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Fuzzy‑clustering and fuzzy network 
based interpretable fuzzy model 
for prediction
Xiaowei Wang1,2, Yanqiao Chen1*, Jiashan Jin1 & Baohua Zhang2

Interpretability is the dominant feature of a fuzzy model in security‑oriented fields. Traditionally 
fuzzy models based on expert knowledge have obtained well interpretation innately but imprecisely. 
Numerical data based fuzzy models perform well in precision but not necessarily in interpretation. 
To utilize the expert knowledge and numerical data in a fuzzy model synchronously, this paper 
proposed a hybrid fuzzy c‑means (FCM) clustering algorithm and Fuzzy Network (FN) method‑based 
model for prediction. The Mamdani rule‑based structure of the proposed model is identified based 
on FCM algorithm from data and by expert‑system method from expert knowledge, both of which 
are combined by FN method. Particle swarm optimization (PSO) algorithm is utilized to optimize the 
fuzzy set parameters. We tested the proposed model on 6 real datasets comparing the results with 
the ones obtained by using FCM algorithm. The results showed that our model performed best in 
interpretability, transparency, and accuracy.

Fuzzy model is to implement logical reasoning and intelligent calculation for fuzzy information without a definite 
mathematical model. The main method is a set of IF–THEN rules-based procession designed either from expert 
knowledge or numerical data. Although independent on accurate mathematical model, fuzzy model is a powerful 
technique for logical reasoning, numerical calculation and non-linear function  approximation1.

To identify a fuzzy model, structure establishment and parameter estimations are two main  steps2. Structure 
identification is related to the number of rules after the important input variables have been selected. Parameter 
estimation (fuzzy set parameters) descripts a reliable non-linear approximation system.

Interpretability is the major feature of a fuzzy model in special fields, for example in security-oriented fields, 
and military field. There is a large amount of knowledge on top of the experience of experts. When this kind of 
knowledge is dealt with by machine learning, the security of this fuzzy logic (FL) model is vital for military appli-
cation, and also fundamental for the transparency and interpretability of the knowledge. This kind of knowledge 
expressed by FL is conceptually easy to understand, tolerant of the imprecise information, and easy for human 
communication. Thus, expert knowledge based fuzzy models are traditionally well  interpretable3, which is the 
motivation of the approach with fuzzy logic.

Expert knowledge is mainly expressed in Mamdani-type IF–THEN rules because this structure is more inter-
pretable than T-S-type ones. Arguably, traditionally fuzzy models based on expert knowledge have obtained well 
interpretable innately. So, Mamdani rule-based structure is suitable for an interpretable-oriented fuzzy model.

Numerical data based fuzzy models are not necessarily interpretable, but lots of them perform well in pre-
cision with the help of soft computing techniques. For example, artificial Neural network (ANN), inspired by 
neuroscience, is one of the most successful methods in “learning” from data. Modern ANNs, particularly “deep 
learning” models, have been sped up by the increase of raw computer power. But “they cannot approach the 
cognitive capabilities of a four-year old. Perhaps more striking is that ANNs remain even further from approach-
ing the abilities of simple  animals4.” It implies that the innate structure plays the dominant role in the learning 
capability.

The FCM clustering algorithm is a powerful unsupervised learning technique to form a few rules with simple 
and interpretable  structure5. FCM induces rules by organizing and categorizing data into partitions. Partitions 
with homogeneous data form clusters, and each cluster is associated with a rule. The fuzzy sets of rules are inde-
pendent from each other. Each dimension of data is tailored only for one  rule6. In order to improve the preci-
sion, many optimization-based FCM models have been proposed combining with metaheuristic optimization 
algorithms, such as genetic algorithm(GA)7,8 and  PSO9–15. Both GA and PSO aim to solve optimization problems 
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without being trapped into local minima. Due to its versatility and simplicity, PSO has become one of the most 
popular metaheuristics and an important tool for many applications.

The fuzzy models for prediction should utilize the expert knowledge and numerical data in a fuzzy model 
 synchronously16,17. Historical data provides numerical quantitative measurements from past projects regarding 
the internal and external quality attributes. Experts utilize their experience to provide “fuzzy” information, or 
qualitative descriptions of the correlation between the internal and external quality  attributes18. To make the 
model for prediction more practical, interpretability is crucial as it allows the practitioners to provide their own 
judgment on the predictors in linguistic terms. Black box prediction models (e.g., ANN-based models), are hard 
to identify the structure and to incorporate the experts’ judgments.

The novel method of FN is capable to combine the rules both from knowledge and from data. As a kind of 
Chained Fuzzy System (CFS)19 or Hierarchical Fuzzy System (HFS)20,21, FN maps the inputs to the outputs by 
means of  connections22–24. The overall number of rules in FN is a linear function of the number of inputs and 
the number of linguistic terms per input. Compared to Standard Fuzzy System (SFS), the rules in FN are reduced 
and simplified. The structure in FN is more transparent and interpretable. Arguably, FN is characterized by inter-
pretable innately as a white-box model. The details about FN will be introduced in section “Related methods”.

This paper proposes a hybrid FCM and FN based model for prediction (FCM-FN). FCM-FN is Interpreta-
bility-oriented model with Mamdani rule-based structure. The rules are generated by FCM method from data 
in the first step, and then by expert-system method from expert knowledge in the second step. Afterwards, the 
rules in both previous steps are connected by FN method. The Interpretable structure of FCM-FN model is 
identified. As a kind of prediction model, FCM-FN pursues accuracy while preserving interpretable structure. 
PSO algorithm is utilized to optimize the fuzzy set parameters which is initialized by FCM algorithm in the first 
step, and by expert system in the second step. For simplicity, the FCM-FN is a kind of multi-input single-output 
(MISO) type-1 fuzzy system. A multi-input multi-output (MIMO) fuzzy system can be taken as the composition 
of several MISO fuzzy  systems25. As for type-2 fuzzy system, the related theories and practices have achieved 
diverse  developments26, but the interpretability is rarely included into the type-2 theory so far. This is the reason 
why the FCM-FN is limited in type-1 structure in this paper.

The rest of the paper is synthesized as follows: section “Related methods” describes the Mamdani’s fuzzy 
model, FCM method, PSO method and FN theory, which will be used in this paper. In section “The proposed 
fuzzy model for prediction” the structure of the proposed FCM-FN model is analyzed in detail. The effective-
ness of the model is illustrated in section “Case study”, through applications to various real datasets. The paper 
ends with the concluding remarks in section “Conclusion”, where the proposed approach is summarized, and 
its main characteristics are identified.

Related methods
In this section, the related methods mentioned in the previous section are now further explained. They are 
divided in five parts: Mamdani-type fuzzy inference, FCM, PSO, PSO based tuning membership functions, and 
FN.

