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Perception without preconception: 
comparison between the human 
and machine learner in recognition 
of tissues from histological sections
Sanghita Barui1, Parikshit Sanyal2*, K. S. Rajmohan1, Ajay Malik3 & Sharmila Dudani4

Deep neural networks (DNNs) have shown success in image classification, with high accuracy in 
recognition of everyday objects. Performance of DNNs has traditionally been measured assuming 
human accuracy is perfect. In specific problem domains, however, human accuracy is less than 
perfect and a comparison between humans and machine learning (ML) models can be performed. 
In recognising everyday objects, humans have the advantage of a lifetime of experience, whereas 
DNN models are trained only with a limited image dataset. We have tried to compare performance 
of human learners and two DNN models on an image dataset which is novel to both, i.e. histological 
images. We thus aim to eliminate the advantage of prior experience that humans have over DNN 
models in image classification. Ten classes of tissues were randomly selected from the undergraduate 
first year histology curriculum of a Medical School in North India. Two machine learning (ML) models 
were developed based on the VGG16 (VML) and Inception V2 (IML) DNNs, using transfer learning, 
to produce a 10-class classifier. One thousand (1000) images belonging to the ten classes (i.e. 100 
images from each class) were split into training (700) and validation (300) sets. After training, the VML 
and IML model achieved 85.67 and 89% accuracy on the validation set, respectively. The training set 
was also circulated to medical students (MS) of the college for a week. An online quiz, consisting of a 
random selection of 100 images from the validation set, was conducted on students (after obtaining 
informed consent) who volunteered for the study. 66 students participated in the quiz, providing 6557 
responses. In addition, we prepared a set of 10 images which belonged to different classes of tissue, 
not present in training set (i.e. out of training scope or OTS images). A second quiz was conducted 
on medical students with OTS images, and the ML models were also run on these OTS images. The 
overall accuracy of MS in the first quiz was 55.14%. The two ML models were also run on the first quiz 
questionnaire, producing accuracy between 91 and 93%. The ML models scored more than 80% 
of medical students. Analysis of confusion matrices of both ML models and all medical students 
showed dissimilar error profiles. However, when comparing the subset of students who achieved 
similar accuracy as the ML models, the error profile was also similar. Recognition of ‘stomach’ proved 
difficult for both humans and ML models. In 04 images in the first quiz set, both VML model and 
medical students produced highly equivocal responses. Within these images, a pattern of bias was 
uncovered–the tendency of medical students to misclassify ‘liver’ tissue. The ‘stomach’ class proved 
most difficult for both MS and VML, producing 34.84% of all errors of MS, and 41.17% of all errors of 
VML model; however, the IML model committed most errors in recognising the ‘skin’ class (27.5% of 
all errors). Analysis of the convolution layers of the DNN outlined features in the original image which 
might have led to misclassification by the VML model. In OTS images, however, the medical students 
produced better overall score than both ML models, i.e. they successfully recognised patterns of 
similarity between tissues and could generalise their training to a novel dataset. Our findings suggest 
that within the scope of training, ML models perform better than 80% medical students with a distinct 
error profile. However, students who have reached accuracy close to the ML models, tend to replicate 
the error profile as that of the ML models. This suggests a degree of similarity between how machines 
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and humans extract features from an image. If asked to recognise images outside the scope of 
training, humans perform better at recognising patterns and likeness between tissues. This suggests 
that ‘training’ is not the same as ‘learning’, and humans can extend their pattern-based learning to 
different domains outside of the training set.

Deep Neural Networks (DNN) have emerged as capable models for visual recognition; in fact, some have sug-
gested that they are in-silico models of the human visual  system1. The success of DNNs in recognition of everyday 
 objects2 has raised speculations that activations in the intermediate layers of DNNs reflect the neural activity in 
visual  cortex3. Such conclusions have often been drawn from observing DNN models that closely match human 
performance in recognition of everyday objects (cars, books, plants, animals, fruits etc.), i.e. those objects that 
the non-expert human is likely to encounter in his day-to-day  life4. In some specialised domains, DNN models 
match or outperform humans: for example, there exist DNN models trained to perform a binary classification—
‘tuberculosis’ or ‘healthy’—from chest  radiographs5. However, such specialised models are of limited scope and 
do not generalise to the larger problem of visual recognition of random objects.

Since last decade, several DNNs have been developed which have been trained with huge image datasets, 
such as  ImageNet6, and can recognise a large class of everyday objects, i.e. they can function as generalised 
object  identifiers7. However, such DNNs are not free from  errors8, and such errors offer a window into the inner 
mechanisms of the model. This presents an opportunity to compare DNN models with humans. Research on 
differences between machine and human perception has been carried out on macroscopic, everyday objects 
(both with normal and low intensity signals)9, gestures and  motions10, and specially prepared image datasets 
for ease of  comparison11. In some of these test conditions, such as noisy and distorted images, humans perform 
significantly  better12. However, any such comparison is bound to suffer from a degree of bias, because human 
brains are trained for visual recognition since birth – and typically, recognition of everyday objects/symbols by a 
human is instantaneous, requiring almost no cognitive action. Machine learning models, however advanced, are 
trained on finite datasets that can never match the breadth and depth of the human visual experience. Thus, they 
are subject to several shortcomings: for example, a special class of images which have been subtly modified from 
the original, and which the human can discern quite easily, can often produce a drastically wrong result from a 
well trained DNN model. Such ‘adversarial’ images are increasingly becoming relevant in diverse domains such 
as cyber security and  healthcare13. In addition, DNN models may classify a completely random array of pixels as a 
real-life  object14, which raises speculations whether DNNs ‘perceive’ objects in the conventional sense of the word.

Pure perception, unbiased by prior knowledge, has been defined by several philosophic schools. In the 
Nyaya-sutra, an early philosophic text from India, the author Gautama mentions: “Perception is a cognition 
which arises from the contact of the sense organ and object and is not impregnated by words, is unerring, and 
well-ascertained” 15. Implicit in such a definition is that there should be no prior memory (‘word’) of the perceived 
object, in the ‘agent’ who perceives. The agent, in this case, might be a human or a machine learning (ML) model. 
Thus, any comparison between human and machine learning is bound to be affected by the bias of antedate, i.e. 
the prior experience of humans in recognition of everyday objects. We felt that to compare the performance of 
humans and DNN, a novel dataset, which is new to both humans and machines, is required.

It is in this under-explored niche that histological image recognition finds its use. Typically, human beings 
are not trained to recognise tissue type from histological images by default; only a very select subset of humans 
(medical students, zoologists) will ever learn how to recognise tissue type from histological images. And this 
presents a window of opportunity for comparison of human and machine learning, because both the machine 
and the human have had no prior experience in classifying histological images.

