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Opportunistic deep learning 
powered calcium scoring 
in oncologic patients with very high 
coronary artery calcium (≥ 1000) 
undergoing 18F‑FDG PET/CT
Elisabeth Sartoretti1,2, Antonio G. Gennari1,2, Alexander Maurer1,2, Thomas Sartoretti1,2, 
Stephan Skawran1,2, Moritz Schwyzer2,3,4, Alexia Rossi1,2, Andreas A. Giannopoulos1,2, 
Ronny R. Buechel1,2, Catherine Gebhard1,2,5, Martin W. Huellner1,2 & Michael Messerli1,2*

Our aim was to identify and quantify high coronary artery calcium (CAC) with deep learning (DL)‑
powered CAC scoring (CACS) in oncological patients with known very high CAC (≥ 1000) undergoing 
18F‑FDG‑PET/CT for re‑/staging. 100 patients were enrolled: 50 patients with Agatston scores ≥ 1000 
(high CACS group), 50 patients with Agatston scores < 1000 (negative control group). All patients 
underwent oncological 18F‑FDG‑PET/CT and cardiac SPECT myocardial perfusion imaging (MPI) 
by 99mTc‑tetrofosmin within 6 months. CACS was manually performed on dedicated non‑contrast 
ECG‑gated CT scans obtained from SPECT‑MPI (reference standard). Additionally, CACS was 
performed fully automatically with a user‑independent DL‑CACS tool on non‑contrast, free‑
breathing, non‑gated CT scans from 18F‑FDG‑PET/CT examinations. Image quality and noise of 
CT scans was assessed. Agatston scores obtained by manual CACS and DL tool were compared. 
The high CACS group had Agatston scores of 2200 ± 1620 (reference standard) and 1300 ± 1011 (DL 
tool, average underestimation of 38.6 ± 26%) with an intraclass correlation of 0.714 (95% CI  0.546, 
0.827). Sufficient image quality significantly improved the DL tool’s capability of correctly assigning 
Agatston scores ≥ 1000 (p = 0.01). In the control group, the DL tool correctly assigned Agatston 
scores < 1000 in all cases. In conclusion, DL‑based CACS performed on non‑contrast free‑breathing, 
non‑gated CT scans from 18F‑FDG‑PET/CT examinations of patients with known very high (≥ 1000) 
CAC underestimates CAC load, but correctly assigns an Agatston scores ≥ 1000 in over 70% of cases, 
provided sufficient CT image quality. Subgroup analyses of the control group showed that the DL tool 
does not generate false‑positives.

18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) is an impor-
tant imaging modality for oncologic patients and provides important prognostic information, enabling improved 
cancer outcomes and reducing unnecessary  surgery1. Routine 18F-FDG-PET/CT examination consists of a PET 
scan and a non-contrast, free-breathing, non-gated CT scan. The CT is primarily used for PET attenuation cor-
rection but also for diagnostic purposes (i.e., morphological assessment). Although the appropriate oncological 
diagnostic work-up and treatment is the primary concern in cancer patients undergoing 18F-FDG-PET/CT, 
readers should be aware of comorbidities worth reporting. In fact, most cancer patients have multiple comor-
bidities, including coronary heart disease (CHD)2.

Coronary artery calcium (CAC) is considered an important biomarker in patients with CHD. Increased CAC 
scores are strongly associated with cardiovascular mortality and all-cause mortality. Different CAC scores were 
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reported to represent high-risk groups in clinical practice, but recent studies have proposed a cut-off of > 1000 
as a new marker for substantial risk of cardiovascular disease outcome and  mortality3.

While 18F-FDG-PET/CT examinations are not suited for the evaluation of CAC or coronary heart disease, 
an opportunistic screening resulting in the rough estimation of the coronary disease burden would be highly 
desirable. Specifically, the identification of the highest risk patients (CAC score > 1000) should be prioritized. 
Optimally, this assessment (i.e. CAC scoring) should be performed automatically and reader-independent, so 
that the physician can continue to focus on the oncologic workup of patients.

