum curvature and curvature point of the threshold 
value is determined as the key point is not less than, according to the key points of NURBS curve is divided into 
several NURBS period, each section of the arc length calculation, based on S-type velocity planning algorithm 
smooth connecting paragraphs beginning and end of the curve of the nominal speed, The final interpolation 
velocity curve is obtained by bidirectional velocity scanning. Finally, the second-order Runge–Kutta interpolation 
algorithm with parameter modification proposed in Section 1.2 is used to obtain real-time position instructions 
according to the planned velocity curve to complete the interpolation.

Interpolation preprocessing. NURBS curve interpolation uses chord length to approximate arc length, 
so chord error will be generated, as shown in Fig. 2. The close circular arc is commonly used to approximate the 
curve at the current interpolation point C(ui) , and the nominal velocity vui at the point C(ui) can be obtained 
from the close circular radius ρi of curvature and the chord error δi as  follows29:

(14)vui ≤
2

√

δ2i − 2ρiδi

T
.

Figure 1.  The overall process of the interpolation method.
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Similarly, after considering the normal acceleration and normal jerk, the nominal velocity vri can be given 
by Eq. (15)30.

where δ0 is the set maximum chord error, T is the interpolation period, am and jm are the maximum acceleration 
and maximum jerk allowed by the machine.

Denote κ = 1
ρ

 , when vri is equal to maximum federate vm , the curvature threshold of the parameter curve κ0 
can be obtained as shown in Eq. (16).

After the curve curvature threshold κ0 is obtained, all the curvature maximum points on the curve are 
obtained. If the curvature at this curvature maximum point is also satisfied that k is greater than or equal to κ0 , 
these points are determined as the key points. The resulting key points including the start and end points of the 
curve are all the key points, as shown in Fig. 3. Then, set the nominal speed at the first and last key points to 
zero and obtain the nominal speed vri of each key point except the first and last key points from Eq. (15). The 
curve is divided into several sections at key points, and the endpoint velocity of each sub-section is the nominal 
velocity vri . Then, the arc length S of each sub-section is determined by using the self-adaptive Simpson method. 
Finally, the velocity function of the starting and ending boundary velocities is determined according to the S-type 
acceleration and deceleration method and the bidirectional velocity scanning algorithm.

S‑type acceleration and deceleration control. The NURBS curve is divided into several sub-segments, 
and the starting and ending velocities of each sub-segment are connected according to the preset acceleration 
and deceleration method. To realize high quality and efficient machining, the S-type acceleration and decelera-
tion control algorithm is given below.

When the maximum values of acceleration and jerk are amax and Jt , and the initial and ending velocities are 
vs and ve , the s-shaped acceleration and deceleration planning outline are shown in Fig. 4.

In order to ensure acceleration and deceleration efficiency, the paths of each sub-section are connected 
according to the arc length s, starting speed vs and ending speed ve of each section of the curve. The four common 
speed curves are shown in Fig. 4. When the sub-arc length is long, the velocity curve is of the type of elevated 
acceleration-constant rate-reduced acceleration (reduced acceleration-constant rate-reduced deceleration). When 

(15)vri = min




2

�
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T
,
√
amρ,

3

�

jmρ2
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,
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.

Figure 2.  Schematic diagram of chord error.

Figure 3.  Flowchart of acceleration and deceleration planning.
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the sub-arc length is short, the velocity curve is of the type of elevated acceleration-elevated deceleration (reduced 
acceleration-reduced deceleration).

Under the constraints of maximum acceleration amax and jerk Jt , the time of elevated acceleration (reduced 
acceleration) t1 , the time of constant rate t2 , the time of reduced acceleration (reduced deceleration) t3 of S-type 
acceleration and deceleration planning is expressed as follows:

Suppose that the ultimate acceleration amax in the process of acceleration/deceleration is equal to Jt t1 , then 
the relationship between velocity v and time t  in the process of acceleration/deceleration can be expressed as:

where “ ± ” is “ + ” and “ − ” in the process of speed increase; “ ∓ ” is, however, “ − ” and “ + ” in the process of speed 
decrease.