Brief review of relevant literature. The earliest precursor of DNNs is the Neocognitron developed by 
Fukushima et al. in 1980, which was the first model to implement a ‘shift invariant’ algorithm, i.e. detection of 
features was unaffected by the location of the feature in the  image16. The name ‘convolutional neural network’ 
(CNN) was proposed by Lecun et al., who used the convolution operation and constructed a simple network 
(LeNet) consisting of convolution-pooling-convolution-pooling-dense-dense layers, for handwritten digit recog-
nition  tasks17. However, image classification gained traction since publication of the ImageNet database, a large, 
multi-class collection of images, in 2009. The first influential CNN model, AlexNet, an 8-layered CNN, achieved 
15.3% error-rate on the ImageNet database 18. After a few years, The Visual Geometry Group (VGG)19proposed 
several deep neural networks (11 to 19 layers deep) which achieved 7.3% error rate on the ImageNet database. 
In 2014, the Inception block architecture (a local unit with parallel branches of convolution) was introduced by 
Google Inc. in their models Inception V1 to V4, which reduced the error rate to 6.7%20. A slight improvement 
on the Inception model was proposed by Chollet in 2017, introducing depthwise convolution followed by point-
wise convolution, termed as the Xception  model21. The Xception model achieved 79% top-1 accuracy on the 
ImageNet database, and has been employed in several other problem domains such as finger vein  recognition22 
and plant disease  classification23. The CNN paradigm was further improvised with the introduction of residual 
nets (skip connection between layers) in 2015 by He et al.24 In a further improvement, Tan et al., in 2019, devel-
oped the EfficientNet, which implemented a new scaling method for CNNs, achieving 88% top-1 accuracy in 
 Imagenet25. A variant, the FixEfficientNet by Touvron et al., which corrects discrepancy between training and 
test images, achieved 98.7% top-5 accuracy on  ImageNetV226. In early 2020s, there was another paradigm shift 
in image classification: Dosovitskiy et al. proposed implementing the transformer architecture, used in natural 
language processing tasks, in image  classification27. Such Vision Transformers (ViTs) have now become state of 
the art in image classification, producing 90.94% top-1 accuracy on ImageNet  database28.
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Similar developments have taken place in feature extraction and enhancement of images. The extreme gradi-
ent boosting classifier (XGBoost), developed by Chen et al.29, was used on the Caltech-101 image dataset produc-
ing high accuracy (88.36%), outperforming most other major feature  detectors30. Kumar et al. have demonstrated 
feature extraction from images has advanced sufficiently to retrieve images from large datasets based on content, 
with 99.53%  precision31. Low contrast images, such as underwater photographs, have been demonstrated to be 
enhanced by the Contrast-Limited Adaptive Histogram Equalization (CLAHE) algorithm, which is a significant 
improvement over conventional histogram equalisation  method32,33. Alternative approaches to image classifi-
cation, such as the Shi-Tomasi corner detection  algorithm34 along with the scale-invariant feature transform 
(SIFT)35, have produced 86.4% accuracy on the Caltech-101 image  dataset36. It’s also been demonstrated that 
image analysis techniques can detect the device of origin (i.e. camera brand) with reasonable  accuracy37. Such 
advances in image analysis techniques have complemented the ML models for successful image classification.

Neural networks are not limited to the domain of image analysis; they have also found application in 
signal processing, such as biometric identification through electrocardiogram (ECG)38,39 and analysis of 
 electroencephalograms40, often in conjunction with other ML models such as support vector machines and 
k-nearest  neighbours41. The generic nature of neural networks provides them with extensibility to suit diverse 
problem domains.

In the specific field of histology, the application of deep neural networks has been explored in recent studies, 
albeit in a fragmentary manner. A limited histology classifier was developed by Rujano-Balza et al., which clas-
sified into five basic types (epithelium, gland, connective, muscular and nervous tissue)42. The VGG16 model, 
the one we have used in the present study, has been previously used in classifying breast cancer histology images 
with 92.60% accuracy (albeit as a binary classifier: benign versus malignant)43. Ahmed et al. have used the 
VGG16 and InceptionV3 pretrained models to classify histological images from a mixed dataset (Kimia Path 
24)44; however, their method was not targeted to identify specific tissues (the Kimia Path dataset is a mixed set 
of images from different tissues with different stains). We identified that there was a definite lacuna in literature 
regarding comparison of human versus ML performance in this specific domain. Thus we took the approach of 
multi-class tissue classification on a defined set of tissues, similar to the training imparted to medical students 
in first year of medical school.

Problem statement. We wanted to compare the performance of two kinds of ‘agents’ on a novel dataset. 
The agents are.

1. Machine learning model (ML)—two pretrained CNNs.
2. A group of medical students (MS).
We have compared the performance of MS and ML models on a validation set – composed of tissues within 

the scope of training; we have also compared their performance on a smaller set of images outside of the scope 
of training, i.e. a completely different set of tissues not included in training. A random sample of images used in 
the study (and included in the training set) is shown in Fig. 1.

The objective of the present study was to (a) compare the accuracy of ML models and medical students in an 
image classification problem, on a dataset which is novel to both humans and ML models, (b) compare the pat-
tern of errors of ML models and medical students and thus find similarities, if any. This would provide an insight 
whether there are similarities between the inner representation of visual information in humans and ML models.

Materials and methods
Ethics statement. Ethical clearance was obtained from Institutional Ethical Committee, Base Hospital and 
Army College of Medical Sciences, Delhi Cantonment, Delhi, India (No. IEC/01/2021/10). The study involved 
voluntary and anonymous participation by medical students in an online quiz; students were asked by the faculty 
of Dept of Pathology, Army College of Medical Sciences, to participate in the study on a purely voluntary basis. 
Informed consent was obtained from participants via electronic medium. The quiz was fully anonymised: no 
personal information, which could potentially reveal the identity of the candidates, was collected in the online 
quiz.

The study did not involve any kind of diagnostic/therapeutic modality on human subjects. A group of adult 
medical students were asked to voluntarily and anonymously participate in an online quiz, hosted by Army Col-
lege of Medical Sciences, after adequate information to students. All relevant guidelines regarding participation 
of human subjects, including the Helsinki declaration, were followed.

Preparation of image dataset. Histological images from tissues were collected from the archives of a 
hospital in North India. An Olympus Magcam Microphotography system was used for acquiring the images. All 
images were acquired with a Dewinter 606 Trinocular Microscope, under the same condition of illumination 
and 10 × maginification. The images were acquired in 1280 × 960 pixels resolution and resized to 512 × 384 pixels 
with ImageMagick image processing  software45. All histological slides were anonymised before image acquisi-
tion.

For selection of tissues for inclusion in the study, we made a list of tissues which are introduced to the medi-
cal students in first year curriculum, and randomly selected 10 classes from them. Images from the following 
ten classes of tissue were acquired: cerebellum, cerebrum , heart , kidney , liver , lung , pancreas , skin , stomach 
, trachea. One hundred (100) images from each class were acquired, for a total of one thousand (1000) images. 
The schematic diagram of the study is presented in Fig. 2.

The image dataset was randomly split into two subsets (using the ‘shuf ’ program of the Linux operating 
system)46:

I. A training set of 700 (seven hundred) images, consisting of 70 images from each class of tissue.
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(a) Within the training set, 20% images (140 images) were selected randomly (using the train_test_split func-
tion from the scikit-learn Python library, version 1.0.247) as test set, for concurrent testing during training 
of ML model.

Figure 1.  Random sample of images used in the study: (a). Trachea, (b). Cerebrum, (c). Stomach, (d). Kidney, 
(e). Cerebrum, (f). Heart, (g). Stomach, (h). Skin, (i). Lungs, (j). Trachea (Composite figure generated with 
ImageMagick, version 7.1.0, https:// image magick. org/ index. php).

https://imagemagick.org/index.php
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II. A validation set of 300 (three hundred) images, consisting of 30 images from each class of tissue.

(a) From the validation set, 100 images were marked for inclusion in the quiz set, i.e. for testing human partici-
pants; the quiz set contained 10 images randomly selected from each of the classes ‘cerebellum’, ‘pancreas’, 
‘kidney’, ‘trachea’, ‘cerebrum’, ‘lung’, ‘heart’, ‘skin’, ‘liver’ and ‘stomach’.

Construction of ML model. Two ML models were constructed using the DNN architecture. We used 
transfer learning in constructing the ML model, i.e. used the convolutional layers of a pretrained model for 
image analysis (i.e. to extract features of the image). Initially, we shortlisted two models, pre-trained VGG16 
and ResNet50, because both of them are extensively trained with ImageNet database and frequently used in 
image recognition tasks. The output of the convolution-pooling layers from both models was flattened into a one 
dimensional array, and several fully connected and dropout layers were added to produce a final output layer 
of 10 classes. During initial testing, the modified ResNet50 model did not exceed 50% accuracy on the concur-
rent testing set, and thus it was not selected for the study. We selected VGG16 as our model, because in addition 
to its good performance on the testing set, it has been used previously in histological classification problems 
 (Shallu43). In addition, VGG16 was used by a similar study by Dodge et al., which used everyday images (i.e. dog 
breeds) and their distorted versions, for human–machine  comparison12.The architecture of the model is shown 
in Table 1. In joining the convolution – pool layers of VGG16 and the fully connected layers, the method pub-
lished by  Rosebrock48 and  Brownlee49 was followed.