Mamdani‑type fuzzy inference. Inspired by  Zadeh27,28, one of the most interpretable fuzzy models was 
 suggested29, in which Mamdani attempted to control a steam engine and boiler combination by synthesizing a 
set of linguistic rules from experienced human operators (expert knowledge). The literature on the Mamdani-
type fuzzy logic has grown rapidly. One of them was implemented as an universal  approximator17. Mamdani-
type fuzzy inference includes four steps. In order to explain Mamdani-type fuzzy inference, the  example17 is 
employed where the M rules are formed as Eq. (1).

where j = 1,2,…,M, xi(i = 1,2,…,n) are the input variables to the fuzzy system, z is the output variable, Aj
i and Bj 

are linguistic terms of the linguistic variables xi and z in the universes of discourse U and R, respectively.

Fuzzification. The first step is to take the crisp inputs, and determine the degree to which these inputs belong 
to each of the appropriate fuzzy sets. Membership functions associating weighted inputs define functional over-
laps between inputs, and ultimately determine output responses. Because membership functions are graphical 
representations of the magnitude of input participations in fuzzy logic, a fuzzy set is defined by its membership 
functions. Let X be a set of items, known as the universe, and its elements are denoted by x. And, a fuzzy subset 
A in X is characterized by the membership function μA(x) which is associated with each element x in A and a 
real number in the interval [0, 1]. The membership function μA(x) maps each element x to a membership value, 
which represents the level of membership of x in A. Different membership functions can be associated with 
different inputs and outputs. In essence, they are weighting factors for the outcomes of fuzzy rules. Gaussian or 
triangular shape are two well-known membership functions.

Gaussian membership function is specified by two parameters as Eq. (2).

where θ is the position of the peak relative to the universe, σ is the standard deviation.
Symmetric triangular membership function is also specified by two parameters as Eq. (3) and Fig. 1.
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Rules evaluation. The fuzzified inputs are applied to the rule antecedents. As the fuzzy rule has multiple ante-
cedents, the AND or OR fuzzy operation is used to obtain a single number which represents the result of the 
antecedent evaluation. In this paper, the AND is applied to evaluate the conjunction of the rule antecedents, 
which is defined as Eq. (4).

In other application, if the OR fuzzy operation applies the classical fuzzy operation union, which is defined 
as Eq. (5).

Now the antecedent evaluation result can be used to the membership function of the consequent, which is 
commonly based on two methods: clipping and scaling. Clipping method is to cut the consequent membership 
function by the truth value of the rule antecedent, and scaling method is to adjust the original membership 
function of the rule consequent by multiplying all its membership degrees at the level of the antecedent truth. 
Clipping loses some information, but involving less complex and easier to defuzzify. And scaling preserves the 
original shape of the fuzzy set. For simplification and interpretation, the method clipping is adopted in this paper.

Aggregation of the rule outputs. The membership functions of all consequents clipped in the previous step are 
combined into a single fuzzy set.

Defuzzification. The centroid technique is a popular defuzzification method. It finds the centroid point rep-
resenting the center of gravity (COG) of the aggregated fuzzy set R. A reasonable estimate can be obtained by 
centroid deffuzification method, which is defined as Eq. (6).

where zj is the point in R at which µBj (z) achieves its maximum value (usually, we assume that µBj

(

zj
)

 = 1).
This method is a universal approximator, i.e. they can approximate any continuous function on a compact 

set to an arbitrary  accuracy17.

FCM. Clustering is an unsupervised learning method, which assigns a given set of objects into disjoint groups 
or clusters by membership degrees between 0 and 1. A high degree value represents a high similarity between 
the object and the group. FCM is a well-known fuzzy clustering  algorithms30. The main motivation of proposing 
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Figure 1.  Symmetric triangular membership function.
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FCM was to address the deficiency in working with overlapping groups shown by the hard cluster algorithm. The 
FCM method was developed by researches  recently31–34. In order to keep the simplicity and interpretability, the 
original FCM method is included in FCM-FN model. The process is expressed as  follows9:

Let � = {1, . . . , k, . . . , n} be a set with n objects. Object k is the vector of quantitative variables 
Xk = {x1k , . . . , xjk , . . . , xpk} described by p variables where xjk ∈ R . Let Y = {1, . . . , i, . . . , c} be a set of c proto-
types associated to c groups, where each prototype i is a vector of quantitative variables Yi = {y1i , . . . , yji , . . . , ypi} , 
where yji ∈ R . Let U = [uik] be a c × n membership degree matrix, where uik is the membership degree of object 
k to group i, where uik ∈ [0, 1] . The algorithm works according to minimizing the objective function that is 
defined as Eq.(7). At the same time, a prototype matrix Y∗ and a membership degree matrix U∗ are obtained.

where m is the value of cluster fuzziness, and dik is the squared Euclidean distance which measures the dissimi-
larity of the feature vectors between xk and yi . The distance is calculated by Eq. (8).

Under the minimizing criterion J, the prototypes are updated according to Eq. (9), and the membership 
degrees are updated by Eq. (10) with the restriction 

c
∑

i=1
uik = 1.

PSO. As mentioned in section “Introduction”, PSO is a typical optimization algorithm that searches for the 
best solution by modeling the social behavior of bird flocks and fish schools. The population of the birds is named 
“swarm”, and the members of the population are called “particles”. Assume that the Search space dimension is D, 
and the swarm is Sw = {X1, . . . ,Xs} , where s is the total number of particles; A particle represents a position in D; the 
position of the ith particle in the search space is denoted as Xi = (xi1, . . . , xid , . . . , xiD), i = 1,2,…,s. pbest records 
the position of ith particle’s previous optimal performance, which is denoted as pi =

(

pi1, . . . , pid , . . . , piD
)

 . gbest 
is the best position achieved by the swarm, which is expressed as pg =

(

pg1, . . . , pgd , . . . , pgD
)

 . The velocity of 
the ith particle is denoted as vi = (vi1, . . . , vid , . . . , viD) . pbest and gbest direct a particle’s new velocity and posi-
tion. pid(t) is the ith particle’s optimal position, and pgd(t) is the global best position of the dth dimension at 
instant t. The particles fly through the solution space towards better positions, and the process is implemented 
by Eqs. (11) and (12).

where the positive constants c1 and c2 are acceleration coefficients, r1 and r2 are random values in range [0,1]. 
xid(t) is the position and vid(t) is the velocity of ith particle in dth dimension at instant t. The inertia value ω(t) 
is obtained by Eq. (13).

where t is the current instant and tmax is the maximum iteration number. When iteration proceeds, the weighting 
factor of updating speed will decrease from the maximum factor ωmax to the minimum one ωmin

11,15.
To solve clustering problems, each particle represents a feasible solution to the optimization problem. Let f is 

an object function, and the personal best position of a particle at instant t is updated by Eq. (14).

 where pg (t + 1) is the global best position at instant t+1 found by anyone of all particles during the previous 
steps, defined by Eq. (15).
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(11)
vid(t + 1) = ω(t)× vid(t)+ (c1r1)×

(

pid(t)− xid(t)
)

+ (c2r2)×
(

pgd(t)− xid(t
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),

(12)xid(t + 1) = xid(t) + vid(t + 1),

(13)ω(t) = ωmax − (ωmax − ωmin)× t/tmax,

(14)pi(t + 1) =

{

pi(t) if f (Xi(t + 1)) ≥ f (pi(t))
Xi(t + 1) if f (Xi(t + 1)) < f (pi(t))

1 ≤ i ≤ S,

(15)pg (t + 1) = arg min
pi

f (pi(t + 1)) 1 ≤ i ≤ S.
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PSO based tuning membership functions. In the proposed model, there are two kind of membership 
functions: Gaussian or triangular. PSO algorithm is specified to adjust the shapes of membership functions by 
tuning the parameters of membership functions.