Therefore, the relationship between displacement s and time t  in the process of acceleration/deceleration is:

According to the above S-type acceleration and deceleration process, the total displacement s of the accelera-
tion/deceleration movement from the starting speed vs to the ending speed ve is:

(17)

t1 =







amax

Jt
, |ve − vs| > a

2
max

Jt�
ve−vs
Jt

, |ve − vs| ≤ a
2
max

Jt
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�

ve−vs−a
2
max/Jt

amax
, |ve − vs| > a

2
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Jt
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2
max

Jt

t3 = t1.

(18)v(t) =







vs ± 1
2
J
2
t , 0 ≤ t < t1

v1 ± amax(t − t1), v1 = vs ± 1
2
Jt t

2
1 , t1 ≤ t < t1

v2 ± amax(t − t1 − t2)∓ 1
2
Jt(t − t1 − t2)

2, t1 + t2 ≤ t1 + t2 + t3

v2 = v1 ± amaxt2

.

(19)

s(t) =







vs ± 1
6
Jt t

3, 0 ≤ t < t1
s1 + v1(t − t1)± 1

2
amax(t − t1)

2, s1 = vst1 ± 1
6
Jt t

3
1 , t1 ≤ t < t1 + t2

s2 + v2(t − t1 − t2)± 1
2
amax(t − t1 − t2)

2 ∓ 1
6
Jt(t − t1 − t2)

3,

s2 = s1 + v1t2 ± 1
2
amaxt

2
2 , t1 + t2 ≤ t ≤ t1 + t2 + t3

.

Figure 4.  S-type acceleration and deceleration planning of (a) Elevated acceleration-constant rate-reduced 
acceleration, (b) Reduced acceleration-constant rate-reduced deceleration, (c) Elevated acceleration-elevated 
deceleration, (d) Reduced acceleration-reduced deceleration.
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Key point speed update. As the exact solution of arc length of each curve cannot be obtained, numerical 
methods are generally used to calculate the approximate value of arc length. In order to meet the calculation 
accuracy and give consideration to the numerical calculation efficiency, the adaptive Simpson  method31 is used 
to calculate arc length here s(ui , ui+1):

where C′(ui) and C′(ui+1) are the first derivatives of the curve at parameters ui and ui+1.
According to Eq. (21), the arc lengths of curves between key points are calculated. Section 2.1 only determines 

the velocity of key points according to geometric and kinematic constraints. This method can only ensure that 
the speed at the key points will not cause the chord error to exceed the limit and that the speed, acceleration and 
elevated acceleration are limited within the given range. Also, we need to consider the curves’ arc length accord-
ing to the key point of piecewise whether can satisfy the required arc length of the acceleration and deceleration 
during the real-time interpolation. If the actual arc length between key points cannot meet the required arc 
length, then the velocity of each key point needs to be further updated to ensure that the overall velocity of the 
curve after the segmentation at each key point is smooth. Therefore, to improve the speed updating efficiency 
at key points, a speed scanning with forward and reverse bidirectional is adopted to further update the speed at 
key points according to the arc length of each sub-segment. The scanning process is shown in Fig. 5.

Let i = 0 represent the initial key point, that is, the beginning of the curve; i = Nfs represent the end key point, 
that is, the end of the curve; vri is the speed of the previous key point; vri+1 is the speed of the next key point. 
In reverse scanning, the first set i = Nfs , if vri is greater than vri+1 , it is the process of deceleration; otherwise, is 
the process of acceleration. Then, the curve arc length S between the ri and ri + 1 key points is compared with 
the smaller arc length sreq(vri , vri+1) needed by the previous key point velocity vri to the next key point velocity 
vri+1 according to Eq. (20), if sreq(vri , vri+1) ≤ sri , then the arc length of this section can complete the decelera-
tion process; otherwise, the deceleration process cannot be realized. Then, the dichotomy method is adopted 
to select velocity vr,temp between velocity vri and vri+1 so that it meets sreq(vr,temp, vri+1) = sri , the speed at this 
key point is updated to vr,temp , so that it meets the deceleration process, and the above process is repeated until 

