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Development and verification 
of an immune‑related gene 
prognostic index for gastric cancer
Chen Zhang1, Tao Liu1, Jian Wang2 & JianTao Zhang1*

Immune checkpoint inhibitor (ICI) therapy is an emerging and effective approach to the treatment of 
gastric cancer (GC). However, the low response rate of GC patients to ICI therapy is a major limitation 
of ICI therapy. We investigated the transcriptomic signature of immune genes in GC could provide 
a comprehensive understanding of the tumor microenvironment (TME) and identify a valuable 
biomarker to predict the response of GC patients receiving immunotherapy. We performed the 
weighted gene co‑expression network analysis (WGCNA) to determine immune‑related hub genes 
that differentially expressed in the GC dataset based on The Cancer Genome Atlas (TCGA). After that, 
univariate and multivariate Cox regression was performed to recognize prognostic genes associated 
with overall survival and to develop an immune‑related gene prognostic index (IRGPI). Furthermore, 
we explored the possible correlation between IRGPI and immune cell infiltration and immunotherapy 
efficacy. Notably, IRGPI can predict the prognosis of GC patients, as well as the response to 
immunotherapy. IRGPI as an immune‑related prognostic biomarker might bring some potential 
implications for immunotherapy strategies in GC.

Gastric cancer is the fifth most prevalent cancer type and the fourth leading cause of cancer  death1. Immune-
related gene (IRG) is identified through research as genes that are significantly associated with the individual or 
partial pathways of the immune response. IRG can be involved in the activation of immune cells, migration of 
immune cells, and release of inflammatory factors, and play an important role in the development and progres-
sion of  cancer2–4. IRG can be used as a biomarker to predict the prognosis of cancer  patients5. It has been shown 
that high expression of immune-related genes predicts a better prognosis for EBV-positive and EBV-negative gas-
tric cancer  patients6. Gastric cancer is being treated with surgery, chemotherapy, radiation therapy, and targeted 
 therapy7. In recent years, immunotherapy has gained prominence as a viable cancer therapy. Immune checkpoint 
inhibitor (ICI) therapy, such as those targeting programmed death 1 (PD1), programmed death-ligand 1 (PD-L1), 
and cytotoxic T lymphocyte-associated protein 4 (CTLA4), has demonstrated considerable survival benefits. 
Inhibition of the PD-1/PD-L1 axis with ICIs (such as pembrolizumab and nivolumab) has been regarded as a 
prominent therapy strategy for advanced  GC8–14. The main disadvantage of ICI therapy, however, is the limited 
response rate of patients to ICI treatment. Because tumor microenvironment (TME) and PD-L1 levels, among 
many others, affect ICI efficacy, few biomarkers are good predictors of patient  prognosis15.

We discovered a marker to indicate the prognosis for GC in this investigation. In the GC transcriptome data, 
we searched for immune-related differential genes, identified hub genes using weighted gene co-expression net-
work analysis (WGCNA) and CytoHubba plugin, and performed univariate Cox regression analysis to identify 
immune-related prognostic genes. Furthermore, multivariate Cox analysis identified five genes to create an 
immune-related gene prognostic index (IRGPI). Afterward, we investigated the molecular and immunological 
profile of the IRGPI group and compared it with TIDE (tumor immune dysfunction and exclusion) and TIS 
(tumor inflammatory signature). In addition, we compared the efficacy of IRGPI in the immunotherapy cohort 
and its prognostic value in immunotherapy patients. The findings indicate the IRGPI might be a potential 
biomarker.

Methods and materials
Collection of gastric cancer datasets. RNA-seq data and clinicopathological information of 407 GC 
samples, which include 375 tumor samples and 32 normal samples, and data on somatic mutation variation 
were obtained from The Cancer Genome Atlas (TCGA) (https:// portal. gdc. cancer. gov/). The somatic mutation 
data was processed by the Maftool package and the TMB was obtained by Perl calculation script, which is the 
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total number of somatic variants per million  bases16. RNA-seq data and survival statistics for 300 GC sam-
ples (GSE62254) were also retrieved from the GEO database (https:// www. ncbi. nlm. nih. gov/ geo/)17. ImmPort 
(https:// www. immpo rt. org/ shared/ home) and InnateDB (https:// www. innat eDBdb. com/) databases were uti-
lized to seek immune-related  genes18,19. Standardized RNA expression data from the advanced gastric cancer 
anti-PD-1 therapy clinical cohort (PRJEB25780) were downloaded from Tumor Immune Dysfunction and Exclu-
sion (http:// tide. dfci. harva rd. edu/), and immunotherapy clinical data were extracted from the  manuscript20,21.