The first tuning is aiming towards the parameters of Gaussian membership functions, which are generated 
by FCM. This process is abbreviated as FCM-PSO. The steps are described by Algorithm FCM-PSO(Ω, c), which 
returns matrix Y including two kinds of parameters(θ and σ) in Gaussian membership functions, as shown in 
Eq. (2).

The second tuning is aiming towards the parameters of symmetric triangular membership functions, which 
is specified by experts. This process, similar to FCM-PSO, returns matrix M including two kinds of parameters(a 
and α) in symmetric triangular membership functions, as shown in Eq. (3) and Fig. 1.

FN. In this section, the details of the novel theory of FN are expressed, which include the basic theory, the 
basic operations and three important theorems. All the selected details are involved in the proposed model.

Basic theory of FN. Standard Fuzzy System (SFS) is the most known type of fuzzy system which is with a sin-
gle rule base. SFS is characterized by the nature of a black-box where the outputs map the inputs directly, and 
internal connections are out of  consideration35,36. Reflecting the influence of all inputs on the output simultane-
ously, SFS is quite accurate for output modeling usually. But, when the rules of SFS increasing, the transparency 
deteriorates, and it is less clear how the inputs affect the output.

Chained Fuzzy System (CFS), is with multiple rule bases in cascade, and characterized by the nature of white-
box where the outputs map the inputs by connected internal  variables37,38. CFS is with an arbitrary structure 
with the form of connected subsystems. It is applied as a detailed presentation of SFS for improving transparency 
by explicitly accounting all subsystems’ interactions. And the smaller number of inputs improve the efficiency 
of CFS. However, because of the error accumulation from the multiple Fuzzification-Inference-Defuzzification 
(FID) sequences, accuracy may be lost. Hierarchical Fuzzy System (HFS), a special kind of CFS, each subsystem 
in HFS only with one output and two inputs.

FN, a novel concept with networked rule  bases18,22,24, is characterized by the nature of a white-box where the 
outputs map the inputs by connections. Arguably, FN is a hybrid of SFS and HFS. On one hand, the structure 
is similar between FN and HFS because of the explicit presentation of the interactions and subsystems. On the 
other hand, after the multiple-rule-bases of FN been simplified to a linguistically equivalent single rule base, the 
operation of FN is similar to SFS. The process of simplification implements the linguistic composition approach, 
including the vertical merging and horizontal merging of rule bases in FN. The multiple rule base system in HFS 
is converted into a FN, and then a FN is composed into a single-rule-base system.
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As a hybrid concept, FN obtains the advantages of both accuracy from SFS and transparency from CFS/HFS. 
The structure’s transparency is directly related to interpretation of a prediction model, which has turned out to 
be same important than accuracy and efficiency for complex systems  modelling24, and it is the core reason that 
FN is employed in the fuzzy model for prediction in this paper.

Basic operations of FN. Inputs and outputs of a FN model take linguistic terms. In this paper, the FN model is 
with only one output(MISO) and the If–then rules are in form of Eq. (1). For compactness, the linguistic terms 
of the inputs 

({

A
j
1, . . . ,A

j
n

})

 and the outputs 
({

Bj
})

 in Eq. (1) are represented by positive integers. For example, 
{‘small’, ‘average’, ‘big’} are encoded as positive integers {‘1’, ‘2’, ‘3’}.

In order to illustrate the basic operations in FN, a simple example is shown as Fig. 2. A FN with 3 nodes N11, 
N12, I21 is described by the Boolean matrices given in Table 1. For simplicity, Each input (output) is only with two 
linguistic terms, represented by {‘1’, ‘2’}. More examples have been included in the folder “Mathlab functions” 
in the Supplementary File. 

The rules of N11 are same to the if–then rules given in Eq. (16). The node of N12 is similar to N11.

The special node of I21 is an identity node, and the outputs is same to the inputs. The rules of I21 is described 
by if–then rules given in Eq. (17).

Vertical merging is a kind of binary operation that can be applied to a pair of parallel nodes, i.e. nodes locate 
in the same layer of a FN. In Fig. 2, the nodes N11 and I21 are in the same layer. The vertical merging operation is 
identical with Boolean matrix Kroneker product. This kind of operation merges the operand nodes from the pair 
into a single product node. In this case, the inputs to the product node represent the union of the inputs to the 
operand nodes where the outputs from the product node represent the union of the outputs from the operand 
nodes. The operation of vertical merging can always be applied due to the ability to concatenate the inputs and 
the outputs of any two parallel  nodes24. The symbol ‘+’ denotes the vertical merging operation.

In Fig. 3, nodes N11 and I21 represent a two-node subnetwork of this FN. This two-node FN can be described 
by the block-scheme and the topological expression in Eq. (18), The vertical merging of the operand nodes N11 
and I21 results into a single product node N11+21 which represents a simplified image of the two-node FN in the 
form of a one-node FN. Due to the concatenation of the inputs to the operand nodes as inputs x1, x2 and x3 
to the product node and the concatenation of the outputs from the operand nodes as outputs z1 and x3 from 
the product node. This node N11+21 can be described by the topological expression in Eq. (19) and the Boolean 
matrix in Table 2.

(16)

if x1 is 1 and x2 is 1 then z1 is 1

if x1 is 1 and x2 is 2 then z1 is 1

if x1 is 2 and x2 is 1 then z1 is 1

if x1 is 2 and x2 is 2 then z1 is 2

(17)
if x3 is 1 then x3 is 1

if x3 is 2 then x3 is 2

(18)[N11](x1, x2|z1)+ [I21](x3|x3),

Figure 2.  Hierarchical structure example for illustrating the basic operations in FN.

Table 1.  Boolean matrices of nodes N11, N12, I21. 