(20)s =
{
vs(t1 + t2 + t3)+ 1

2
Jt t

2
1 (t2 + t3)+ 1

2
amax

(
t22 + t23

)
+ amaxt2t3, vs < ve

vs(t1 + t2 + t3)− 1
2
Jt t

2
1 (t2 + t3)− 1

2
amax

(
t22 + t23

)
− amaxt2t3, vs > ve

.

(21)s(ui , ui+1) =
(ui+1 − ui)

6

[

C′(ui)+ 4C′
(
ui+1 + ui

2

)

+ C′(ui+1)

]

.

Figure 5.  Update flow chart of bidirectional scanning speed of key points.
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the deceleration reverse tracing process is finished at i = 0 ; In forward scanning, the value starts from i = 0 , if 
vri < vri+1 , the speed increases. Then, the curve arc length sri between key points ri and ri + 1 is compared with 
the arc length sreq(vri , vri+1) , required from the previous key point speed of vri to the next key point speed of 
vri+1 , according to Eq. (20). If sreq(vri , vri+1) ≤ sri , the arc length of this section can complete the speed increase 
process; otherwise, the speed increase process cannot be realized. The dichotomy method is adopted to select 
the speed vrF,temp between the speed vri and the speed vri+1 so that it meets sreq(vri , vrF,temp) = sri , and the speed 
at this key point is updated to vrF,temp so that it meets the speed decrease process. The above process is repeated 
until the speed decrease reverse scanning process is completed at i = 0 . Ultimately, the key point federate vi is 
taken to be the minimum value after the forward and reverse bi-directional sweep update.

where vri is the nominal speed, vrF,temp is the forward scanning speed, vr,temp is the reverse scanning speed.
After forward and reverse speed scanning update, the speed values at each key point can be further restricted 

within the constraint range. The key points and their allowable speed values are obtained. The planned feed speed 
adopts the constrained speed value at key points, and at non-key points, the speed changes smoothly according 
to the S-type acceleration and deceleration method planned in Section 2.2.

Real time interpolation. After the feeding speed planning was completed, the Sect.  1.2 interpolation 
parameter calculation method was adopted to sample with a fixed period T based on the S-type acceleration 
and deceleration planning, calculate the arc length increment of the current interpolation cycle �s , to further 
determine the next interpolation parameter u , and finally determine the interpolation trajectory curve.

Results and discussion
In order to verify the effectiveness of the algorithm proposed in this paper, MATLAB software was used to simu-
late a cubic NURBS curve with 51 control points as shown in Fig. 6. At the same time, set simulation parameters 
as shown in Table 1.

In the pre-processing stage, the velocity planning algorithm will first obtain the curvature threshold accord-
ing to the constraints, then search to get all the key points and segment the NURBS curve at the key points, and 
finally update the key point velocities by S-type acceleration/ deceleration methods and forward scanning of the 
speed-up process and reverse scanning of the speed-down process to ensure the global light smoothness of the 
velocities. According to the simulation parameters set in Table 2 and Eq. (21), the threshold value of curvature is 
calculated to be κ0 = 70.7µm−1 , with a total of 28 key points and 27 sub-segments, as shown in Figs. 7, 8 shows 
the nominal speed at each key point and the speed after a bidirectional scanning update.

(22)vi = min
(
vri , vrF,temp, vr,temp

)

Figure 6.  NURBS curve.

Table 1.  Simulation interpolation parameter.