Differentially expressed genes are identified. According to the criterion of |log2(FoldChange)|> 1 
and false discovery rate (FDR) < 0.05, in TCGA-STAD dataset, the “limma” package of R was utilized to find dif-
ferentially expressed genes between 375 tumor samples and 32 normal samples. After consideration in the con-
text of the lists of immune-related genes collected from ImmPort and InnateDB, differentially expressed related 
immune genes were obtained. Then, WGCNA was exploited to determine the hub  genes22. WGCNA could add 
phenotypic weight parameters in the process of constructing gene co-expression networks while using scale-free 
clustering and dynamic shear trees to optimize the classification for accurate and efficient analysis of the data. 
First, using the expression data, a similarity matrix was created by computing the correlation coefficient between 
genes. The similarity matrix was then converted into an adjacency matrix with a network type of signature and 
a soft threshold of β = 3 to indicate the degree of interaction between genes, and finally into a topology matrix 
with a topological overlap measure (TOM). The 1-TOM is employed as the gene clustering distance, and the 
modules are identified utilizing a dynamic pruning tree. Finally, by adjusting the merge threshold function, we 
are able to determine the number of relevant modules and extract the genes in the most differentiated modules. 
Furthermore, we used an open-source software platform STRING (https:// string- db. org/) to build a PPI network 
of immune-associated DEGs. We selected the degree of interaction between proteins with a composite score 
greater than 0.9 and analyzed them with the use of Cytoscape. We then selected immune-associated hub genes 
using the cytoHubba plugin. Obtaining intersecting genes from modular genes and immune hub genes via the 
Draw Venn Diagram online tool (http:// bioin forma tics. psb. ugent. be/ webto ols/ Venn/). The clusterProfiler pack-
age of R was used to evaluate genes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG)  analyses23,24.

The immune‑related gene prognostic index (IRGPI) was developed. To access prognosis-related 
immune genes, we used the survival package of R to do a univariate Cox regression analysis exploring the 
relationship between hub gene expression and overall survival (OS)25. We obtained 22 immune genes associ-
ated with prognosis. Among the 22 immune-related prognostic genes, multivariate Cox regression analysis was 
used to explore genes with substantial effects on OS and to calculate weights to construct prognostic models to 
develop IRGPI. In the Cox model, the IRGPI of each sample was determined by multiplying the expression levels 
of certain genes by their weight and then adding them together. K–M survival curves with log-rank testing were 
used to assess the predictive value of the IRGPI in both the TCGA and GEO cohorts. Univariate and multivariate 
Cox regression analyses were exploited to affirm IRGPI independent prognostic significance.

In‑depth analysis of molecular and immunological features in distinct IRGPI groups. The 
“limma” package of R was used to perform differential expression analysis on all genes to assess the samples 
with high and low IRGPI scores in the signaling pathway involved. The gene set enrichment analysis (GSEA) 
approach based on the KEGG gene sets was then used using the clusterProfiler package of R to find the signaling 
pathways in which the differentially expressed genes are implicated (p < 0.05). Using the R package Maftools, 
the gene mutation map was created in two IRGPI groups. To determine the immune characteristics of the 375 
GC samples, we imported their expression data into CIBERSORT (https:// ciber sort. stanf ord. edu/) and perform 
1000 iterations to determine the proportional proportions of the 22 immune cell types. The proportions of the 
22 immune cells were then compared between the two IRGPI groups. We also explored the correlation between 
the IRGPI groups and the conventional immune subtypes. IRGPI score, PD-L1 expression, and TMB were all 
analyzed for correlation. To explore the IRGPI on patient immunotherapy, we evaluated two immunotherapy 
cohorts, IMvigor210 and PRJEB25780. In addition, we performed a time-dependent ROC curve analysis to 
obtain the area under the curve (AUC) and compared the prognostic value between IRGPI, TIDE, and TIS with 
the timeROC package of R. The TIDE score was obtained utilizing an internet tool (http:// tide. dfci. ather ard. 
edu/)21. TIS score was constructed as the mean of log2 scale-normalized expression of the 18 signature  genes26.