Recently, deep-learning (DL)-based CAC scoring tools have been  developed4–10. These AI-backed tools enable 
an accurate estimation of the coronary calcium load, as measured on dedicated non-contrast ECG-gated cardiac 
CT scans. Most importantly, these tools alleviate the need of performing the CAC scoring manually, which results 
in considerable time savings for  physicians5.

Given these considerations, we sought to test the feasibility of identifying very high CAC by means of DL 
powered CAC scoring in oncologic patients with known very high coronary artery calcium (≥ 1000) undergoing 
18F-FDG-PET/CT. We hypothesized that an accurate estimation of the CAC load would be possible in these 
patients despite the fact that non-contrast, free-breathing, non-gated CT scans from 18F-FDG-PET/CT examina-
tions were used as input data rather than dedicated non-contrast ECG-gated cardiac CT scans.

Material and methods
This study was approved by the local ethics committee (BASEC No. 2017-01112; Kantonale Ethikkommission, 
Kanton Zürich, Switzerland; 28.03.2022 submission of nonsubstantial amendment, 07.04.2022 acceptance of 
amendment concerning the use of Coreline software) and was conducted in compliance with ICH-GCP rules and 
the Declaration of Helsinki. The need for informed consent was waived by the local ethics committee Kantonale 
Ethikkommission, Kanton Zürich, Switzerland due to the retrospective nature of the study. The study population 
was partially shared in a previous  publication11.

Study population. Our study population was selected from a retrospective cohort study of consecutive 
patients undergoing whole-body 18F-FDG-PET/CT for various malignant diseases at the University Hospital 
Zurich, Switzerland between November 2007 and February 2015. Out of 25,600 patients, 10,148 also under-
went 1-day stress/rest (adenosine, dobutamine, or exercise) myocardial perfusion imaging with 99mTc-tetro-
fosmin single-photon emission computed tomography (SPECT-MPI), including non-contrast, ECG-gated CT 
for attenuation correction to evaluate known or suspected CAD. Patients who had undergone both whole-body 
18F-FDG-PET/CT and SPECT-MPI within 6 months were considered eligible for inclusion into the current 
study. Importantly, patients were considered eligible for inclusion irrespective of type of disease, stage or therapy 
management. 332 patients met the inclusion criteria. From this cohort, 24 patients were excluded due to non-
diagnostic image quality and/or lack of availability of clinical data. There were no further exclusion criteria. 
Thus, 302 patients remained. Of these, 50 with a CAC score of ≥ 1000 were identified and enrolled into the study. 
CAC scoring was performed manually on non-contrast ECG-gated CT scans obtained during myocardial per-
fusion imaging using dedicated software (Smart Score, GE Healthcare, Milwaukee, WI, USA). A flow chart of 
the study is presented in Fig. 1. In addition, from the same cohort of 302 patients, 50 patients with a CAC score 
of < 1000 (30 males, 20 females; mean age: 71 ± 7 years) were identified and enrolled into the study thereby serv-
ing as a control group to analyze whether the DL tool does not falsely overestimate the calcium score in patients, 
thus misclassifying them as very high-risk patients (i.e., CAC score of ≥ 1000), see Fig. 1.

Whole‑body 18F‑FDG‑PET/CT. Patients were instructed to fast for at least 4 h before administrating 18F-
FDG. After measuring blood glucose, 18F-FDG was injected into a peripheral vein. One hour later, patients 
underwent PET/CT imaging from the skull to the pelvis (including a non-contrast, free-breathing, non-gated 
CT scan). Images were acquired in 3D mode on a Discovery VCT or Discovery RX scanner (GE Healthcare, 
Waukesha, WI) using well established clinical imaging protocols. The CT scan was acquired using at a tube volt-
age of 120 or 140 kV and with a low tube current (range 59–80 mAs). Radiation dose was 3.4 ± 0.6 mGy CT dose 
index volume and 422.4 ± 378 mGy*cm dose length product. Images were reconstructed using a standard soft 
tissue kernel and with a slice thickness and increment of 1.25 mm. PET/CT and CT images were merged and 
analyzed using Advantage Window volume viewer software (GE Healthcare, Milwaukee, WI, USA), as previ-
ously  described12. The CT scan as acquired for hybrid 18F-FDG PET/CT w.