The input image was preprocessed with the OpenCV image processing  software50, which consisted of resizing 
the color image to 128 × 96 pixels. The DNN model takes this numeric array as input; thus its input dimension 
is 128 × 96 × 3 (the third dimension corresponds to the three color channels, red, green and blue, at each pixel). 
After several convolution and max-pooling layers, the array is reshaped to a shape of 4 × 3 × 512. This layer is 
flattened to a one-dimensional array of size 6144. Several fully connected and dropout layers then reduce the 
array to a final size of 10. Figure 3 shows the architecture of the modified VGG16 model, represented graphically.

The model was constructed with the Keras deep learning library (version 2.8.0)51 in Python programming 
language, using the Google Colaboratory platform.

In addition, after rejection of ResNet model, we used another pretrained model (Inception V2) from the Keras 
applications library; we modified it in a similar manner as the VGG16 model, i.e. flattened its output layer and 
added a series of dense and dropout layers. The structure of the modified inception model is shown in Table 2.

Training of VGG 16 model. The model thus developed was trained with the training dataset over 30 
epochs, with a batch size of 10 images. At the end of training, the model achieved 81.96% accuracy over the 
training test, and 77.14% accuracy in the concurrent test set. Accuracy and loss (error rate) of the model over 
epochs of training are shown in Fig. 4.

Evaluation of VGG16 ML (VML) model. The VGG16 model (VML) was evaluated on the validation set 
(n = 300), which yielded 85.67% accuracy. The confusion matrix on the validation set is shown in Table 3:

The VGG16 model (VML) classified 257 of the 300 images in the validation set correctly (85.67%). The com-
monest error by the VGG16 model was (a) misclassifying stomach as liver (08 images) and (b) misclassifying 

Figure 2.  Schematic diagram of the study (Figure generated with Libreoffice Draw, version 7.2.7, https:// www. 
libre office. org/).

https://www.libreoffice.org/
https://www.libreoffice.org/
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kidney as liver (08 cases) and (c) misclassifying stomach as heart (04). The best accuracy was recorded in rec-
ognising lung (30/30, 100%) and the worst in stomach (15/30, 50%).

Figure 5 shows examples of correct classification by the VML. The VML outputs 10 numbers, correspond-
ing to the probabilities of the image belonging to the respective class of tissue. In Fig. 5a, the classification is 
unequivocal, i.e. there is a very high probability (close to 1) of the tissue being ‘skin’. In Fig. 5b, the VML has 
generated various probabilities for different classes of tissue, i.e. the output is equivocal, and the class with the 
highest probability (‘kidney’) has been chosen as the correct answer.

Table 1.  Architecture of the VGG16 model; Total parameters: 18,128,714, trainable parameters: 3,414,026 ; 
non-trainable parameters: 14,714,688; the junction between the convolution-max pooling layers of the original 
VGG16 model and the fully connected layers attached to its output – is shown in bold. The final output layer 
produces 10 numbers, corresponding to the probabilities of a given image belonging to the 10 classes of tissue.

Layer (type) Output Shape Parameters

input_3 (InputLayer) [(None, 128, 96, 3)] 0         

block1_conv1 (Conv2D) (None, 128, 96, 64) 1792      

block1_conv2 (Conv2D) (None, 128, 96, 64) 36928     

block1_pool (MaxPooling2D)   (None, 64, 48, 64) 0         

block2_conv1 (Conv2D) (None, 64, 48, 128) 73856     

block2_conv2 (Conv2D) (None, 64, 48, 128) 147584    

block2_pool (MaxPooling2D) (None, 32, 24, 128) 0         

block3_conv1 (Conv2D) (None, 32, 24, 256) 295168    

block3_conv2 (Conv2D) (None, 32, 24, 256) 590080    

block3_conv3 (Conv2D) (None, 32, 24, 256) 590080    

block3_pool (MaxPooling2D) (None, 16, 12, 256) 0         

block4_conv1 (Conv2D) (None, 16, 12, 512) 1180160   

block4_conv2 (Conv2D) (None, 16, 12, 512) 2359808   

block4_conv3 (Conv2D) (None, 16, 12, 512) 2359808   

block4_pool (MaxPooling2D) (None, 8, 6, 512) 0         

block5_conv1 (Conv2D) (None, 8, 6, 512) 2359808   

block5_conv2 (Conv2D) (None, 8, 6, 512) 2359808   

block5_conv3 (Conv2D) (None, 8, 6, 512) 2359808   

block5_pool (MaxPooling2D) (None, 4, 3, 512) 0         

flatten_2 (Flatten) (None, 6144) 0         

dense_4 (Dense) (None, 512) 3146240   

dropout_4 (Dropout)   (None, 512) 0         

dense_5 (Dense)       (None, 512) 262656    

dropout_5 (Dropout) (None, 512) 0         

class_label (Dense) (None, 10) 5130

Figure 3.  Graphical representation of the modified VGG16 model; the model takes a 128 × 96 color image 
as input (extreme left) and converts it to a 10 class output (extreme right); the dark blue block represents the 
flattened output of the convolution and max pooling layers of VGG16, which is followed by fully connected and 
dropout layers (Figure produced with the Visualkeras python library, version 0.0.2, https:// github. com/ paulg 
avrik ov/ visua lkeras).

https://github.com/paulgavrikov/visualkeras
https://github.com/paulgavrikov/visualkeras
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Training of inception V2 model (IML). The inception V2 model was trained with the same training 
dataset as the VGG16 model with same hyperparameters (30 epochs, with a batch size of 10 images). The model 
achieved 89% accuracy on the concurrent testing set (Fig. 6).

Evaluation of Inception model. The Inception model (IML) achieved 90.33% (271 out of 300) accuracy 
on the validation set. In contrast to the VGG16 model, the Inception model made maximum number of errors in 
recognising the ‘skin’ class (8 errors out of 29, 27.5%), followed by ‘stomach’ class (7 errors). (Table 4) Examples 
of classification by the IML model are shown in  Figs. 19, 21 and 23.

Table 2.  The InceptionV2 model with 55,330,922 trainable parameters; the weights from ImageNet training 
have been preserved and a series of dense and dropout layers added to match the present 10-class classification 
problem.

Layer (type) Output shape Number of parameters

inception_resnet_v2 (Functional) (None, 1536) 54,336,736

flatten_6 (Flatten) (None, 1536) 0

dense_12 (Dense) (None, 512) 786,944

dropout_8 (Dropout) (None, 512) 0

dense_13 (Dense) (None, 512) 262,656

dropout_9 (Dropout) (None, 512) 0

class_label (Dense) (None, 10) 5130

Figure 4.  Accuracy and loss (error rate) of the VML over 30 epochs of training (Figure generated by Matplotlib 
python library, version 3.3.4, https:// matpl otlib. org/).

Table 3.  Confusion matrix or actual and predicted labels (VML model on validation set, n = 300).