Statistical analysis. For the comparison of categorical variables, the Chi-square test was utilized. Inde-
pendent t-tests were used to compare continuous variables between the two groups. A comparison of TIDE 
scores between groups was performed by the Wilcoxon test. The Kaplan–Meier survival analysis and log-rank 
test were applied to perform univariate survival analysis. Multivariate survival analysis was performed using the 
Cox regression model. A two-sided p value < 0.05 was deemed significant. The statistical analyses in this study 
were generated by R-4.0.4.

Ethical approval. All methods in this study were performed in accordance with the relevant guidelines and 
regulations.
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Result
Development of an immune‑related gene prognostic index. In differential expression analysis of 
375 gastric cancer tissues and 32 normal samples in the TCGA cohort, we discovered 8832 DEGs, with 7497 
genes upregulated and 1335 genes downregulated in the tumor samples compared to the normal samples. 
DEGs were overlapped with a list of immune-related genes derived from ImmPort and InnateDB, yielding 493 
immune-related genes that are differentially expressed, with 309 upregulated and 184 downregulated (Fig. 1A; 
Table S1). To acquire immune-related hub genes, we first performed WGCNA on candidate genes (n = 493). The 
correlation coefficient was more than 0.8, and the logarithm log(k) of the node with connection K was negatively 
linked with the logarithm log (P (k)) of the node’s probability. Based on the scale-free network, the optimal soft 
threshold power was 3. Refers to the average linkage hierarchical clustering and the optimal soft-thresholding 
power, five modules were determined (Fig. 1B, Fig. S1). We observed that the turquoise module was closely 
connected with GC tumors based on the Pearson correlation coefficient between a module and a sample char-
acteristic, hence the genes in turquoise modules were chosen for further testing (n = 255). Secondly, we explore 
potential associations between immune genes, we performed protein–protein interaction (PPI) networks using 
the STRING, requiring interaction scores > 0.900. Then, we obtained 238 immune hub genes using the cyto-
Hubba plugin and displayed the interaction network graph in Fig. 1C. We merged the turquoise module genes 
and immune hub genes to finally obtain 132 immune-related genes (Fig. 1D).

These genes were analyzed by GO and KEGG in Fig. 2A,B. According to Univariate Cox regression analy-
sis, the expression of 22 immune-related prognosis genes has statistical significance in GC patients, as shown 
in Fig. 2C. Multivariate Cox regression analysis was conducted on 22 immune-related hub genes to uncover 
independent prominent prognostic genes. As shown in Fig. 2D, five genes (TRAF2, CTLA4, DUSP1, PROC, and 

Figure 1.  Selection of immune-related genes. (A) Heatmap showing differential immune-related gene 
expression between normal and gastric cancer tissues (B) Heatmap of the correlation between normal and 
tumor tissues on module genes. (C) PPI network diagram of immune hub genes. (D) Venn diagram shows the 
immune-related genes. [Figures created by R, version 4.0.4. STRING, https:// string- db. org/; Cytoscape (https:// 
cytos cape. org/; version 3.9.1)].

https://string-db.org/
https://cytoscape.org/
https://cytoscape.org/
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RNASE2) substantially impact the OS of GC patients. Next, we developed a prognostic index by using IRGPI 
formula = RNASE2*(0.3361) + PROC*(0.3254) + CTLA4*(-0.3391) + DUSP1*(0.2699) + TRAF2 *(− 0.3576). The 
IRGPI and other clinicopathologic factors were submitted to a univariate Cox regression analysis, which con-
firmed that the IRGPI, clinical stage, and age were significant determinants in the prognosis of GC (Fig. 2E). 
Furthermore, after controlling for other clinicopathologic characteristics, multivariate Cox regression analysis 
indicated that IRGPI was an independent predictive factor (Fig. 2F). We also investigated the association between 