Deep learning CAC scoring. CAC was identified and quantified using the Agatston score. Classification 
was performed by a fully automated DL-based CAC scoring tool (AVIEW CAC, Coreline Soft, access via https:// 
cloud. corel ineso ft. eu/ login, Version v1.1.42.-win). The software was developed based on a 3-dimensional U-net 
architecture using non-enhanced cardiac CT scans acquired from multiple vendors and scanners. No training 
data were included in our study. A detailed description of this DL tool can be found  elsewhere5,8,10.

Image analysis. First, the non-contrast, free-breathing, non-gated CT scans from the 18F-FDG-PET/CT 
examination were reconstructed using the hospital’s PACS viewing system. Specifically, an image series encom-
passing all images from the lung apex to the lung base was generated for each patient. After anonymization of the 
data and images, this image series was uploaded to the cloud-based DL tool. CAC scoring was then performed 
automatically without further user input, and a detailed report of the results was generated.

Additionally, a board-certified radiologist (A.G.G., with 7 years of experience) graded image quality of the 
CT scans with respect to the heart. The following 4-point Likert scale was used: (1) poor quality, no distinction 
can be made between noise and calcifications, non-diagnostic; (2) insufficient quality, little distinction can be 
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made between noise and calcifications, limited diagnostic value; (3) moderate quality, small chance of missing 
small calcifications, sufficient diagnostic value; (4) proper quality, unlikely that calcifications are missed, good 
diagnostic value. Scans rated 1 or 2 were considered non-diagnostic.

Lastly, as suggested  elsewhere13–15, noise was measured by placing approximately 1  cm2 large region of inter-
ests (ROI) into the ascending aorta and into the left ventricle. From each measurement, the standard deviation 
(SD) was extracted, representing the noise level. The average value of these two measurements was considered 
representative for further analysis.

Statistical analysis. All statistical analyses were performed with the R statistical software (version 4.0.2; 
R Foundation for Statistical Computing, Vienna, Austria, https:// www.R- proje ct. org/). Initially, descriptive sta-
tistics was performed on the data, and results were presented with counts and percentages. A linear regression 
model was fitted between the Agatston scores of the reference standard and the DL tool. Additionally, Bland–
Altman analysis was performed. A two-way intraclass correlation coefficient (ICC) was computed to quantify 
the agreement in scores between the standard of reference and the DL tool. To quantify the impact of various 
variables (i.e., image quality, image noise, year of image acquisition, BMI, true Agatston score) on the accuracy 
of the DL tool in diagnosing an Agatston score of > 1000, a generalized linear model (GLM) was fitted. Wher-
ever appropriate, the GLM was iteratively optimized based on the Akaike Information Criterion (AIC). Lastly, 
chi-square tests for independence were performed to compare the DL tool’s accuracy in diagnosing an Agatston 
score of > 1000, stratified by a target variable (such as image quality).

Results
The DL tool required 87 ± 53 s to perform CACS per patient. The Agatston score was 2200 ± 1620 for the refer-
ence standard, and 1300 ± 1011 for the DL tool. Demographical information of the high CACS group (n = 50) 
is presented in Table 1. All data of the high CACS group are provided in detail in the supplementary material. 
A representative case of the DL tool correctly identifying the coronary calcium burden in a patient is presented 
in Fig. 2. 