Predicted Cere-bellum Cerebrum Heart Kidney Liver Lung Pancreas Skin Stomach Trachea Total (actual)

Actual

Cere-bellum 29 0 0 0 0 0 1 0 0 0 30

Cerebrum 2 28 0 0 0 0 0 0 0 0 30

Heart 0 0 25 0 1 1 2 0 1 0 30

Kidney 0 0 0 22 8 0 0 0 0 0 30

Liver 0 0 0 2 28 0 0 0 0 0 30

Lung 0 0 0 0 0 30 0 0 0 0 30

Pancreas 2 0 0 0 3 0 25 0 0 0 30

Skin 0 0 0 0 0 0 0 29 1 0 30

Stomach 0 0 4 1 8 0 2 0 15 0 30

Trachea 1 0 0 0 0 1 0 1 1 26 30

Total (predicted) 34 28 29 25 48 32 30 30 18 26 300

https://matplotlib.org/


8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16420  | https://doi.org/10.1038/s41598-022-20012-1

www.nature.com/scientificreports/

Figure 5.  Examples of classification by VML: (a) Skin, correctly identified by the VML; the artifact in the 
section has not interfered with correct classification by the VML; (b) Kidney tissue as classified by the VML; 
the model generates 10 numbers as output, corresponding to the probability of 10 classes of tissue. In this case, 
’liver’ is a close second (Figure generated by Matplotlib python library, version 3.3.4, https:// matpl otlib. org/).

Figure 6.  Accuracy and loss over 30 epochs of training the Inception model; this model showed a much 
sharper drop in error rate (loss) during the early epochs, than the VML model (Fig. 4) (Figure generated by 
Matplotlib python library, version 3.3.4, https:// matpl otlib. org/).

https://matplotlib.org/
https://matplotlib.org/
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Training of medical students (MS). The medical students (MS) of who have just completed first year in a 
Medical School in North India were asked to volunteer for the study. We circulated the Participation Information 
Sheet by electronic messaging through the class representative. It was explained to the students that the very act 
of submitting the electronic questionnaire will be taken as consent for participation in the study. The purpose 
and objective of the study was explained to the class, and that anonymised data from the study will be published. 
Informed consent was obtained from participants via electronic medium. The students were trained with basic 
histological tissue identification for a period of 02 months before the study, as part of their curriculum in  1st 
year MBBS course. The training of medical students in histology was imparted in a heuristic manner as is con-
ventional in histology: specific identification criteria were taught to the students—i.e. ‘liver’ was to be identified 
by its lobular structure and kidney by glomeruli etc. In addition, the complete set of 700 training images were 
circulated to medical students one week prior to the quiz.

In our present medical curriculum, first year medical students are introduced to human histology. Majority 
of these students have never seen histological images of human tissues before, and are thus a naive population. 
Their performance in recognising histological images is very similar to a naive, untrained ML model. These 
students are ideal candidates for training with a set of histological images and assess the resulting efficacy, for 
direct comparison with a similarly trained ML model. By the time they complete second year of medical school, 
they have already been well trained with histological images as part of the pathology curriculum, and thus can-
not be compared with an ML model.

Preparation of questionnaire. The ‘quiz’ set (IIa) of images (100 images) were incorporated into an 
online quiz format (built with Microsoft Office Forms); a set of 100 questions were formulated, with a choice of 
10 options each, corresponding to the ten classes of tissue. Answering all questions was not mandatory (and all 
such ‘blank’ or ‘other’ answers were excluded from final analysis); no time limit was set on the questionnaire. 
(Link to the questionnaire is provided in the ‘Data availability statement’ section).

Conduct of survey. The quiz questionnaire was shared online with medical students. The online survey was 
conducted throughout a week. Strict anonymisation was maintained in data collection; no personal informa-
tion was collected from the survey. However, students were strictly instructed to respond to the quiz only once 
per person, i.e. no duplication in responses was allowed. At the end of the week, sixty-six (66) responses were 
aggregated and tabulated.

Preparation of out-of-training-scope (OTS) image set. As adversarial examples, meant to test the 
pattern recognition capabilities of ML and MS, 10 images from tissues which were not part of the training data 
were separately selected from archives of the hospital. The 10 images were as follows (Table 5):

The OTS images were selected to highlight the differences between ML and MS. The ‘intestine’ class was 
included because of its similarity to the ‘stomach’ class, and also that medical students are likely to have seen 
images of intestine before, while the ML model has never been trained with ‘intestine’ class. The ‘cervix’ class was 
chosen because of its similarity with ‘skin’, and ‘salivary gland’ because of its similarity to ‘pancreas’. The parathy-
roid and endometrium was unlike any tissue the students or ML models would have encountered during training.

Evaluation of ML and MS on OTS images. Both ML models were run on the OTS images and the pre-
dictions were recorded. A second online quiz was conducted on the medical students with the OTS image set. 
44 responses were recorded.

Informed consent. The study involved voluntary and anonymous participation by medical students in 
an online quiz; students were asked by the faculty of Dept of Pathology, Army College of Medical Sciences, to 
participate in the study on a purely voluntary basis. Participant information sheet (PIS) was circulated to the 

Table 4.  Confusion matrix of IML on the validation set (n = 300).

Predicted Cere-bellum Cerebrum Heart Kidney Liver Lung Pancreas Skin Stomach Trachea

Actual

Cere-bellum 30 0 0 0 0 0 0 0 0 0

Cerebrum 0 30 0 0 0 0 0 0 0 0

Heart 0 0 26 0 0 0 0 0 4 0

Kidney 0 0 0 30 0 0 0 0 0 0

Liver 0 0 0 5 25 0 0 0 0 0

Lung 0 0 0 0 0 30 0 0 0 0

Pancreas 0 0 0 0 0 0 30 0 0 0

Skin 0 0 0 7 0 0 0 22 1 0

Stomach 0 0 0 4 3 0 0 0 23 0

Trachea 0 0 1 0 0 1 0 2 1 25
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students; informed consent was obtained from participants via electronic medium. We circulated the Par-
ticipation Information Sheet by electronic messaging through the class representative. It was explained to the 
students that the very act of submitting the electronic questionnaire will be taken as consent for participa-
tion in the study. The purpose and objective of the study was explained to the class, and that anonymised data 
from the study will be published.

Results
Performance of VML model on quiz questionnaire. The VGG16 ML model achieved 91% accuracy 
in the quiz (Table 6). The most common error encountered was misclassifying kidney tissue as liver. The model 
showed poorest performance in recognising stomach: misclassifying stomach tissue as heart (02 images), liver 
(01 image) and pancreas (01 image).

Performance of IML model on quiz questionnaire. The IML model produced 93% accuracy on the 
quiz questionnaire (Table 7). In contrast to the VML model, the commonest error of the IML model is recognis-
ing ‘skin’ (03 errors), which was variably mistaken as ‘kidney’ (02 errors) or ‘stomach’ (01 error).

Performance of medical students on quiz questionnaire. The combined performance of 66 medi-
cal students on the quiz questionnaire (a total of 6557 responses, excluding blank / ‘other’ answers) is shown in 
Table 8. The overall accuracy of the medical students (MS) was 55.14%.

Analysing by responses from individual students, accuracy of students ranged from 4 to 100%. 13 medical 
students out of 66 (19.67%) matched or exceeded the accuracy of the VML model, i.e. the VML model was at 
80th percentile if compared with medical students (Fig. 7). Only 08 medical students (12.12%) scored better 
than the IML model.

A histogram of the accuracy of medical students shows concentration of scores at two extremes of accuracy 
(Fig. 8).

Comparison of ML models and medical students on questionnaire. Analysis of responses, stu-
dent-by-student, shows variable agreement with the VML model (Cohen’s kappa ranging from − 0.06 to + 0.9). 
Negative kappa values were seen in Participants 58, 38, 39, 40, 43, 45 – i.e. the same students who had achieved 
lowest test scores (Fig. 9).

Table 5.  Out-of-training-scope (OTS) images.

1 Parathyroid

2 Cervix

3 Intestine

4 Intestine

5 Parathyroid

6 Intestine

7 Salivary gland

8 Endometrium

9 Salivary gland

10 Cervix

Table 6.  Confusion matrix of the predictions of VGG16 ML model on quiz questionnaire (n = 100).