N11: z1 1 2 I21: x3 1 2 N12: z2 1 2

x1 x2 x3 z1 x3

1 1 1 0 1 1 0 1 1 1 0

1 2 1 0 2 0 1 1 2 1 0

2 1 1 0 2 1 0 1

2 2 0 1 2 2 0 1



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16279  | https://doi.org/10.1038/s41598-022-20015-y

www.nature.com/scientificreports/

  
Each node in Eqs. (18) and (19) is placed in a pair of square brackets ‘[ ]’. The inputs and the outputs for each 

node are placed in a pair of simple brackets ‘( )’ right after the node, where the outputs are separated from the 
inputs by a vertical slash ‘|’. The topological expressions in the rest of this paper are with the similar structure.

Horizontal merging is a binary operation that can be applied to a pair of sequential nodes, i.e. nodes located 
in the same level of a FN. This operation merges the operand nodes from the pair into a single product node. 
The product node has the same input as the input to the first operand node and the same output as the output 
from the second operand node whereas the connection does not appear in the product node.

As described by the block-scheme in Fig. 4, the two-node FN can be expressed by the topological Eq.(20). 
The symbol ‘*’ implies that the operation of horizontal merging. The horizontal merging of the operand nodes 
N11+21 and N12 results into a single product node N(11+21)*12. As a simplified image of the two-node FN in the form 
of one-node, N(11+21)*12 is descried by the topological expression in Eq. (21) and the Boolean Matrix in Table 3.

Three important theorems. The three theorems are the important theoretical base for the proposed model in 
this  paper22.

Theorem 1. Denoted by the symbol ‘+’, the vertical merging operation is associative according to Eq. (22).

where for any three operand nodes M, N, O, the vertical merging from bottom to top is equal to their vertical merg-
ing from top to bottom.

(19)[N11+21](x1, x2, x3|z1, x3).

(20)[N21+21](x1, x2, x3|z1, x3) ∗ [N22](z1, x3|z2),

(21)
[

N(11+21)∗12

]

(x1, x2, x3|z2).

(22)(M + N)+O = M + (N + O),

Figure 3.  Block-scheme of two nodes’ vertical merging into one node with 3 inputs and 2 outputs.

Table 2.  Boolean matrix of node N11+21. 

N11+21: z1, x3 1 1 1 2 2 1 2 2

x1 x2 x3

1 1 1 1 0 0 0

1 1 2 0 1 0 0

1 2 1 1 0 0 0

1 2 2 0 1 0 0

2 1 1 1 0 0 0

2 1 2 0 1 0 0

2 2 1 0 0 1 0

2 2 2 0 0 0 1

Figure 4.  Block-scheme of two nodes’ horizontal merging into one node with 3 inputs and 1 outputs.
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Theorem 2. Denoted by the symbol ‘*’, the operation of horizontal merging is associative according to Eq. (23).

where for any three operand nodes M, N, O, the vertical merging from right to left is equal to their vertical merging 
from left to right.

Theorem  3. A HFS with inputs {x1, x2, . . . , xm} , network nodes {N11,N12, . . . ,N1,m - 1} , connections 
{z1, z2, . . . , zm - 2} and a output y, as described by the topological expression in Eq. (24)

can be characterized as a SFS with the same set of m inputs, the same single output, a single network node N, and 
no connections as described by the block-schemes in Fig. 5 and the topological expression in Eq. (25).

where N =
m−1
∏

p=1

(

N1p +
m−1
∑

q=p+1
Ipq

)

 , node Iqp is identity node in level p and layer q.

The proposed fuzzy model for prediction
This section describes the proposed FCM-FN model, the process of construction the model includes 4 steps, as 
shown in Fig. 6. The first step aims at selection of input variables, based on the available numerical data and expert 
knowledge. The second step aims towards generation of knowledge base. The semantic rules and their data bases 
(DB1) are constructed from expert knowledge, and the clustering rules and its data base (DB2) are generated 
from numerical data by FCM algorithm. Then, the parameters of DB2 are optimized by the PSO algorithm. In 
the third step, the two kind of rule bases in second step are combined based on FN method. The forth step aims 
to optimize the parameters of DB1 also based on PSO algorithm. After the four steps, the proposed model as 
Fig. 7 is converted into a SFS.

Being converted into a SFS, the proposed FCM-FN model is a MISO system consisting of four major modules: 
fuzzification, inference engine, defuzzification and knowledge base. The fuzzification module converts the crisp 
inputs of independent variables to linguistic terms. And these linguistic terms combined with the ones from 
experts are processed in fuzzy domain by inference engine based on FN. The knowledge base is composed of the 
rule base, characterizing the control goals and control policy by a set of rules; and of the data base, containing the 

(23)(M ∗ N) ∗ O = M ∗ (N ∗ O),

(24)[N11](x1, x2|z1) ∗ [N12](z1, x3|z2) ∗ . . . ∗ [N1,m−1]
(

zm−2, xm|y
)

(25)





m−1
�

p=1



N1p +

m−1
�

q=p+1

Iqp









�

x1, x2, . . . , xm|y
�

,

Table 3.  Boolean Matrix of N(11+21)*12. 

N(11+21)*12: z2 1 2

x1 x2 x3

1 1 1 1 0

1 1 2 1 0

1 2 1 1 0

1 2 2 1 0

2 1 1 1 0

2 1 2 1 0

2 2 1 0 1

2 2 2 0 1

Figure 5.  Block-scheme of Fuzzy Networks for theorem expression.
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linguistic term sets and the membership functions defining their semantics. Finally, the processed output is trans-
formed from fuzzy domain (linguistic terms) to crisp domain (numerical number) by defuzzification  module18.

Selection of input variables. There is large amount of indices to character a product. To reduce the com-
plexity of a model, only those metrics and attributes with significant contribution to the prediction are selected. 

Figure 6.  Flow sheet of construction the FCM-FN model.

Figure 7.  FN structure of the proposed model.
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In practices, experts always are with the knowledge that some metrics are more important than others. Pearson 
Correlation Coefficient ( rp , expressed as Eq. (26)) and Spearman Correlation Coefficient ( rr , expressed as Eq. 
(27)) indicate the strength and direction of a linear relationship between two variables, which are useful to get 
top relevant input variables.

where x is values in the first set of data, y is values in the second set of data, n is total number of values.

where d2i  is the difference between the x rank and the y rank for each pair of data, 
∑

d2i  is sum of the squared 
differences between x and y variable ranks, n is sample size.

As showed in Fig. 7, the selected metrics xi (i = 1, 2,…, m + n) are input variables. there are m + n inputs 
divided into two sets. SET1 is composed of numerical inputs xi (i = 1, 2,…, m) which are from the variables with 
numerical data, and SET2 is composed of semantic inputs xi (i = m + 1, m + 2, …, m + n) from the variables only 
with the expert’s linguistic information. Combined with the numerical data of output z1 (here z1 is the prediction 
variable), the numerical data are transformed into a set of input–output data pairs.