Diagnostic performance of the DL tool in the high CACS group. In the high CACS group, the 
Agatston score was underestimated by the DL tool in 45 cases (90%) and overestimated in 5 cases (10%) com-
pared to the standard of reference. Specifically, the DL tool underestimated the Agatston score on average by 
38.6 ± 26%. The regression model between the Agatston scores of the standard of reference and the DL tool 
 (R2 = 0.72, p < 0.001) exhibited a slope of 1.2 and an intercept of 580, see Fig. 3A. Bland–Altman analysis revealed 
a mean difference of 900.1, a lower limit of agreement of − 1100.6 and an upper limit of agreement of 2900.8. 
ICC between the Agatston scores of the standard of reference and the DL tool was 0.714 (95% CI  0.546, 0.827), 
see Fig. 3B.

Figure 1.  Flow chart of study. This figure describes exclusion and inclusion criteria for patients included in the 
study.

https://www.R-project.org/
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Table 1.  Demographics of study patients (n = 50). Values given are mean ± standard deviation or absolute 
numbers and percentages in brackets. This table describes demographics of the patients included in this 
study such as their oncological diagnosis, age, body mass index and gender. BMI body mass index, GI 
gastrointestinal.

Female/male, n (%) 10 (20%)/40 (80%)

Age, years 70 ± 8.9

BMI, kg/m2 26 ± 5

Oncological diagnosis, n (%)

Lung cancer 15 (30%)

Gastric or upper GI cancer 9 (18%)

Colorectal cancer 8 (16%)

Head and neck cancer 6 (12%)

Breast cancer 3 (6%)

Urogenital cancer 2 (4%)

Cholangiocellular carcinoma 2 (4%)

Melanoma 1 (2%)

Other 4 (8%)

Figure 2.  Representative CT image with automated deep learning coronary artery calcium scoring. 
Representative CT images of a 68-year-old man with a body mass index of 21.8 kg/m2 with severe coronary 
artery calcifications (i.e., Agatston score of 1616). Images from ungated non-contrast CT from 18F-FDG-PET/
CT for staging of lung cancer (A), including fully automated deep learning coronary artery calcium scoring 
(DL-CACS) markings. Coronary calcifications in the left main (LM), left anterior descending (LAD), left 
circumflex artery (LCX), and right coronary artery (RCA), were correctly quantified (B) by the AI-CACS tool, 
resulting in a total score of 1824. The DL-CACS correctly attributed the highest CAC risk (C).

Figure 3.  Visual representation of study data. This figure visualizes the study data, including the data of the 
high CACS group (n = 50): linear regression model (A), Bland–Altman analysis (B), as well as frequency of 
patients with a DL-based Agatston score of below or above 1000 stratified by image quality (C).
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Given the importance of a CAC cut-off of 1000, we binarized the Agatston score as computed by the DL tool 
into < 1000 and ≥ 1000. In total, the DL tool assigned an Agatston score of < 1000 in 23 cases (i.e., false negative, 
46%) and assigned an Agatston score of ≥ 1000 in 27 cases (i.e., true positive, 54%).

The accuracy of the DL tool in diagnosing an Agatston score of ≥ 1000 heavily depended on image quality 
(p = 0.02, odds ratio 4.2) and on the true (i.e., standard of reference) Agatston score (p = 0.02, odds ratio 1.002), 
but not of year of the image acquisition (p = 0.95), BMI of the patient (p = 0.61) or image noise (p = 0.30). Thus, 
a sufficient image quality and higher true Agatston scores were associated with a higher probability of the DL 
tool correctly assigning an Agatston score of ≥ 1000.

Image noise and impact on DL‑CACS performance. The average image noise was 15.9 ± 4.8 HU. Of 
all 50 patients in the high CACS group, image quality in 22 patients was deemed insufficient (i.e., image quality 
scores of 1 or 2), while 28 patients had sufficient image quality (i.e., image quality scores of 3 or 4). In patients 
with sufficient image quality, the rate of false negatives was 28.6% (i.e., 8 out of 28 patients) and the rate of true 
positive cases was 71.4% (i.e., 20 out of 28 patients). In contrast, in patients with insufficient image quality, the 
rate of false negatives was 68.2% (i.e., 15 out of 22 patients) and the rate of true positive cases was 31.8% (i.e., 7 
out of 22 patients). Thus, sufficient image quality significantly (p = 0.01) and considerably improved the DL tool’s 
ability in correctly diagnosing an Agatston score of ≥ 1000. The data is visualized in Fig. 3C.