Figure 2.  Screening of immune-related prognostic genes and development of IRGPI. (A) Gene Ontology 
(GO) analysis for the immune-related hub genes. (B) The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways for immune-related hub genes. (C) Univariate Cox analysis of 22 immune-related genes. (D) Kaplan–
Meier survival analysis curves for five model genes. (E,F) Univariate and multivariate Cox regression analysis on 
IRGPI and other clinicopathologic factors. [Figures created by R, version 4.0.4.].
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IRGPI and clinical characteristics (Fig S2). We found that patients with gastric cancer (age ≤ 65) had higher risk 
score. In addition, there was no statistically significant difference between IRGPI and tumor stage.

Survival outcomes and molecular characterization of different IRGPI groups. Patients with 
IRGPI-low had superior OS than those with IRGPI-high (p < 0.001, log-rank test) when the median IRGPI was 
used as the threshold value in the TCGA-STAD cohort (Fig. 3A). Moreover, we performed survival analysis on 
the GSE62254 (n = 300) GC dataset to assess the generality of IRGPI in prognosis. Equally, patients in the IRGPI-
low group fared better than those in the high IRGPI group (p = 0.028, log-rank test) (Fig. 3B).

Figure 3.  Prognostic analysis and molecular characteristics of different IRGPI groups. (A) Kaplan–Meier 
survival analysis of the IRGPI groups in the TCGA cohort. (B) Kaplan–Meier survival analysis of the IRGPI 
groups in the GEO cohort. (C) Gene sets enriched in IRGPI-High group in TCGA-STAD cohort. (D) Gene 
sets enriched in IRGPI-Low group in TCGA-STAD cohort. (E) Gene mutation landscape in IRGPI-High group 
in TCGA-STAD cohort. (F) Gene mutation landscape in IRGPI-Low group in TCGA-STAD cohort. [Figures 
created by R, version 4.0.4.].
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GSEA was utilized to identify the set of genes that were enriched in distinct IRGPI groups in TCGA-STAD 
(Fig. 3C,D). The IRGPI-high group was significantly enriched in ECM receptor interactions and focal adhesion 
pathways that are associated with metastasis with cancer. This suggests that the IRGPI-high group is more prone 
to tumor metastasis and that patients have a poor prognosis. The IRGPI-low group was enriched in DNA rep-
lication and immune-related pathways, suggesting that the IRGPI-low group had better anti-tumor immunity, 
demonstrating the good prognosis of GC patients. Furthermore, we validated the enrichment in the GSE64425 
cohort. As shown in the Fig. S3A, we obtained enrichment results in the GSE64425 cohort consistent with the 
TCGA-STAD cohort. The detailed results of GSEA are listed in Table S2.

Gene mutations contribute to further biological insight into the tumorigenesis in GC, thereby we explored 
the immunological nature of the IRGPI group by analyzing gene mutations. In the TCGA-STAD cohort, we 
found a high number of mutations in both the group with IRGPI-high and the group with IRGPI-low. The most 
prevalent form of mutation was a missense variation. The top 20 genes in the IRGPI group with the highest 
mutation rates were then found. TTN, TP53, MUC16, ARID1A, LRP1B, SYNE1, and FLG mutation rates were 
greater than 15% in both groups (Fig. 3E,F).

Relationship between IRGPI grouping and immunological subtypes. Immune subtypes deter-
mine a tumor’s immune state depending on the tumor and stromal compartment. A consensus immune subtype 
summarizes six  subtypes27. The C1 subtype is represented by wound healing with high expression of angiogenic 
genes as well as adaptive immune infiltration. The C2 subtype is characterized by IFN-γ dominance with the 
highest M1/M2 macrophage polarization and strong CD8 signaling. Then, we focused on the distribution of 
immune subtypes in the IRGPI group. As illustrated in Fig. 4A, in TCGA-STAD cohort, the C2 subtype was 
more prevalent in the IRGPI-low group, while the C1 subtype was more frequent in the IRGPI-high group 
(p = 0.002, chi-square test).