Generation and optimization of knowledge base. The process of generation and optimization of 
knowledge base includes three parts: generation of rule base, generation of data base and parameters optimiza-
tion of Gaussian membership functions.

Generation of rule base. Given a set of input–output data pairs as Eq. (28), the sampling data is preprocessed, 
including deleting the duplicated data pairs and min–max normalization according to Eq. (29).

where x(p) ∈ Rm and y(p) ∈ R.

 where x′ is the min–max normalized set, x is a set of the observed values present in x, xmin is the minimum 
values in x, xmax is the maximum values in x.

The basic problem is to extract rules which describe how the output variable y ∈ R is influenced by the m 
input variables x = (x1, . . . , xm)

T ∈ Rm based on Eq. (28). FCM is a powerful unsupervised learning technique 
to extract rules of Mamdani structure as Eq. (1), which divides sampling data into several clusters based on 
their  similarity5. In the proposed model, K is the number of clusters and specified to be a positive odd integer. 
After the sampling data is clustered by FCM algorithm, the input space of each numerical input is divided into 
K sections, and K Mamdani rules is generated. The rule base of Node N11 in Fig. 7 is composed by these K rules.

The semantic inputs in SET2 and outputs are Subjective Product Appraisals (SPA). For simplicity and inter-
pretability, the input space of these semantic inputs and outputs are also divided into K sections. For example, 
if K = 3, the semantic choice scale is {Low, Nominal, High} presented by the positive integers 1–3. These rule 
bases are derived from the knowledge of experts and engineers. It is worth noting that the quality of the rule 
bases affects the output to some degree. The rule base for Nodes N1n and N2j (j = 1,…,n−1), which are associated 
with these semantic inputs, is Mamdani type as Eq. (1), and the number of rules is not over K2 because of only 
two inputs of each node.

The identity nodes Iij (i = 1,…,n; j = 1,…,n−1) are with the rule base of Mamdani type, too. And the number 
of rules is K because of only one input of each identity node.

As shown in Eq. (1), each fuzzy rule has multiple antecedents. The AND fuzzy operation intersection is 
implemented, which is defined as Eq. (4). The reason is that all the input variables simultaneously affect the 
output, and rules in antecedent must be met simultaneously in order for consequent to occur. For prediction 
problems, only “and” rules are required since the antecedents are different components of a single input vector.

Generation of data base. The data base is associated with the type of membership functions. The process of 
assignment membership functions can be intuitive or based on some algorithmic operations. Six straightforward 
methods are described in the literature to assign membership functions to fuzzy variables. Based on the judg-
ment about the probability density functions from researchers and ourselves, the shape of membership function 
of input variables of node N11 is Gaussian curve, as defined in Eq. (2). The position of the peak relative to the 
universe and the standard deviation are two parameters of a Gaussian membership function. The parameters are 
determined by FCM algorithm based on sampling data. In this paper, the result of FCM algorithm is named as 
FCM model, in which the knowledge base is with parameters of Gaussian membership functions.

(26)rp =

n
∑

i=1

(xi − x)
(

yi − y
)

√

n
∑

i=1

(xi − x)2

√

n
∑

i=1

(

yi − y
)2

,

(27)rr = 1−
6
∑

d2i
n
(

n2 − 1
) ,

(28)
(

x(p); y(p)
)

, p = 1, 2, . . . ,N ,

(29)x′ =
x − xmin

xmax − xmin
,
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For these semantic inputs, a natural membership function that readily comes to mind is symmetric triangular 
membership functions defined as Eq. (3). Two main reasons motivate the choice: one is their optimal interface 
design and the other is its semantic integrity.

Parameters optimization of Gaussian membership functions. In this step, the optimization is aimed towards the 
data base of the FCM model and based on the sampling data as Eq. (3). MATLAB-Fuzzy Logic Tool Box (genfis) 
is utilized to generate the FIS of FCM model. To improve the precision as well as reduce the loss of the interpret-
ability, the optimization is only aiming towards parameters (θ and σ) of inputs and the output. The structure 
of this FIS is unchanged. As mentioned in section “PSO”, as a global optimization method, PSO algorithm is 
suitable for initial training to tune the parameters. In the proposed model, the MATLAB function “tunefis” 
is employed with the specified tuning algorithm name as “particleswarm”. The optimized model is named as 
FCM–PSO in this paper. It works by running the FCM method until it reaches its stopping criterion. Then it runs 
the PSO algorithm to try to achieve a better solution. In the experiments presented in section “Case study”, the 
following stopping criteria were used:

FCM: when there is a variation less than or equal to 1e−8 on Minimum improvement in objective function 
(MinImprovement for short).

PSO: when relative change in the best objective function value is less than 1e-8 on FunctionTolerance (a 
method option of “tunefis”) or it reaches maximum number of iterations (MaxNumIteration for short). The 
experiments explored 11 different MaxNumIterations in the set {10, 20, 30, 40, 50, 100, 200, 300, 400, 1000, 2000}.

FN based knowledge base combination. The semantic inputs are organized into HFS structure as 
shown in Fig. 7. Two input variables (xm+1 and xm+2) are organized into N21, and other input variables are added 
one by one after converted by the identify node. And N2,n−1 combines all n semantic inputs. Identify nodes I1j 
(j = 2,…,n−1) are employed to combine N2,n−1 with N11. N1n is the final node which combine numerical inputs 
with semantic inputs.

To combine these FN nodes into a SFS, the rule bases of all nodes are merged vertically and  horizontally39. The 
rule bases of N11, N21, I31, … and In,1 are merged firstly, the result named rule base V1, and in the same method, 
rule base V2 is from I12, N22, … and In,2, rule base Vn−1 is from the last vertical merging of I1,n−1 and N2,n−1. And 
then, all the rule base of Vi (0 < i ≤ n−1) are merged horizontally. Till now, the single rule base RB of the proposed 
model is generated, as topological expression in Eq. (30).

where “ + ” means vertical merging operation and “ * ” means horizontal merging operation.
After the multiple rule bases are merged into a linguistically equivalent single rule base, the FN model is 

converted to a kind of SFS model with m + n inputs, a output and a knowledge base RB, as shown in Fig. 8.

Tuning parameters of triangular membership functions. In this step, the optimization is imple-
mented to the data base of N2j (j = 1,…,n−1) in Fig. 7. The initial values of parameters (a and α) of symmetric 
triangular membership functions, which was specified by experts, are tuned by PSO algorithm.

To implement the tuning, SPAs of N2j should be transformed to numerical data. For example, the Eq. (31) can 
finish this transform. The semantic appraisal for each semantic input is from the experts’ judgments.

where i is the ith item in the linguistic term set. K is the number of items of the linguistic term set.
For example, the linguistic term set {small, average, big} have 3 items, in which the item “average” can be 

converted to 0.5, as shown in Fig. 9A. And {very small, small, average, big, very big} have 5 items, and the item 
“big” is same to 0.75, as shown in Fig. 9B. What’s more, the experts can appraise a semantic input by using a real 
number in the interval [0, 1] directly with the help of membership functions.