Predicted Cere-bellum Cerebrum Heart Kidney Liver Lung Pancreas Skin Stomach Trachea Total (actual)

Actual

Cere-bellum 10 0 0 0 0 0 0 0 0 0 10

Cerebrum 0 10 0 0 0 0 0 0 0 0 10

Heart 0 0 10 0 0 0 0 0 0 0 10

Kidney 0 0 0 7 3 0 0 0 0 0 10

Liver 0 0 0 0 10 0 0 0 0 0 10

Lung 0 0 0 0 0 10 0 0 0 0 10

Pancreas 0 0 0 0 0 0 10 0 0 0 10

Skin 0 0 0 0 0 0 0 9 1 0 10

Stomach 0 0 2 0 1 0 1 0 6 0 10

Trachea 1 0 0 0 0 0 0 0 0 9 10

Total (predicted) 11 10 12 7 14 10 11 9 7 9 100
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Table 7.  Confusion matrix of the IML model on the quiz questionnaire (n = 100); as in the validation set, the 
commonest errors were met in recognising skin (03 errors).

Predicted cerebellum cerebrum Heart Kidney Liver Lung Pancreas Skin Stomach Trachea Total (actual)

Actual

cerebellum 10 0 0 0 0 0 0 0 0 0 10

Cerebrum 0 10 0 0 0 0 0 0 0 0 10

Heart 0 0 10 0 0 0 0 0 0 0 10

Kidney 0 0 0 10 0 0 0 0 0 0 10

Liver 0 0 0 2 8 0 0 0 0 0 10

Lung 0 0 0 0 0 10 0 0 0 0 10

Pancreas 0 0 0 0 0 0 10 0 0 0 10

Skin 0 0 0 2 0 0 0 7 1 0 10

Stomach 0 0 0 1 0 0 0 0 9 0 10

Trachea 0 0 0 0 0 1 0 0 0 9 10

Table 8.  Confusion matrix of the aggregated responses from 66 medical students (MS) over quiz 
questionnaire (n = 6557).

Answered Cere-bellum cerebrum Heart Kidney Liver Lung Pancreas Skin Stomach Trachea Total (actual)

Actual

Cerebellum 336 101 32 25 22 28 39 29 23 19 654

Cerebrum 49 406 31 23 35 28 28 27 23 9 659

Heart 23 26 386 36 33 29 32 35 40 14 654

Kidney 20 17 28 441 19 26 52 18 25 10 656

Liver 14 20 34 61 301 33 112 31 36 14 656

Lung 21 21 28 29 24 433 42 20 22 13 653

Pancreas 19 42 40 65 58 28 316 25 46 15 654

Skin 42 34 33 23 17 29 22 340 36 80 656

Stomach 16 24 33 59 61 28 160 18 241 18 658

Trachea 21 33 22 36 15 27 31 36 20 416 657

Total (answered) 561 724 667 798 585 689 834 579 512 608 6557

Figure 7.  Accuracy of 66 medical students in ascending order (Figure generated by Matplotlib python library, 
version 3.3.4, https:// matpl otlib. org/).

https://matplotlib.org/
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A tissue-wise comparison between MS (aggregate of all responses) and both ML models (VML & IML) 
showed the classification by ML models to be significantly different from MS; results of tissue-wise Chi-square 
Goodness of Fit are shown (Table 9):

Image-by-image comparison of equivocal responses by MS & VML. Figure 10 shows the most frequent answer 
among all medical students, and the most probable prediction from VML model, for each image, as a clustered 
heatmap.

The comparison between 2nd commonest answers from MS, and predictions with  2nd highest probability 
from VML, image-by-image, is shown in Fig. 11.

A plot of top 3 commonest answers, per question basis, from both MS and VML, shows a diffuse scatter. No 
clustering is noted between the top 3 answers/probabilities of MS and VML, on an image-by-image basis (Fig. 12).

Figure 8.  Histogram of accuracy of 66 medical students in the quiz questionnaire; the accuracy of VML and 
IML are shown for comparison (Figure generated by Matplotlib python library, version 3.3.4, https:// matpl otlib. 
org/).

Figure 9.  Plot of Cohen’s kappa for each student (n = 66), as a measure of agreement between students and 
VML model (Figure generated by Matplotlib python library, version 3.3.4, https:// matpl otlib. org/).

https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
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The IML model was decisive in its predictions in majority of the cases: only 02 questions out of 100 in the quiz 
set were answered equivocally, i.e. where the prediction with the 2nd highest probability was more than half of 
the first. Thus the IML model was not comparable to MS regarding equivocal responses.

Images that were difficult to classify, for both MS and VML. We found only 04 (four) images where both MS 
and VML have produced a grossly mixed response, i.e. the frequency (probability) of the second choice was 
more than half of that of the first choice. The second choices of MS and VML were different in all such images 
(Fig. 14). Three of these images belong to the class ‘liver’. While both MS and VML model have generated correct 
classification with the greatest probability, it is interesting to note that the 2nd most frequent answer from MS 
was always ‘pancreas’, and the 2nd highest probability from VML model was always ‘kidney’. ‘Stomach’ is the 
3rd most probable prediction in all three images, by both MS and VML (Fig. 13).

Comparison of MS on quiz questionnaire and VML/IML on full validation set. The ten common-
est errors in classification by aggregate of MS, as compared to VML model (the results of the VML model on 
the full validation set of 300 images, not just the quiz images) & the IML model (on the full validation set), are 
shown in Table 10:

The ‘stomach’ class accounted for the highest number of errors in both VML and MS, producing 34.84% of 
all errors by MS and 41.17% of all errors by VML model. The commonest error by medical students was mis-
classifying stomach as pancreas (160 errors), liver as pancreas (112 errors), and cerebellum as cerebrum (101 
errors) (Fig. 14).

The commonest error of the VML model on full validation set were misclassifying kidney as liver (08 errors), 
misclassifying stomach as liver (08) & misclassifying stomach as heart (04). There is no overlap between the 
commonest errors of MS and VML model (Fig. 14). The pattern of errors of the IML model is distinct from both 
MS & VML; ‘skin’ is the commonest misidentified class, followed by liver and heart (Fig. 14).

Comparison with students with scores close to ML models. The overall accuracy of MS was much 
lower than the VML model/IML model, and thus their confusion matrices were not directly comparable. We 
selected 05 students whose accuracy in quiz was in the range 0.90–0.92, i.e. close to that of the VML model. We 
constructed their aggregated error matrix (Table 11).

We then compared this confusion matrix with the error matrix of the VML and IML model over the entire 
validation set (Table 3). A Kolmogorov–Smirnov test showed K-S statistic 0.1, p-value = 0.702, suggesting similar 
error profiles between the VML/IML and this subset of medical students.

Results of OTS images. The results of MS and VML on OTS images (10 images) are as follows. A ‘likeness 
score’ has been assigned based on resemblance of original and predicted tissue, i.e. if ‘salivary gland’ is predicted 
to be ‘pancreas’, a likeness score of 01 is allotted (Table 12).

The same set of images was shown to the MS and their responses recorded. As shown in the table, the VML 
& IML model have clearly overfitted on the class ‘lung’. This is concordant with the perfect accuracy (100%) of 
both VML & IML in recognising lung tissue in the validation set. Unlike the VML model, majority of medi-
cal students have been able to place the images in the category which it resembles histologically, i.e. they have 
consistently classified intestine as ‘stomach’ (possibly, they could recognise intestine, but selected ‘stomach’ 
because the options were limited to only ten classes of the training dataset). In recognising ‘parathyroid’ and 
‘endometrium’, MS, VML & IML model have produced random results (Fig. 15); this is expected – as the VML/
IML model was never trained on these tissues. Also, the medical students were not trained on these tissues 
(parathyroid, endometrium).