The Cancer Genome Atlas (TCGA) conducted a thorough molecular analysis of GC and proposed a new 
molecular subtype of GC into four subtypes: CIN, EBV, GS, and  MSI28. GS subtypes exhibited elevated expres-
sion of cell adhesion pathways, angiogenesis-related pathways, and pathways associated with syndecan-1-me-
diated signaling. The distribution of molecular subtypes in the IRGPI group was next evaluated. In our research 
(Fig. 4B), the IRGPI-low group had greater MSI and lower GS than the IRGPI-high group in TCGA-STAD 
cohort. (p = 0.001, chi-square test).

The Asian Cancer Research Group (ACRG), used gene expression data to characterize four molecular iso-
forms associated with different patterns of molecular alterations, disease progression, and  prognosis17. In our 
study (Fig. 4C), MSI subtypes were found to be more common in the IRGPI-low group, while EMT subtypes 
were more prevalent in the IRGPI-high group in the GSE62254 cohort. (p = 0.001, chi-square test).

Immune characteristics of different IRGPI groups. To investigate the differences in the tumor micro-
environment (TME) by analyzing the distribution of immune cells in various IRGPI groups (Table S3). In TCGA-
STAD cohort, the IRGPI-high group had more monocytes, M2 macrophages, and neutrophils, whereas the 
IRGPI-low group had more CD8 T cells, activated memory CD4 T cells, follicular helper T cells, and M1 mac-
rophages (Fig. 5A). Equally, we found the same conclusion for the GSE62254 cohort (Fig. S3B). Following that, 
we evaluated the association between IRGPI score, PD-L1 expression, and TMB in the TCGA-STAD cohort. Fig-
ure 5B shows the results, which reveal that the IRGPI score was associated significantly with TMB(p = 7.3e−06) 
and the IRGPI score was related to PD-L1 expression (p = 1.6e−06). Prospective studies have shown that TMB is 
a potential biomarker for predicting response to ICI therapy. the higher the TMB level, the better the outcome of 
patients receiving ICI therapy. Tumors with high PD-L1 expression responded better to anti-PD-L1 therapy than 
those with low PD-L1 expression. This is consistent with the results obtained in our study.

The benefits of ICI therapy in various IRGPI groups. TIDE was utilized to evaluate the potential 
clinical effectiveness of immunotherapy in different IRGPI groups. The greater TIDE score indicates a higher 
risk of immune evasion, implying that these individuals might less benefit from ICI  therapy21. According to our 
findings (Table S4), in TCGA-STAD cohort, patients with IRGPI-low had a lower TIDE score than those with 
IRGPI-high, showing that patients with IRGPI-low might gain more from ICI therapy (Fig. 5C). We assessed 
the prognostic value of IRGPI in IMvigor210 patients receiving anti-PD-L1  therapy29 (Fig. 5D). We also com-
pared the treatment response of patients in the advanced gastric cancer cohort PRJEB25780 who received PD-L1 
therapy (Fig. 5E,F). Surprisingly, it was found that lower IRGPI scores had higher immunotherapy effects. Fur-
thermore, we compared the prediction capability of IRGPI to TIDE and TIS scores and determined that the 
reliability of IRGPI was greater than TIDE and  TIS21,26 (Fig. 5G). These findings suggested that the IRGPI could 
be a viable biomarker for predicting ICI therapy response.