Diagnostic performance of the DL‑CACS tool, including negative control group. When con-
sidering all 100 patients, including the 50 patients in the control group with CAC scores of < 1000, the DL tool 
achieved a sensitivity of 54% (40.2%, 67.8%) and a specificity of 100% (100%, 100%) in accurately assigning 
patients to the two groups of CAC scores < 1000 and ≥ 1000. Importantly, the DL tool correctly assigned CAC 
scores of < 1000 in all 50 cases of the control group. The true Agatston score of the 50 patients in the control 
group was 324 ± 240 (range 0–942), while the DL tool estimated Agatston scores of 140 ± 196 (range 0–865).

Discussion
In our retrospective study, we assessed the feasibility of quantifying coronary calcium by means of deep learning-
powered CAC scoring in oncologic patients with known very high coronary artery calcium (≥ 1000) undergoing 
18F-FDG-PET/CT. Our results indicate that the DL tool manages to automatically compute the Agatston score 
from non-contrast, free-breathing, non-gated CT datasets without any further user input. While the DL tool 
generally underestimated the Agatston score, the DL-tool managed to diagnose an Agatston score of ≥ 1000 
in more than 70% of cases, provided the image quality of the CT scans was sufficient. Furthermore, subgroup 
analyses of the 50 patients in the control group showed that the DL tool seems not to generate false positive cases, 
since the DL tool computed Agatston scores of < 1000 in all 50 patients.

CHD is the most common cause of death worldwide. An early and accurate risk stratification in patients at risk 
of CHD is highly recommended. CACS is a proven reliable method for CHD risk assessment and is thus featured 
in several guidelines, including the recent 2021 guideline of the European Heart  Association9,16. In patients with 
additional oncologic disease burden, potential CHD burden should be addressed early and aggressively to avoid 
further risk of additional comorbidity or even mortality from cardiovascular disease events.

The Agatston score as measured during CAC scoring provides an estimation of the coronary atherosclerotic 
burden. In clinical practice, patients with an Agatston score of > 300 or > 400 are classified as high-risk individu-
als. A recent analysis from the MESA (Multi-Ethnic Study of Atherosclerosis; a study on primary prevention 
patients) trial indicates, however, that individuals with a CAC score of > 1000 constitute a unique population with 
a substantially higher risk of cardiovascular disease (CVD) events, non-cardiovascular disease outcomes, and 
mortality compared to those with lower CAC score. Specifically, these patients exhibited an annualized 3-point 
major adverse cardiovascular event rate of 3.4 per 100 person years, which is comparable to the rate reported 
for stable treated secondary prevention patients. Furthermore, these patients are at an almost 2 times increased 
risk for all CVD and all CHD events, and an almost 1.5 times increased risk for non-CVD events compared with 
those with a CAC score of 400–999. In these very high CAC score patients, an aggressive prevention strategy with 
pharmacological agents, such as statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 inhibitors 
should be implemented immediately upon  diagnosis3.

An opportunistic screening aiming at identifying patients with a CAC score of > 1000 is highly desirable, 
especially in patients with multiple comorbidities, such as cancer patients. For the latter, the management of 
CAD is of special clinical interest as patients undergoing cytotoxic chemotherapy may have further risk of CVD 
events. To the best of our knowledge, this is the first study assessing the use of deep learning based CACS using 
the CT component of 18F-FDG-PET/CT in patients with known very high CAC score of > 1000.