Table 9.  Tissue wise agreement (Chi squared Goodness of Fit) between MS, VML & IML in the quiz 
questionnaire (n = 100). Significance of *: indicates statistically significant values.

Tissue class

Comparison between MS 
and VML

Comparison between MS 
& IML

Chi square p-value Chi square p-value

Cerebellum 539.34 2.14e-110 * 541.297619 8.16e-111*

Cerebrum 704.25 8.45e-146 * 704.246305 8.45e-146*

Heart 643.38 1.01e-132 * 647.259067 1.49e-133*

Kidney 784.11 5.59e-163 * 768.483193 1.28e-159*

Liver 557.82 2.34e-114 * 569.212625 8.44e-117*

Lung 669.23 2.83e-138 * 667.267984 7.49e-138*

Pancreas 812.32 4.73e-169 * 814.316456 1.76e-169*

Skin 561.24 4.33e-115 * 565.144118 6.29e-116*

Stomach 498.18 1.41e-101 * 492.363877 2.48e-100*

Trachea 590.19 2.66e-121 * 590.194712 2.66e-121*
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Discussion
The emergence of DNNs has rekindled academic interest in the true nature of perception and working of the 
mind. Qualities that were erstwhile known to be decidedly biological, such as visual recognition of objects, have 
been successfully reproduced in DNN models. Even the most abstract of faculties, mathematics and symbolic 
logic, have been implemented with DNNs with some degree of  success52. However, a direct comparison of 
DNN with human visual recognition is difficult because of several reasons. Humans, although well trained by a 
lifetime of experiences, are prone to the occasional error in visual recognition (such as optical illusions, wrong 
interpretation of color, even misrecognition of  faces53). Adversarial images, which can confound DNN models, 
have also been shown to affect humans when limited by time for decision-making54.

In early studies on DNNs, the performance of humans was assumed to be 100% accurate, i.e. human visual 
recognition was the gold standard against which DNN models were compared. However, it was soon realised 
that in specialised domains (such as recognising dog breeds), humans were just as naive as machines, and DNN 
models may outperform  humans55. But even in such studies, the base class ‘dog’ is not outside the purview of 
human experience, although the subclasses (breeds) might be unknown to the human subjects. Thus, there still 
remains a bias in favor of humans.

Funke et al., in their guideline, describe the control variables when comparing human and ML performance 
on image  recognition56. One such control is ‘aligning experimental conditions for both systems’, i.e. the matching 
operation. They mention that ‘the human brain profits from lifelong experience, whereas a machine algorithm is 
usually limited to learning from specific stimuli of a particular task and setting.’ The same point was highlighted 
by Cowley et al. in a recent paper on designing a framework for human–machine learning comparison. They 

Figure 10.  Clustered heatmap showing commonest responses by MS, and predictions with highest probability 
from VML, on each individual image of the quiz set (n = 100); 90% match is noted (Figure generated by 
Matplotlib python library, version 3.3.4, https:// matpl otlib. org/).

https://matplotlib.org/
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observed that while the ML model can be trained only with a limited set of data, the same does not apply to 
humans and it was not possible “ … to implement a one-shot learning task in human participants using natural 
images and categories that humans already have experience with” 57. We have tried to remove the bias of experi-
ence, by studying an image dataset which is novel to both human and machines (i.e. histological images).

However, it is to be emphasised that the training period differed between humans and machines, in our 
study. This is due to the differences in machine and human learning: we have selected medical students who had 
already been taught histology as part of their curriculum in first year of medical school. This is because humans 
need a minimum period of training to gain proficiency, and to develop pattern recognition skills which they 
can generalise to novel problems. An ML model is much faster to train (typically, within hours or days); humans 
cannot be expected to learn anything within such a short period.

Pattern of errors in MS & VML/ IML model. Overall, the pattern of errors of medical students and 
VML/IML model is distinctly different, as seen by the overall kappa and chi-squared Goodness of Fit tests 

Figure 11.  The second commonest answer of the medical students, and the prediction from VML model 
with second highest probability—matched only in 15 images of the quiz questionnaire (n = 100); in 14 of these 
images, the first prediction also matched (Figure generated by Matplotlib python library, version 3.3.4, https:// 
matpl otlib. org/).

https://matplotlib.org/
https://matplotlib.org/
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(Table 9). In the quiz questionnaire, there were only 04 images which generated mixed response both from MS 
and VML. However, the pattern of the responses (i.e. 2nd and 3rd common response) was different in MS and 
VML. Whereas the commonest error by MS was stomach/ pancreas (i.e. classifying stomach as pancreas) and 
kidney/pancreas, the commonest errors of the VML model was kidney/liver and stomach/ liver. This suggests 
‘overfitting’ on pancreas by MS, and on liver by VML model.

Interestingly, the images of ‘stomach’ class were obtained from gastric biopsies, and were thus missing muscu-
laris propria. Thus, the ‘stomach’ class has assisted us to uncover hidden bias in both MS and VML. The medical 
students tend to mistake the stomach for pancreas, whereas the VML model frequently mistook the stomach 
for liver.

The IML model, however, is much more certain in its responses (only 2% equivocal responses in the quiz set). 
It shows a bias for the ‘kidney’ class, and has frequently mistaken skin and liver for kidney. This pattern is also 
different from medical students. Because of its higher accuracy and greater certainty than VML, we felt that the 
IML model was less suitable for comparison with medical students.

Visualising deeper layers of the DNN in misclassified images. Following is a serial visualisation 
of convolutional layers of the VML, which is processing an image of trachea, and misclassifies it as cerebellum. 
The MS group have however, correctly recognised this image as trachea with a clear majority (Figs. 16 and 17).

Figure 12.  Plot of three commonest responses from MS and VML. Each dot represents a question from the 
quiz. The x axis represents the commonest response, y axis – the second commonest, and z axis – the third 
commonest response, from medical students on that question (in blue). For VML model (in green), the x axis 
is the prediction with highest probability, y axis – second highest and z-axis, third highest probability. The 
numbers 0 to 9 on each axis represent the 10 categories of tissue: ’cerebellum’, ’cerebrum’, ’heart’, ’kidney’, ’liver’, 
’lung’, ’pancreas’, ’skin’, ’stomach’, & ’trachea’ . The quiz consisted of 100 questions (n = 100) (Figure generated by 
Matplotlib python library, version 3.3.4, https:// matpl otlib. org/).

https://matplotlib.org/
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We compared this with an image of ‘cerebellum’ class that was correctly classified by the VML. The simi-
larities in the convolutional layers are evident. It is possible that the cartilaginous band in trachea led to the 
misclassification of the previous image as cerebellum, due to similarities with the granular layer of cerebellum 
(Figs. 18 and 19).

Figure 13.  The four images in the quiz set where both medical students and VML model have produced 
mixed responses, with the 2nd commonest response having more than half the probability/ frequency of the 
commonest response. (a) stomach, (b), (c) & (d) liver. (Figure generated by Matplotlib python library, version 
3.3.4, https:// matpl otlib. org/).

https://matplotlib.org/
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This is in stark contrast to an image from ‘liver’ class, which was recognised by most of the students, and also 
by VML model with a mixed response (Fig. 20). The IML model, however, unequivocally classifies this as ‘liver’.

Deeper layers of the VML reveal specific signatures of this image which do not persist till the innermost 
layers (Fig. 21).

The ‘stomach’ tissue, which has turned out to be the most confounding in both humans and VML model, was 
mistaken for all other classes of tissue. Figure 22 shows stomach tissue mislabeled as liver by the VML model. 
The first few convolutional layers show the artifactual blank space which has given the gastric mucosa a vague 
lobular appearance. (Fig. 23).