Discussion
Since the overall response rate to ICI remains low, it is crucial to determine which patients could benefit from 
it. Identifying an accurate biomarker to predict response to immunotherapy remains a crucial problem in the 
development of ICI for gastric cancer. To develop a predictive index based on immune-related differentially 
expressed genes in GC, we utilized WGCNA and regression analysis to determine five immune-related hub genes. 
We used weighted gene expression levels to calculate the IRGPI score and validated it as an independent and 
valid prognostic factor. In both the TCGA and GEO cohorts, the IRGPI was demonstrated to be a meaningful 
predictive immune-related biomarker for GC prognosis, with better survival in IRGPI-low patients and worse 
survival in IRGPI-high patients.
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To gain insight into the molecular characterization, we investigated the differences in gene mutations between 
the IRGPI groups and found significant differences in TTN, TP53, and MUC16 gene mutations. Furthermore, 
the IRGPI-low group had a higher rate of MUC16 gene mutations than the IRGPI-high group (35 vs. 25%). In 
the pan-cancer dataset, MUC16 and TTN mutations each showed significantly better  OS30. MUC16 mutations 
may predict a better prognosis for GC  patients31. MUC16 knockdown hindered PI3K/Akt/mTOR signaling and 
reduced the protein level of Myc, a crucial transcription factor that controls  glycolysis32. Thus, IRGPI-low patients 
with high TTN and MUC16 mutations had better outcomes than patients with IRGPI-high patients with low 
TTN and MUC16 mutations, consistent with our survival results.

Understanding TME is of crucial value in improving the effectiveness of immunotherapy. The distribution of 
immune cells in cancer tissues differed significantly between the two IRGPI groups. M2 macrophages and neu-
trophils were discovered to be more abundant in the IRGPI-high group, whereas CD8 T cells, activated memory 
CD4 T cells, M1 macrophages, and follicular helper T cells were found to be more abundant in the IRGPI-low 
group. Neutrophils were shown to be abundant in the GC environment, which was related to tumor growth and 
poor patient survival. Neutrophils strongly upregulate CD54 and B7-H4 expression in the GC microenvironment, 
and B7-H4-mediated antitumor immunosuppression is one of the main mechanisms driving T cell  dysfunction33. 
In a majority of tumors, the major subtype of macrophages is the M2 macrophage, which has been linked to 
chronic inflammation that favors tumor progression and the formation of an infiltrative phenotype, and which is 
connected with poor prognosis in gastric, breast, and prostate cancers. In contrast, high-density M1 macrophage 
infiltration could be related to acute inflammation and predict a positive prognosis in patients with HCC, NSCLC, 

Figure 4.  The distribution of immune and molecular subtypes in different IRGPI groups. (A) The distribution 
of TCGA immune subtypes between IRGPI groups in TCGA-STAD cohort. (B) The distribution of molecular 
subtypes between IRGPI groups in TCGA-STAD cohort. (C) The distribution of ACRG subtypes between 
IRGPI groups in GSE62254 cohort. [Figures created by R, version 4.0.4.].
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or gastric  cancers5,34,35. Numerous studies have demonstrated that a significant concentration of T cell infiltration, 
particularly cytotoxic CD8T cells, predicts a favorable  prognosis3,36. Our findings support these conclusions.

Next, we discuss the relationship between IRGPI and known predictive biomarkers for immunotherapy, 
such as PD-L1 and  TMB37–39. We found the correlation between IRGPI score, PD-L1 expression, and TMB, 
which helps to explain how IRGPI affects the prognosis of immunotherapy. TIDE is a novel calculation that has 
shown predictive power in different solid tumors. TIDE scores correlate with T cell dysfunction in cancers with 
high CTL and T cell exclusion in tumors with low CTL, indicating two distinct immune evasion  strategies21. In 
our study, IRGPI-high patients displayed lower CTL penetration and higher TIDE, T cell exclusion, and T-cell 
dysfunction scores than IRGPI-low patients, indicating that immune evasion through T cell exclusion was the 
primary cause of their reduced ICI response. The IRGPI-low group, on the other hand, performed a higher MSI 
score and lower TIDE score than the IRGPI-high group, suggesting that these patients had low levels of immune 
evasion and greater MSI. The beneficial effect of MSI on immunotherapy for GC has been demonstrated, with 
MSI resulting in a high mutational burden that renders the tumor immunogenic and responsive to anti-PD1 
 treatment40–42. We performed a survival analysis of the IMvigor210 cohort treated with anti-PD-L1 therapy to 
ascertain the prognostic utility of IRGPI. It was found that patients with low IRGPI scores had better immu-
notherapy responses in both IMvigor210 and PRJEB25780 cohorts. Tumor Inflammatory Signaling (TIS) is 
an 18-gene signature that indicates genes for sustained adaptive Th1 and cytotoxic CD8+ T cell responses and 
has shown promising results in predicting response to anti-PD-1/PD-L1  drugs26. However, both TIDE and TIS 
focused on patient response to immunotherapy. In our study, the predictive value of IRGPI was comparable to 
that of TIDE and TIS, and IRGPI could better predict OS. In summary, IRGPI is a potential immune-related 