Currently, calcium scoring is performed by manually delineating calcifications using dedicated software. CAC 
quantification accuracy is then largely dependent on the accuracy of the manual measurements and the type of 
CT scan. For accurate CAC estimation, a non-contrast prospective ECG-triggered cardiac CT scan performed 
in breath-hold is recommended. This ensures that the influence of cardiac motion and respiratory artifacts, 
potentially obscuring small anatomical details and calcifications, can be  minimized6,9.

In theory, however, CAC can be scored on any non-contrast CT, but at the risk of underestimating the calcium 
 load9,17–20. When the CT scan is performed in free-breathing and without ECG-triggering minor calcifications will 
not be visible. Furthermore, the underestimation of the calcium load increases in patients with high (i.e., > 400) 
CAC 18. In our study, we only included patients with known very high CAC score (> 1000) for the study group, 
and observed a general underestimation of CAC. Based on the considerations outlined above, we attribute this 
underestimation mainly to the usage of non-gated CT scans and to the selected patient group with very high 
CAC, rather representing a general shortcoming of our DL tool. Importantly, we also observed that image quality 
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of the CT scan had a large impact on the accuracy of our DL tool in identifying patients with an Agatston score 
of > 1000. In cases where image quality is further impaired by heavy artifacts, an accurate estimation of the CAC 
load becomes even more difficult.

Additionally, it should be noted that CAC scoring is a repetitive and time-consuming task. Artificial intel-
ligence-based solutions enabling an automated estimation of CAC have been  developed4–10. Promising results 
have been published, showing that CAC can be estimated accurately with AI-based solutions relative to manual 
measurements. For example, Vonder et al. reported an ICC of 0.958 between AI-based and manual measure-
ments in 997 patients undergoing low-dose ECG-gated cardiac CT for calcium  scoring5. While the ICC was 
lower in this study (0.741), potentially due to the aforementioned reasons, we can confirm the convenience of 
DL-powered CACS. The tool can be programmed in such a manner that the CT scan is automatically uploaded 
to the cloud-based interface. Then, without further user input, the tool performs CACS within 87 ± 53 s. and 
generates a detailed report of the results. The physician can then focus on the actual interpretation of the PET/
CT scan, without the need for a potentially time-consuming analysis that is not directly related to the oncologic 
work-up in the foreground.

Lastly, we would like to point out that we used the DL tool directly, without any additional training on our 
data or other data beforehand. Our data rather represents a true external validation set. Moreover, we used images 
acquired several years ago (back to 2007), and the DL tool was still able to achieve comparably good results, 
especially when the image quality was sufficient.

Our study has the following limitations: first, this was a retrospective, single-center study with a limited num-
ber of subjects. Notably, our patient cohort was also quite heterogeneous with patients being included irrespective 
of their type of disease, disease stage or their therapy management. The heterogeneity of our study cohort may 
have impacted our results, as the risk of CAD may be distributed very unevenly between individuals included 
in our study. Second, PET/CT and cardiac SPECT/CT were performed within a time interval of 6 months. This 
may have led to changes in the CAC burden. Although such changes might be rather minor, it may have impacted 
our results. Third, we did not assess the influence of the scanning parameters on the performance of the DL tool.

In conclusion, our study indicates that a DL tool can automatically quantify coronary calcium in oncologic 
patients with known very high coronary artery calcium (≥ 1000) undergoing 18F-FDG-PET/CT. The DL tool 
manages to automatically compute the Agatston score from free-breathing non-contrast, non-gated CT datasets 
used for PET attenuation correction without any further user input. Importantly, in patients with known very 
high CAC (≥ 1000), the DL tool enables the diagnoses of an Agatston score of ≥ 1000 in more than 70% of cases, 
provided sufficient CT image quality. Furthermore, subgroup analyses of the control group showed that the DL 
tool does not generate false positive cases, thus leading to 100% specificity of the tool in classifying patients into 
CAC of < 1000 and ≥ 1000.

Data availability
Data can be made available upon reasonable request to the corresponding author.
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