Comparison of errors of MS and ML models. An interesting finding in the study was that students who 
have scores close to the VML/ IML model (i.e. between 0.9–0.92), produce similar error profile of the VML/
IML model (when the performance of VML/IML model over entire validation set is considered). A Kolmogo-
rov–Smirnov test failed to reject the null hypothesis (p = 0.702)58. However, when compared with all medical 
students, the pattern of errors was distinctly different. (Fig. 24).

In a study by Dodge et al. on image dataset of different dog breeds, not only did humans outperform machines 
on serially distorted images, but the pattern of errors was also significantly different between humans and 
machines;12 the authors went on to suggest that the inner representation of images vary between humans and 
machines. However, the accuracy of the DNN model in their study was much lower than humans. In the present 
study, very few students have reached accuracy close to the machine (Fig. 25); between these few students and 
VML/ IML model, the error profile was similar.

The IML model, however, in addition to being more accurate than both MS & VML, also shows a distinct 
error profile (with a bias for the ‘kidney’ class). The IML model seems to be more ‘certain’ in its decision than 
VML model and aggregate of medical students. Whereas the aggregate of medical students provided equivocal 
answers to 12 questions (12%) of the quiz set, and the VML produced equivocal predictions in 20 questions 
(20%), the IML generated an equivocal prediction in only 02 questions (2%). (By ‘equivocal’, we mean where the 
second commonest answer/prediction was ≥ 50% of the commonest answer/prediction–in frequency).

Likeness score of MS, VML & IML model in OTS images. In the OTS image set, we created a metric 
‘likeness score’ based on histologic similarity of actual and predicted classification: if ‘cervix’ was recognised as 
‘skin’, a likeness score of 01 was awarded (owing to presence of squamous epithelium in both of the tissues). The 
medical students (total likeness score = 6) outperformed the VML/IML models (total likeness score = 2). This 
was due to overfitting of the ML models on the ‘lung’ class (07 & 08 of the 10 images in the OTS set was classified 
by VML and IML model as ‘lung’, respectively), as well as indicating the higher efficacy of humans in pattern 
recognition from OTS images (i.e. finding similarities of architecture between ‘salivary gland’ and ‘pancreas’, 
both of which are exocrine glands).

The failure of the VML in recognising ‘likeness’ between tissues hints at the same problem faced by Funke 
et al. while trying to teach DNN models the concept of ‘closed’ and ‘open’ shapes;34 they realised that even after 
intensive training, the DNN model did not learn the concept of a closed shape. In our study, the overfitting on 
‘lung’ class suggests that while the VML/IML model can recognise lung and pancreas with reasonable accuracy, 
it has not learnt the concept of a glandular structure, as evident by its misclassification of ‘salivary gland’ as ‘lung’.

Comparison with previous studies. Several efforts have been made in the recent past, to compare human 
and machine learning in the field of image recognition. The design of these studies varies in their problem space 
and models used, and are thus not directly comparable to the present study. (Table 13) However, our conclusions 

Table 10.  Commonest errors of MS, VML & IML model; 66 medical students have provided 6557 responses 
in a quiz questionnaire of 100 images; the VML and IML model were evaluated on the full validation set 
(n = 300).

MS (n = 6557 responses) VML (n = 300) IML (n = 300)

Original Predicted
Number of 
errors

Proportion 
among all 
errors Original Predicted

Number of 
errors

Proportion 
among all 
errors Original Predicted

Number of 
errors

Proportion 
among all 
errors

Stomach Pancreas 160 19.78% Kidney Liver 8 23.53% Skin Kidney 7 24.14%

Liver Pancreas 112 13.84% Stomach Liver 8 23.53% Liver Kidney 5 17.24%

Cerebellum Cerebrum 101 12.48% Stomach Heart 4 11.76% Heart Stomach 4 13.79%

Skin Trachea 80 9.89% Pancreas Liver 3 8.82% Stomach Kidney 4 13.79%

Pancreas Kidney 65 8.03% Cerebrum cerebellum 2 5.88% Stomach Liver 3 10.34%

Liver Kidney 61 7.54% Heart Pancreas 2 5.88% Trachea Skin 2 6.90%

Stomach Liver 61 7.54% Liver Kidney 2 5.88% Skin Stomach 1 3.45%

Stomach Kidney 59 7.29% Pancreas Cere-bellum 2 5.88% Trachea Heart 1 3.45%

Pancreas Liver 58 7.17% Stomach Pancreas 2 5.88% Trachea Lung 1 3.45%

Kidney Pancreas 52 6.43% cerebellum Pancreas 1 2.94% Trachea Stomach 1 3.45%

Total 809 34 Total 29
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Figure 14.  Error patterns of MS, VML & IML: (a) commonest errors of the medical students (MS) over the 
quiz set (n = 6557); (b) commonest errors of VML on the validation dataset (n = 300); (c) commonest errors 
of the IML on validation dataset (n = 300); a label such as ‘liver/ kidney’ indicates that ‘liver’ was mistaken for 
‘kidney’ (Figure generated by Matplotlib python library, version 3.3.4, https:// matpl otlib. org/).

https://matplotlib.org/
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Table 11.  Aggregated confusion matrix of 05 students who attained accuracy close to the VML model.

Predicted Cere-bellum Cere-brum Heart Kidney Liver Lung Pancreas Skin Stomach Trachea

Actual

Cere-bellum 54 6 0 0 0 0 0 0 0 0

Cerebrum 0 60 0 0 0 0 0 0 0 0

Heart 0 0 59 0 0 0 1 0 0 0

Kidney 0 0 0 58 0 0 0 0 2 0

Liver 0 0 0 1 47 0 10 0 2 0

Lung 0 0 0 0 2 57 0 1 0 0

Pancreas 0 0 0 0 3 0 54 0 3 0

Skin 1 1 0 0 0 0 0 57 0 1

Stomach 0 0 0 1 0 0 18 0 41 0

Trachea 0 0 0 0 0 0 0 1 0 59

Table 12.  Performance of MS, VML & IML model on out-of-training-scope images.

Original VML prediction
Likeness score 
(VML)

Commonest 
answer by MS 
(n = 44)

Likeness score 
(MS) IML prediction

Likeness score 
(IML)

Parathyroid Stomach 0 Liver 0 Lung 0

Cervix Skin 1 Skin 1 Skin 1

Intestine Lung 0 Stomach 1 Stomach 1

Intestine Lung 0 Stomach 1 Lung 0

Parathyroid Lung 0 Liver & lung 0 Lung 0

Intestine Lung 0 Stomach 1 Lung 0

Salivary gland Lung 0 Pancreas 1 Lung 0

Endometrium Lung 0 Pancreas 0 Lung 0

Salivary gland Lung 0 Lung 0 Lung 0

Cervix Skin 1 Skin 1 Lung 0

Total 2 6 2

Figure 15.  Parathyroid tissue predicted by VML & IML to be ‘lung’; the opinion of medical students is split 
between several classes (Figure generated by Matplotlib python library, version 3.3.4, https:// matpl otlib. org/).
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are similar to the studies by Kuhl 2020, Dodge 2017 and Fleuret 2011: that humans generalise to a larger prob-
lem space much faster than ML models, as evident by performance of medical students on the OTS image data.

Limitations
The study was limited by the quality of tissue preservation: in particular, the images from ‘liver’ and ‘kidney’ 
class were retrieved from autopsy specimens and some distortion of tissue architecture was present in few of the 
images. The images from ‘stomach’ class were from mucosal biopsies, resulting in loss of orientation of tissue. It 
must be mentioned that the ‘stomach’ class of tissue has, inadvertently, uncovered hidden bias in both MS and 
VML model, as mentioned in results.

Figure 16.  An image of trachea recognised correctly by majority of MS, misclassified by VML and correctly 
classified by IML (Figure generated by Matplotlib python library, version 3.3.4, https:// matpl otlib. org/).