(30)

[(

N11 + N21 + I31 + · · · + In,1
)

∗
(

I12 + N22 + · · · + In−1,2 + In,2
)

∗

. . .
(

I1,n−2 + N2,n−2 + In,n−2

)

∗
(

I1,n−1 + N2,n−1

)

∗ N1,n

](

x1, . . . , xm+n|y
)

,

(31)DSPAi =
i − 1

K− 1
(1 ≤ i ≤ K),

Figure 8.  SFS structure after knowledge base combination based on FN method.
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Combining DSPAi of xm+1 to xm+n with data pairs(x1 to xm, and y) produces new data pairs for FN. Two differ-
ent type of input data are included in the new data pairs. One is from numerical inputs and this kind of inputs 
generally is quantifiable. For example, Lines of a paragraph of software code can be considered as numerical 
input. The other is from qualitative inputs. For example, programming language complexity is always appraised 
by semantic terms.

The new data pairs for FN is utilized to tune the parameters of triangular membership functions. The process 
of optimization is similar to section “Parameters optimization of Gaussian membership functions”, and with the 
same stopping criteria.

After being optimized in this step, the knowledge base RB of the proposed model is renewed and ready for 
prediction.

Derivation of prediction value. The proposed model with optimized knowledge base has been converted 
into a SFS model as shown in Fig. 8 in the previous steps. Given a data pairs of m numerical inputs and n seman-
tic inputs, the prediction value is yielded according to the FCM-FN model.

Case study
In this section, a simple FCM-FN model was applied to 6 real world datasets to evaluate the performances. The 
details are described in 4 parts: the simple FCM-FN model, the performance metrics, the 6 datasets, and the 
results of case study. The model was implemented on a computer with an Intel Core i7–9750, 2.60 GHz processor 
and 16 GB RAM, running a Windows 10(64-bit) operating system and MATLAB R2019a.

Simple FCM‑FN model. Prior to building the rules, the number of linguistic variables is limited to a con-
siderable size to avoid excessive rule explosion and deteriorated interpretation. This is because potentially, every 
combination of variables could require a distinct rule. Due to this, the linguistic terms used in the performance 
evaluation are limited to 3 which are {poor, fair and good}, or {low, moderate and high}40.

In order to show the interpretation and accuracy of the model, a simple FCM-FN model with only 3 numeri-
cal inputs and 3 semantic inputs is set up, as shown in Fig. 10. And 6 real world datasets are selected, which are 
descripted in section “Datasets”. For selection of the input variables x1 to x3 of each dataset, Pearson’s and Spear-
man’s Correlation Coefficients are utilized to select top 3 relevant input variables according to the strength and 
direction of a linear relationship between each input and the output. The definitions of inputs x4 to x6 depend on 
the needs of prediction. The data pairs of all 6 inputs and a output is nondimensionalized according to Eq. (4).

In this simple FCM-FN model, the number of linguistic sets is specified to 3(K = 3). It means that the clusters 
in FCM is 3, x1 to x3, z1, y are with 3 Gaussian membership functions and x4 to x6, z2, z3 are with 3 symmetric 
triangular membership functions, separately.

Figure 9.  Symmetric triangular membership function with 3 linguistic terms and 5 linguistic terms 
respectively.

Figure 10.  Simple FCM-FN model with 3 numerical inputs and 3 sematic inputs.
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Each node of N21, N22, N13 is with 9 (=  32) rules. For example, in order to predict the software’s quality, the 
input variable x4 is specified as extent of the supporting document set, x5 is comprehensibility of the supporting 
document set and x6 is programming language complexity. They are organized into hierarchical structure, as 
shown in Fig. 10. The structure was not easy to make sense because z2 and  z3 should be with exact connotation. 
Here, z2 is the subjective complexity appraisal, and  z3 is subjective supporting environment appraisal. As shown 
in Table 4, the rule bases of N21, N22 and N13 are presented by Boolean matrices and derived by the knowledge 
of software engineer experts.

The knowledge base of N11 is generated by FCM algorithm, and the rule base includes 3 rules, and each 
identification node is also with 3 rules. Being merged based on FN method, the rule base of the simple FCM-FN 
model is with 81 rules.

Performance metrics. As opposed to most existing approaches where the focus is to improve accuracy, 
the FCM-FN method focuses to maintain interpretation, transparency and accuracy by means of the modular 
rule bases that reflect the subsystems of the modeled system. There are three performance indicators to show 
the quality of the associated models. They are called Transparency Index (TI)22, Interpretation Index(PI) and 
Accuracy Index (AI).

The first performance indicator TI reflects the transparency according to the extent of its opaqueness from 
the inside of a model, as shown by Eq. (32).

where t is the total number of inputs, 1 is refer to the only one output, p is the number of non-identity nodes and 
q is the number of non-identity connections. A lower TI implies better transparency.

For example, in the simple FCM-FN model as shown in Fig. 10, t = 6, p = 4, q = 3,and TI = 1.
The second performance indicator PI reflects the interpretability of a model. It’s obvious that transparency is 

helpful to interpretability and more parameters impact the interpretability. Thus, we put forward a modified TI 
to reflects the interpretability of a FCM-FN model, as shown by Eq. (33).

where r is the total number of parameters, s is the total number of optimized parameters. A lower PI implies 
better interpretability.

For example, in the model showed in Fig. 10, t = 6, p = 4, q = 3, r = 20, s = 14, and PI = 1.646.
The third performance indicator AI reflects the accuracy of a model by means of Symmetric Mean Absolute 

Percentage Error (SMAPE) as shown by Eq. (35) and Goodness-of-Fit (R2) as shown by Eq. (9).

 where n is the total number of observations compared, actual is the ith value of the test dataset estimated values 
vector, and prediction is the ith value of output vector of a model, mean is the mean value of actual. Lower SMAPE 
or higher R2 implies better accuracy.

(32)TI =
t + 1

p+ q
,

(33)PI =
t + 1

p+ q
∗ log10(r + s + 10),

(34)SMAPE =
100%

n

n
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∣
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∣
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(∣
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∣

∣+ |actual|
)

/2
,

(35)R2 = 1−

n
∑
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(
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)2

n
∑
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,

Table 4.  Example of Rule bases of N21, N22 and N13. 