Parameter Numerical value

Interpolation period T/ms 1

Programming feed speed vp/(mm/s) 100

Chord error limit δlim/µm 1

Normal acceleration limit anmax/(mm/s
2) 1000

Normal jerk limit Jamax/(mm/s
3) 1× 104
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The velocity planning method proposed in this paper is used to obtain the feed velocity, normal acceleration, 
and normal jerk curves of the overall curve in the process of interpolation, as shown in Figs. 9, 10 and 11. Each 
component is well restricted within the set range. It can be seen from Fig. 11 that the jerk corresponding to the 
velocity planning method obtained a maximum value at multiple positions. Figure 12 shows the chord error 
curve in the interpolation process, and it can be seen that the processing error is completely limited within the 
allowable range of processing.

To further verify the advantages of the piecewise bidirectional NURBS curve speed update method based on 
key points and the second-order Runge–Kutta interpolation algorithm with parameter modification proposed in 
this paper, the simulation results were compared with the first-order Taylor expansion method and the fourth-
order Runge–Kutta method, which also only need to calculate the NURBS first-order derivative. The feed velocity 
volatility at each interpolation point was calculated δi32. The feed velocity volatility of the three methods was 
shown in Fig. 13, and the calculation time comparison was shown in Table 2.

The first-order Taylor expansion method only needs the first-order derivative once in the calculation of 
interpolation parameters, which has the shortest calculation time. However, due to the large truncation error, 
the velocity fluctuation rate is the largest. The fourth-order Runge–Kutta method requires a total of four first-
order derivative operations, and the calculation time is the longest, and the calculation accuracy is higher and the 

Table 2.  Calculation comparison results of each interpolation algorithm.

Interpolation method Maximum feed speed fluctuation rate (%) Calculation time ( µs)

First-order Taylor expansion 6.84 3.9

Fourth-order Runge–Kutta method 0.36 16.1

Methodology of this article 0.0281 11.5

Figure 7.  Key point.

Figure 8.  Key point speed update.
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velocity fluctuation is smaller compared with the first-order Taylor expansion method. The method adopted in 
this paper requires a total of three first-order derivative calculations, including two first-order derivative calcula-
tions and one derivative calculation when calculating the correction of parameters, so the velocity fluctuation is 
the smallest, the interpolation parameter calculation time is smaller than the fourth-order Runge–Kutta method 
and larger than the first-order Taylor expansion method, and the interpolation accuracy is higher.

Figure 9.  Feed speed curve.

Figure 10.  Acceleration curve.

Figure 11.  Jerk curve.
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Conclusion
In this paper, a NURBS interpolation algorithm with arc length segmentation is proposed. According to geomet-
ric constraints and kinematic constraints, the curvature threshold is calculated to obtain the nominal speed at the 
key points, NURBS curves are segmented at the key points, and the arc lengths of each segment are calculated 
by the adaptive Simpson method. Based on the S-shaped speed planning method, the speed at the key points is 
updated by bidirectional scanning, and the global smoothing of the speed is realized. In the stage of real-time 

Figure 12.  Chord error.

Figure 13.  Feed velocity fluctuation of three interpolation algorithms (a) First-order Taylor expansion method, 
(b) Fourth-order Runge–Kutta method, (c) Parameter-corrected second-order Runge–Kutta method.
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interpolation, to improve the real-time performance of interpolation calculation, the second-order Runge–Kutta 
method with parameter correction is used to calculate the parameters of the real-time interpolation curve, which 
can effectively reduce the amount of computation in interpolation and keep high interpolation accuracy. The 
interpolation simulation verifies that the proposed velocity planning method and the interpolation parameter 
calculation method can take good care of the interpolation accuracy and interpolation real-time performance.

Data availability
The datasets used or analyzed during the current study are available from the corresponding author on reason-
able request.

Received: 2 July 2022; Accepted: 7 September 2022

References
 1. Dimas, E. & Briassoulis, D. 3D geometric modelling based on NURBS: A review. Adv. Eng. Softw. 30, 741–751 (1999).
 2. Wei, J., Hou, X., Xu, G., Zhang, G. & Fan, H. Modeling and machining of integral impeller based on NURBS curve. Int. J. Adv. 