Figure 17.  The VML model processing the image from ’trachea’ class (Fig. 16), eventually misclassifying it as 
‘cerebellum’. The inner layers (convolution layers only) are represented here. The thick band of cartilaginous 
tissue is the prominent feature of this image, and has persisted till the last convolution layers. (For visualisation 
purposes, a psuedocolor scheme has been used to render the deeper layers, and only the first few slices of initial 
convolution layers are shown) (Figure generated by Matplotlib python library, version 3.3.4, https:// matpl otlib. 
org/).
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Again, the medical students represent variable amounts of prior knowledge of histology, as is expected in 
any group humans with diverse academic aptitudes. This has reflected in the variation in accuracy of medical 
students. It is difficult to correctly match the exact amount of ‘training’ between humans and machines: we 
have selected medical students with some prior training in histology, i.e. trained for 2 months in histology as 
part of their curriculum in first year of medical school. This is because an initial, informal assessment on com-
pletely naive students had shown that without a period of training of at least a month, human students did not 
achieve > 10% accuracy in recognising 10 different classes of tissue. Certainly, the time taken by the VML/IML 
model to train on these tissues (2 h) is grossly insufficient for human students.

The quiz was conducted without any time limits, and answering each question was not mandatory (unan-
swered questions were excluded from final analysis). With the didactic experience of three of the authors, the 
psychology of students when facing a quiz was taken into consideration. We thus felt that making questions 
mandatory, or putting a time limit, would force the students to cause mistakes. It was decided not to implement 
artificial restrictions on human students. It is at this point that ML models significantly differ from medical 
students: an ML model, given an image, will always produce an answer; it cannot ‘pass’ questions. This is a 

Figure 18.  An image of cerebellum correctly classified by majority of MS, VML and IML (Figure generated by 
Matplotlib python library, version 3.3.4, https:// matpl otlib. org/).

Figure 19.  Image of ’cerebellum’ class correctly classified by the VML; there is similarity of the initial first 10 
slices of the first convolution layer, with the previous figure (Fig. 18). The granular layer has persisted till the last 
convolution layers. (Figure generated by Matplotlib python library, version 3.3.4, https:// matpl otlib. org/).
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fundamental limitation in comparing human and machine learning. However, we decided to mitigate this limi-
tation by excluding unanswered questions (from medical students). In the course of analysis, especially when 
calculating Cohen’s kappa, unanswered questions by students were placed into the ‘other’ category and counted 
as errors. It must also be noted that even without making an answer mandatory, 6557 responses were received 
from medical students out of a possible 6600 (99.34%).

Conclusion
The present study compares the performance of two deep learning models (a modified VGG16 model and a modi-
fied Inception model) with a group of human medical students, on an image dataset which is novel to both: the 
deep learning models and humans have had no prior exposure to histological images. Our findings suggest that 
within the scope of training, the deep learning models perform better than 80% medical students. The medical 
students (MS) and VGG16 model (VML) faced similar difficulties in classification, as evident by the fact that 
‘stomach’ was most difficult to classify by both of them, although the error profile–what they mistake it for–was 
different between MS and VML; in contrast, the Inception model (IML) was most frequently confounded by the 
‘skin’ class. However, the students who have reached accuracies close to the VML/IML, also tend to replicate the 

Figure 20.  Image from ‘liver’ class producing mixed response from MS & VML but unequivocal response from 
IML (Figure generated by Matplotlib python library, version 3.3.4, https:// matpl otlib. org/).

Figure 21.  Convolution layers of the image in previous figure (Fig. 20) within the VML. No specific identifying 
feature has persisted till the last few convolution layers (Figure generated by Matplotlib python library, version 
3.3.4, https:// matpl otlib. org/).
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same pattern of errors in image recognition as that of the ML models. This suggests a degree of similarity between 
how an ML model and humans extract features from an image when their accuracies are similar.

If asked to classify images outside the scope of training, humans perform better at recognising patterns 
and likeness between tissues. We suggest that ‘training’ (in the context of machine learning) is not the same as 
‘learning’, and humans can extend their pattern-based learning to different domains outside of the training set.

Link to training notebook (annotated source code) of the DNN models, the VGG16 and Inception models 
(in H5 format) is provided in Data Availability section.

Figure 22.  Stomach mucosa producing mixed response from MS, wrongly identified by VML and correctly 
identified by IML (Figure generated by Matplotlib python library, version 3.3.4, https:// matpl otlib. org/).

Figure 23.  The artifactual linear blank space in the previous figure (Fig. 22) has prominently featured in the 
first few convolutional layers of VML model (Figure generated by Matplotlib python library, version 3.3.4, 
https:// matpl otlib. org/).

Figure 24.  Error matrices of VML, MS and IML: (a) Confusion matrix of VML over the entire validation 
set (n = 300); the dark spots along the diagonal represent correct answers; (b) Aggregated confusion matrix of 
medical students over the quiz images (n = 6557); dark spots are noted outside the diagonal line, representing 
wrong answers; (c) Confusion matrix of IML model on validation set (n = 300); the IML is more accurate, and 
shows less equivocal predictions, than the VML model (Figure generated by Matplotlib python library, version 
3.3.4, https:// matpl otlib. org/).
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Future directions
The present study offers an insight into the inner representation of visual information, of human and machine 
learners, on a novel dataset. The study can be extended to any direction, particularly with state of-the-art-image 
classification models such as Xception and Vision Transformers. It would also be interesting to reproduce this 
study with altered or fragmented images, to assess performance of both the learners in recognising local features 
from an image. Such studies will bring the differences between humans and machine learning models, in the 
context of image recognition, in sharper focus.

Figure 25.  Confusion matrix of all 66 students over the quiz set; the overall error profile is very dissimilar 
to ML models; only the best performing students produced a similar error profile as that of the VML model 
(Figure generated by Matplotlib python library, version 3.3.4, https:// matpl otlib. org/).

Table 13.  Summary of recent studies comparing human and machine learning, along with the approach taken 
in the present study.

Author Problem space ML model Population for comparison Conclusion

Orosz et al.59 Annotating text (legal documents) for 
features specific to case instance Support vector machine Laymen, lawyers and legal editors ML model matches accuracy of legal 

editors

K¨uhl et al.60 Inferring rules from simple 3 × 3 grid 
patterns

Logistic regression, decision tree, neural 
network General population

Humans learn more from small training 
set than machines; large differences 
seen in learning curves of ML models 
depending on pattern and rule

Dodge et al.12 Labeling breeds of dogs from normal 
and distorted images of dogs

Modified VGG16, InceptionV3 and 
ResNet50 (transfer learning) General population

Humans score better accuracy on 
distorted images than ML models; there 
is no correlation between the errors of 
humans and ML models

Fleuret et al.11 Inferring rules from artificially generated 
shapes Adaboost, Support vector machine General population

Humans infer rules with better accuracy 
from a much smaller number of exam-
ples than ML models

Present study Classification of histological images into 
defined classes of tissue Convolutional neural network Medical students

Within scope of training, ML model 
performed better than students. How-
ever, students were able to extend their 
learning to new domains
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Data availability
Quiz questionnaire with images: https:// forms. office. com/ Pages/ Respo nsePa ge. aspx? id= DQSIk WdsW0 yxEja 
jBLZt rQAAA AAAAA AAAAe__ YDJd8 ZUMUJ DU1JO UjJBU zBISD k5UDJ aRkIw UjhIT i4u. OTS questionnaire 
with images: https:// forms. office. com/ Pages/ Respo nsePa ge. aspx? id= DQSIk WdsW0 yxEja jBLZt rQAAA AAAAA 
AAAAe__ YDJd8 ZUMU9 IVVNW RUtRU 0I2ME MyMUF LTExZ VkhXT C4u. Annotated source code of the DNN 
models, the responses from students on quiz and OTS images are uploaded at: https:// github. com/ cmacus/ histo_ 
ml_ human. Any other data pertaining to the study will be made available on request.
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