Figure 5.  Prognostic value of IRGPI in immunotherapy. (A) The proportions of immune cells in different 
IRGPI groups. (B) Comparison of TMB and PD-L1 expression in different IRGPI groups. (C) TIDE, MSI, and T 
cell exclusion and dysfunction score in different IRGPI groups. (D) Kaplan–Meier survival analysis of the IRGPI 
groups in the IMvigor210 cohort. (E) IMvigor210 cohort of CR/PR and SD/PD in different IRGPI groups. (F) 
PRJEB25780 cohort of CR/PR and SD/PD in different IRGPI groups. (G) ROC analysis of IRGPI, TIS, and 
TIDE on overall survival at 1-, 3-, and 5-years OS in TCGA-STAD cohort. [Figures created by R, version 4.0.4.].
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prognostic biomarker that could predict the efficiency of ICI therapy as well as the overall survival of GC patients. 
IRGPI grouping could help to distinguish tumor immune microenvironment and molecular features, but further 
studies are required to clarify this point.

Data availability
The databases used in this study are all publicly available and can be found in the TCGA database (https:// portal. 
gdc. cancer. gov/) and the GEO (https:// www. ncbi. nlm. nih. gov/ geo/) database.

Received: 21 June 2022; Accepted: 7 September 2022

References
 1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 

countries. CA Cancer J. Clin. 71, 209–249 (2021).
 2. Sunakawa, Y. et al. Association of variants in genes encoding for macrophage-related functions with clinical outcome in patients 

with locoregional gastric cancer. Ann. Oncol. 26, 332–339 (2015).
 3. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 

(2015).
 4. Li, L., Ouyang, Y., Wang, W., Hou, D. & Zhu, Y. The landscape and prognostic value of tumor-infiltrating immune cells in gastric 

cancer. PeerJ 7, e7993 (2019).
 5. Fridman, W. H., Zitvogel, L., Sautes-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. 

Rev. Clin. Oncol. 14, 717–734 (2017).
 6. Sundar, R. et al. Transcriptional analysis of immune genes in Epstein–Barr virus-associated gastric cancer and association with 

clinical outcomes. Gastr. Cancer 21, 1064–1070 (2018).
 7. Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C. & Lordick, F. Gastric cancer. Lancet 396, 635–648 (2020).
 8. Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).
 9. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. 

Cell 161, 205–214 (2015).
 10. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).
 11. Kono, K. Advances in cancer immunotherapy for gastroenterological malignancy. Ann. Gastroenterol. Surg. 2, 244–245 (2018).
 12. Kang, Y. K. et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, 

at least two previous chemotherapy regimens (ONO-4538-12, ATT RAC TION-2): A randomised, double-blind, placebo-controlled, 
phase 3 trial. Lancet 390, 2461–2471 (2017).

 13. Zappasodi, R., Merghoub, T. & Wolchok, J. D. Emerging concepts for immune checkpoint blockade-based combination therapies. 
Cancer Cell 33, 581–598 (2018).

 14. Muro, K. et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-
label, phase 1B trial. Lancet Oncol. 17, 717–726 (2016).

 15. Nishino, M., Ramaiya, N. H., Hatabu, H. & Hodi, F. S. Monitoring immune-checkpoint blockade: Response evaluation and bio-
marker development. Nat. Rev. Clin. Oncol. 14, 655–668 (2017).

 16. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. 
Science 348, 124–128 (2015).