Manuf. Technol. 113, 2243–2255 (2021).
 3. Wang, F.-C. & Wright, P. K. Open architecture controllers for machine tools, part 2: A real time quintic spline interpolator. J. Manuf. 

Sci. Eng. 120, 425–432 (1998).
 4. Yeh, S.-S. & Hsu, P.-L. The speed-controlled interpolator for machining parametric curves. Comput. Aided Des. 31, 349–357 (1999).
 5. Cheng, M.-Y., Tsai, M.-C. & Kuo, J.-C. Real-time NURBS command generators for CNC servo controllers. Int. J. Mach. Tools 

Manuf. 42, 801–813 (2002).
 6. Nam, S.-H. & Yang, M.-Y. A study on a generalized parametric interpolator with real-time jerk-limited acceleration. Comput. 

Aided Des. 36, 27–36 (2004).
 7. Ni, H., Yuan, J., Ji, S., Zhang, C. & Hu, T. Feedrate scheduling of NURBS interpolation based on a novel jerk-continuous ACC/

DEC algorithm. IEEE Access 6, 66403–66417 (2018).
 8. Hu, Y. et al. A novel S-shape based NURBS interpolation with acc-jerk-Continuity and round-off error elimination (2021). https:// 

doi. org/ 10. 48550/ arXiv. 2103. 14433
 9. Wang, T. et al. NURBS interpolator with pre-compensation based on discrete inverse transfer function for CNC high-precision 

machining. Int. J. Adv. Manuf. Technol. 121, 1315–1335 (2022).
 10. Yau, H.-T., Lin, M.-T. & Tsai, M.-S. Real-time NURBS interpolation using FPGA for high speed motion control. Comput. Aided 

Des. 38, 1123–1133 (2006).
 11. Mohan, S., Kweon, S.-H., Lee, D.-M. & Yang, S.-H. Parametric NURBS curve interpolators: A review. Int. J. Precis. Eng. Manuf. 9, 

84–92 (2008).
 12. Wang, J.-B. & Yau, H.-T. Real-time NURBS interpolator: application to short linear segments. Int. J. Adv. Manuf. Technol. 41, 

1169–1185 (2009).
 13. Fang, S., Cao, J., Zhang, Z., Zhang, Q. & Cheng, W. Study on high-speed and smooth transfer of robot motion trajectory based on 

modified S-shaped acceleration/deceleration algorithm. IEEE Access 8, 199747–199758 (2020).
 14. Liu, Q., Jin, X. J. & Long, Y. H. A real-time high-precision interpolation algorithm for general-typed parametric curves in CNC 

machine tools. Int. J. Comput. Integr. Manuf. https:// doi. org/ 10. 1080/ 09511 92090 35016 68 (2010).
 15. Lee, A.-C., Lin, M.-T., Pan, Y.-R. & Lin, W.-Y. The feedrate scheduling of NURBS interpolator for CNC machine tools. Comput. 

Aided Des. 43, 612–628 (2011).
 16. Wang, Y., Yang, D., Gai, R., Wang, S. & Sun, S. Design of trigonometric velocity scheduling algorithm based on pre-interpolation 

and look-ahead interpolation. Int. J. Mach. Tools Manuf. 96, 94–105 (2015).
 17. Liu, M. et al. Development and implementation of a NURBS interpolator with smooth feedrate scheduling for CNC machine tools. 

Int. J. Mach. Tools Manuf. 87, 1–15 (2014).
 18. Zhang, Y., Ye, P., Wu, J. & Zhang, H. An optimal curvature-smooth transition algorithm with axis jerk limitations along linear 

segments. Int. J. Adv. Manuf. Technol. 95, 875–888 (2018).
 19. Chen, J.-H., Yeh, S.-S. & Sun, J.-T. An S-curve acceleration/deceleration design for CNC machine tools using quintic feedrate 

function. Comput. Aided Des. Appl. 8, 583–592 (2013).
 20. Li, H. et al. A novel feedrate scheduling method based on Sigmoid function with chord error and kinematic constraints. Int. J. Adv. 