N21: z2 1 2 3 N22: z3 1 2 3 N13: y 1 2 3

x4 x5 z2 x6 z1 z3

1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

1 2 0 1 0 1 2 1 0 0 1 2 1 0 0

1 3 0 1 0 1 3 1 0 0 1 3 1 0 0

2 1 0 1 0 2 1 0 1 0 2 1 0 1 0

2 2 0 0 1 2 2 0 1 0 2 2 0 1 0

2 3 0 0 1 2 3 0 0 1 2 3 0 0 1

3 1 0 0 1 3 1 0 0 1 3 1 0 0 1

3 2 0 0 1 3 2 0 0 1 3 2 0 0 1

3 3 0 0 1 3 3 0 0 1 3 3 0 0 1
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Datasets. Six well-known real-world datasets are loaded to evaluate the performances of the FCM-FN 
model compared with FCM model and FCM-PSO model (See Supplementary File - raw dataset).

Table 5 is a summary of the 6 datasets. These datasets are cases proposed in previous studies in various fields 
including social, material, medical and software. Based on Pearson’s and Spearman’s Correlation Coefficients, 
only top 3 attributes and the prediction target of each database are selected as simplified benchmark dataset to 
evaluate the performance. The number of instances is the rows of original databases, and the number of unique 
instances is the rows of benchmark dataset after deleted the duplicated instances.

White wine dataset and red wine dataset were obtained from the same source and with the same  structure41. 
The two datasets were related to white and red variants of the Portuguese "Vinho Verde" wine. Both datasets 
contain chemical analysis of wine derived from three different cultivars grown in the same region. Eleven phys-
icochemical attributes of wine were included: 1—fixed acidity, 2—volatile acidity, 3—citric acid, 4—residual 
sugar, 5—chlorides, 6—free sulfur dioxide, 7—total sulfur dioxide, 8—density, 9—pH, 10—sulphates, 11—alco-
hol. The prediction target was wine quality, which was graded between 0 (very bad) and 10 (very excellent) by 
wine experts.

Concrete dataset recorded 1030 instances and 9 attributes. The prediction target was concrete compressive 
strength, and the 8 input variables including 1—cement, 2—blast furnace slag, 3—fly ash, 4—water, 5—super 
plasticizer, 6—coarse aggregate, 7—fine aggregate and 8-age. The concrete compressive strength was a highly 
nonlinear function of age and 7 ingredients. And the actual concrete compressive strength (MPa) for a given 
mixture under a specific age (days) was determined from  laboratory42.

Boston dataset recorded 506 house prices. The dataset was taken from the StatLib library which was main-
tained at Carnegie Mellon University. The original dataset contained 14 attributes. In order to avoid racism, 
only 13 attributes was contained in the newly version dataset: 1—CRIM (per capita crime rate by town), 2—ZN 
(proportion of residential land zoned for lots over 25,000 sq.ft.), 3—INDUS (proportion of non-retail business 
acres per town), 4—CHAS (Charles River dummy variable), 5—NOX(nitric oxides concentration), 6—RM (aver-
age number of rooms per dwelling), 7—AGE (proportion of owner-occupied units built prior to 1940), 8—DIS 
(weighted distances to five Boston employment centres), 9—RAD (index of accessibility to radial highways), 
10—TAX (full-value property-tax rate per $10,000), 11—PTRATIO (pupil-teacher ratio by town), 12—LSTAT 
(lower status of the population), 13—MEDV (Median value of owner-occupied homes in $1000’s). And MEDV 
was usually the prediction target.

Diabetes recorded 442 patients health conditions by 11 attributes: 1—age, 2—sex, 3—bmi (Body mass index), 
4—bp (Average Blood Pressure), 5—s1, 6—s2, 7—s3, 8—s4, 9—s5, 10—s6, 11—outcome. And s1–s6 were 6 
serum test data one year later. The prediction target was outcome (quantitative indicator of diabetes one year 
later).

QUES database was selected from popular object-oriented maintainability datasets which were published by 
Li and  Henry43. Ten attributes were included as input variables: 1—WMC (Weighted method per class), 2—DIT 
(Depth of the inheritance tree), 3—NOC (Number of children), 4—RFC (Response for class), 5—LCOM (Lack 
of cohesion of methods), 6—MPC (Message-passing coupling), 7—DAC (Data abstraction coupling), 8—NOM 
(Number of methods), 9—SIZE2 (Number of properties), 10—SIZE1 (Lines of code). The prediction target was 
CHANGE (Number of lines changed in the class), which recorded the number of changed lines in the code 
during a three-year maintenance period. The values of 11 attributes in QUES was collected from 71 classes in 
a software system.

Results. In this section, the results of the proposed model on the real-world datasets are presented. The 
comparison is implemented among FCM model, FCM-PSO model and FCM-FN model. FCM model is only 
related to the node N11. After the parameters being tuned, FCM model is transformed into FCM-PSO. And after 
implementing the FN method and PSO tuning, FCM-PSO model is transformed into FCM-FN.

Table 6 summarized the performance TI and PI of the three models: FCM, FCM-PSO, FCM-FN. TI is related 
to the structure of models directly. The FCM and FCM-PSO have the same structure and TI (= 4). By contrast, the 
FCM-FN model is with non-identity nodes and connections and lower TI (= 1). PI is related to both the structure 
and parameters. Though FCM and FCM-PSO have the same structure, but the latter tunes the parameters and 
then impact PI, which is added from 5.021 to 5.660. Due to lower TI, the PI of FCM-FN is 1.646 and far lower 
than the other two models.

Table 7 are the results of performance SMAPE of the three models utilizing the 6 benchmark datasets. The AI 
of each model is appraised with the process of ten-fold cross-validation. Each dataset is randomly shuffled and 

Table 5.  Dataset characteristics.

White wine Red wine Concrete Boston Diabetes QUES

Number of instances 4898 1599 1030 506 442 71

Number of unique instances 3823 1341 1001 506 442 69

Number of attributes 12 9 13 11 11

Top 3 attributes (based on Pearson’s and Spearman’s Correla-
tion Coefficients)

Alcohol Cement LSTAT bmi MPC

Volatile acidity Water RM s5 RFC

Citric acid Age INDUS bp SIZE1
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then divided into 10 partitions. 9 partitions for training and 1 partition for testing. The value of AI is the mean 
value after running each model 10 times, in format of percentage. In Table 7, the ‘%’ is omitted in order to save 
space, and the values of best accuracy among the three models are bolded.

In order to explore the effects of different iterations of PSO, 11 different values from 10 to 2000 are set sepa-
rately as the MaxNumIteration parameter of PSO. The values of SMAPE after 11 different iterations are shown 
in Table 7. It’s obvious that the accuracy of FN-PSO and FCM-PSO is far better than FCM model, and FN-PSO 
better than FCM-PSO in most instances.

The means of 11 SMAPE values of each model is shown in Table 8, as well as the improvements of FCM-FN 
compared with FCM and FCM-PSO respectively. The accuracy of the FCM-FN model is improved from 5.012% 
to 30.784% compared with FCM, and from 0.204% to 1.201% compared with FCM-PSO. The average SMAPE 
of each dataset shows that FCM-FN models marginally outperforms FCM-PSO models. This observation is not 
surprising since FCM-FN model derived most of its initial semantic inputs from the experts’ knowledge.