 17. Cristescu, R. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 
21, 449–456 (2015).

 18. Bhattacharya, S. et al. ImmPort: Disseminating data to the public for the future of immunology. Immunol. Res. 58, 234–239 (2014).
 19. Breuer, K. et al. InnateDB: Systems biology of innate immunity and beyond-recent updates and continuing curation. Nucleic Acids 

Res. 41, D1228–D1233 (2013).
 20. Kim, S. T. et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. 

Nat. Med. 24, 1449–1458 (2018).
 21. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 

(2018).
 22. Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
 23. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).
 24. Ashburner, M. et al. Gene Ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 

(2000).
 25. Rich, J. T. et al. A Practical guide to understanding Kaplan–Meier curves. Otolaryngol. Head Neck Surg. 143, 331–336 (2010).
 26. Ayers, M. et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 

(2017).
 27. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 (2018).
 28. Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature 513, 202–209 (2014).
 29. Mariathasan, S. et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 

544–548 (2018).
 30. Yang, Y. et al. MUC4, MUC16, and TTN genes mutation correlated with prognosis, and predicted tumor mutation burden and 

immunotherapy efficacy in gastric cancer and pan-cancer. Clin. Transl. Med. 10, e155 (2020).
 31. Li, X., Pasche, B., Zhang, W. & Chen, K. Association of MUC16 mutation with tumor mutation load and outcomes in patients with 

gastric cancer. JAMA Oncol. 4, 1691–1698 (2018).
 32. Zhao, H. & Zhang, L. MUC16 mutation predicts a favorable clinical outcome and correlates decreased Warburg effect in gastric 

cancer. Biochem. Biophys. Res. Commun. 506, 780–786 (2018).
 33. Shan, Z. G. et al. Granulocyte-macrophage colony-stimulating factor-activated neutrophils express B7–H4 that correlates with 

gastric cancer progression and poor patient survival. J. Immunol. Res. 2021, 6613247 (2021).
 34. Josephs, D. H., Bax, H. J. & Karagiannis, S. N. Tumour-associated macrophage polarisation and re-education with immunotherapy. 

Front. Biosci. (Elite Ed). 7, 293–308 (2015).
 35. Ruffell, B. & Coussens, L. M. Macrophages and therapeutic resistance in cancer. Cancer Cell 27, 462–472 (2015).
 36. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 

39, 782–795 (2013).
 37. Goodman, A. M. et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. 

Mol. Cancer Ther. 16, 2598–2608 (2017).
 38. Sha, D. et al. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 10, 1808–1825 (2020).

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15693  | https://doi.org/10.1038/s41598-022-20007-y

www.nature.com/scientificreports/

 39. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 
2500–2501 (2017).

 40. Puliga, E., Corso, S., Pietrantonio, F. & Giordano, S. Microsatellite instability in gastric cancer: Between lights and shadows. Cancer 
Treat. Rev. 95, 102175 (2021).

 41. Mandal, R. et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. 
Science 364, 485–491 (2019).

 42. Dudley, J. C., Lin, M. T., Le, D. T. & Eshleman, J. R. Microsatellite instability as a biomarker for PD-1 blockade. Clin. Cancer Res. 
22, 813–820 (2016).

Author contributions
C.Z. and J.Z. contributed to the conception of the work. C.Z. and J.W. searched the literature and extracted 
the data. C.Z. and T.L. wrote the manuscript. J.Z. revised the manuscript. All authors read and approved the 
manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 20007-y.

Correspondence and requests for materials should be addressed to J.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-20007-y
https://doi.org/10.1038/s41598-022-20007-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Development and verification of an immune-related gene prognostic index for gastric cancer
	Methods and materials
	Collection of gastric cancer datasets. 
	Differentially expressed genes are identified. 
	The immune-related gene prognostic index (IRGPI) was developed. 
	In-depth analysis of molecular and immunological features in distinct IRGPI groups. 
	Statistical analysis. 
	Ethical approval. 

	Result
	Development of an immune-related gene prognostic index. 
	Survival outcomes and molecular characterization of different IRGPI groups. 
	Relationship between IRGPI grouping and immunological subtypes. 
	Immune characteristics of different IRGPI groups. 
	The benefits of ICI therapy in various IRGPI groups. 

	Discussion
	References