Manuf. Technol. 119, 1531–1552 (2022).
 21. Shpitalni, M., Koren, Y. & Lo, C. C. Realtime curve interpolators. Comput. Aided Des. 26, 832–838 (1994).
 22. Yang, D. C. H. & Kong, T. Parametric interpolator versus linear interpolator for precision CNC machining. Comput. Aided Des. 

26, 225–234 (1994).
 23. Han, J. & Chen, W. Velocity control algorithm in glass polishing based on the cubic NURBS curve. Proc. Inst. Mech. Eng. Part C J. 

Mech. Eng. Sci. 232, 685–696 (2018).
 24. Peng, J., Liu, X., Si, L. & Liu, J. A novel approach for NURBS interpolation with minimal feed rate fluctuation based on improved 

Adams-Moulton method. Math. Probl. Eng. 2017, 1–10 (2017).
 25. Ji, S., Lei, L., Zhao, J., Lu, X. & Gao, H. An adaptive real-time NURBS curve interpolation for 4-axis polishing machine tool. Robot. 

Comput.-Integr. Manuf. 67, 102025 (2021).
 26. Zhao, H., Zhu, L. & Ding, H. A parametric interpolator with minimal feed fluctuation for CNC machine tools using arc-length 

compensation and feedback correction. Int. J. Mach. Tools Manuf. 75, 1–8 (2013).
 27. Ni, H., Zhang, C., Chen, C., Hu, T. & Liu, Y. A parametric interpolation method based on prediction and iterative compensation. 

Int. J. Adv. Robot. Syst. 16, 1729881419828188 (2019).
 28. Piegl, L. & Tiller, W. The NURBS Book (Springer, 1996).
 29. Yeh, S.-S. & Hsu, P.-L. Adaptive-feedrate interpolation for parametric curves with a confined chord error. Comput. Aided Des. 34, 

229–237 (2002).
 30. Lai, J.-Y., Lin, K.-Y., Tseng, S.-J. & Ueng, W.-D. On the development of a parametric interpolator with confined chord error, feedrate, 

acceleration and jerk. Int. J. Adv. Manuf. Technol. 37, 104–121 (2008).
 31. Du, X., Huang, J. & Zhu, L.-M. A complete S-shape feed rate scheduling approach for NURBS interpolator. J. Comput. Des. Eng. 

2, 206–217 (2015).
 32. Wang, G., Shu, Q., Wang, J. & Li, L. Research on adaptive non-uniform rational B-spline real-time interpolation technology based 

on acceleration constraints. Int. J. Adv. Manuf. Technol. 91, 2089–2100 (2017).

https://doi.org/10.48550/arXiv.2103.14433
https://doi.org/10.48550/arXiv.2103.14433
https://doi.org/10.1080/09511920903501668


13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16000  | https://doi.org/10.1038/s41598-022-20018-9

www.nature.com/scientificreports/

Author contributions
J.W.: Conceptualization, Writing- Reviewing, Editing and Acquisition of the financial support for the project 
leading to this publication. C.S.: Data curation, Writing- Original draft preparation and Editing. X.Z.: Method-
ology, Writing- Original draft preparation. E.W.: Writing- Original draft preparation and Editing. D.L.: Writ-
ing- Review and Editing.

Funding
Funding was provided by Science and Technology Planning Project of Shaanxi Provincial Science and Technol-
ogy Bureau’s (Grant No. 2016GY-019). Science and Technology Planning Project of XianYang City Science and 
Technology Bureau’s (Grant No. S2021ZDZX-GY-0058).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	An efficient and accurate interpolation method for parametric curve machining
	NURBS curve interpolation
	NURBS curve definition. 
	NURBS interpolation parameters calculation. 

	Acceleration and deceleration control method
	Interpolation preprocessing. 
	S-type acceleration and deceleration control. 
	Key point speed update. 
	Real time interpolation. 

	Results and discussion
	Conclusion
	References