Table 6.  Comparison of the performance (TI and PI).

FCM FCM-PSO FCM-FN

TI 4 4 1

PI 5.021 5.660 1.646

Table 7.  The SMAPE of the three models after different iterations’ optimization (%). Significant values are in 
[bold].

Dataset Model

Iterations

10 20 30 40 50 100 200 300 400 1000 2000

White wine

FCM 22.985

FCM-PSO 22.936 22.366 22.251 22.066 21.999 21.802 21.794 21.728 21.734 21.745 21.743

FCM-FN 22.742 22.332 22.177 21.975 21.829 21.598 21.495 21.521 21.532 21.482 21.478

Red wine

FCM 23.330

FCM-PSO 23.241 22.428 22.102 22.079 22.064 21.811 21.689 21.693 21.710 21.696 21.704

FCM-FN 22.934 22.292 22.132 22.080 22.038 21.795 21.679 21.680 21.697 21.692 21.700

Concrete

FCM 37.788

FCM-PSO 34.224 32.435 30.829 30.235 29.686 28.514 28.007 27.680 27.656 27.252 27.252

FCM-FN 33.947 32.338 30.599 30.035 29.535 28.375 27.966 27.630 27.617 27.218 27.214

Boston

FCM 31.084

FCM-PSO 24.119 23.601 21.736 21.647 21.409 21.107 20.988 20.923 20.924 20.931 21.051

FCM-FN 23.585 23.271 21.646 21.552 21.276 21.001 20.809 20.808 20.839 20.820 21.054

Diabetes

FCM 47.435

FCM-PSO 46.865 45.588 45.759 45.390 45.292 45.161 45.055 44.992 45.237 45.266 44.755

FCM-FN 46.129 45.147 45.100 44.948 44.828 44.449 44.477 44.466 44.443 44.575 44.796

QUES

FCM 57.642

FCM-PSO 54.893 54.522 53.539 53.416 51.768 49.411 47.635 47.213 47.530 47.250 46.212

FCM-FN 55.225 54.353 53.211 53.190 51.585 49.253 47.484 46.997 47.260 47.027 46.036

Table 8.  Comparison of mean SMAPE on the 6 benchmark datasets (%).

Mean SMAPE

The improvement of 
FCM-FN compared 
with

FCM FCM-PSO FCM-FN FCM FCM-PSO

White wine 22.985 22.015 21.833 5.012 0.827

Red wine 23.330 22.020 21.975 5.808 0.204

Concrete 37.788 29.434 29.316 22.420 0.401

Boston 31.084 21.676 21.515 30.784 0.743

Diabetes 47.435 45.396 44.851 5.447 1.201

QUES 57.642 50.308 50.147 13.003 0.320



16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16279  | https://doi.org/10.1038/s41598-022-20015-y

www.nature.com/scientificreports/

In general, increasing number of iterations in parameter-tuning phase, the SMAPE and R2 is increasing 
accordingly as shown in Fig. 11A–C and Table 7. But, as shown in Fig. 11D–F, the R2 is not always increasing 
along with the iterations. What’s more, as shown in Fig. 11F, the R2 fluctuates sharply because there are only 
71 instances. As shown in Table 7, the PSO algorithm always converged before reaching the aforementioned 
MaxNumIteration. For example, The FN-PSO and FCM-PSO reached their best accuracy when the benchmark 
dataset was red wine and MaxNumIteration was 200, and more MaxNumIteration was not yielded higher accu-
racy because the FCM-PSO converged no more than 257 iterations and FN-PSO no more than 51 iterations. And 
doing so increased the duration of the optimization process and also increased validation error due to overtuned 
system parameters with the training data. Thus, the following accuracy values fluctuated around the best one.

Conclusion
To improve the performances of prediction model both in accuracy and transparency with well tradeoff inter-
pretability, this paper proposed a FCM-FN model which combines FCM, FN and PSO methods. The main 
motivation of utilizing FN in prediction model is that interpretability is the dominant feature of a fuzzy model in 
security-oriented field and other special fields. As noted earlier, FN method has been characterized by the nature 
of a white-box where the output variable map the input metrics by connections, and the implied information 
in the FN model has been shown totally. As to the performance of TI and PI, FCM-FN model is overwhelming 
compared to FCM model or FCM-PSO model.

Figure 11.  The R2 of the three models after different iterations’ optimization.
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Based on FCM method, the numerical data is clustered and then denoted by rules with simple and interpret-
able structure. Optimized with PSO method, the accuracy of FCM-FN model has been improved significantly 
(over 5%).

In conclusion, the FCM-FN model has more transparency, interpretability and accuracy than FCM model or 
FCM-PSO model. Moreover, FCM-FN model is a special type of SFS, because the numerical data and linguistic 
appraisals can be combined into the prediction model at the same time. Although this strategy is not perfect, it 
tends to catch more subjective appraisals which have shown their powerful efficacy in previous  researches44,45.

In this paper only 3 subjective appraisal variables are specified as the example, and the results indicate that 
it is possible to find qualitative rules. We do not claim that the rules between the 3 variables are the most suit-
able ones, nor that the FCM-FN based models overwhelm the earlier models in terms of performances other 
than interpretability and accuracy (SMAPE and R2). Our results showed that FN based models improves the 
interpretability and accuracy significantly. Notwithstanding its limitation, it is possible to improve the accuracy 
by implementing more linguistic terms and more accurate subjective appraisals in FCM-FN models. Despite its 
preliminary character, FCM-FN model is effective for prediction.

To optimize this model in the future, we would like to conduct experiment from the following four aspects: 
First, integrate type-2 fuzzy system and put it forward in FCM-FN models. Second, integrate other optimization 
methods, such as GA and “Patternsearch”. As an important optimization method in function “tunefis”, “Pat-
ternsearch” performs better for small parameter ranges since they are local optimizers. “Patternsearch” may 
produce faster convergence compared to particleswarm as the tradeoff for accuracy. Third, change the number of 
linguistic terms or the number of clusters in FCM to explore their influence on accuracy. Forth, integrate newly 
fuzzy clustering methods to explore their influence on accuracy and interpretability.

Data availability
The datasets used and analyzed during the current study are available from three different ways. Three datasets 
(white wine, red wine and concrete) are available from the UCI Machine Learning Repository (http:// archi ve. 
ics. uci. edu/ ml/ index. php), the datasets (boston and diabetes) are available from kaggle website (https:// www. 
kaggle. com/ datas ets/) and the QUES dataset originally published by Li and  Henry43.

Code availability
The MATLAB source code for this project is available upon reasonable request. Please contact Xiaowei Wang 
(xiaowwei.wang@outlook.com).
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