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Realization of optical logic gates 
using on‑chip diffractive optical 
neural networks
Sanaz Zarei* & Amin Khavasi

Optical computing is highly desired as a potential strategy for circumventing the performance 
limitations of semiconductor‑based electronic devices and circuits. Optical logic gates are considered 
as fundamental building blocks for optical computation and they enable logic functions to be 
performed extremely quickly without the generation of heat and crosstalk. Here, we discuss the 
design of a multi‑functional optical logic gate based on an on‑chip diffractive optical neural network 
that can perform AND, NOT and OR logic operations at the wavelength of 1.55 µm. The wavelength‑
independent operation of the multi‑functional logic gate at seven wavelengths (over a bandwidth of 
60 nm) is also studied which paves the way for wavelength division multiplexed parallel computation. 
This simple, highly‑integrable, low‑loss, energy‑efficient and broadband optical logic gate provides a 
path for the development of high‑speed on‑chip nanophotonic processors for future optical computing 
applications.

Modern semiconductor-based electronics is rapidly approaching fundamental limits caused by interconnect 
delays and large heat  generation1. Because photons have intrinsically higher information-carrying capacity and 
produce low heat loads, photonic devices and circuits can potentially surmount these obstacles, but the goal of 
all-optical computing has not been achieved  yet1. Optical logic gates are crucial building blocks for all-optical 
computing and they enable many applications like ultrahigh-speed information processing and all-optical net-
works. There are two major approaches toward all optical logic gates; one is based on the nonlinear optical 
 effects2–10, especially the third-order nonlinear susceptibility, while another approach is based on the linear 
optical  effects11–19 such as multi-beam  interference12–18. However, the inherent instability of the interference-type 
optical logic circuits (including linear and nonlinear interference) hindered their application. Because they are 
heavily dependent on the precise control of the basic properties of the two input light signals, the control light 
and/or the pump light and precise controlling of the basic properties including phase difference, polarization, 
intensity and size of the input light beams (in the case that the two nanowires are close to each other, such as for 
the plasmonic logic gate) is difficult to  implement20. Also, many of the reported works that are based on nonlin-
ear optics, are severely limited by small nonlinear susceptibility of conventional materials which bounds their 
operation speed, consumption energy and device size. On the other hand, they have difficulty to be integrated 
with silicon-based optical devices. Furthermore, most of the reported works suffer from some certain funda-
mental limitations including big size, very few logic functions and even single function, having a big loss which 
makes them hard for integration, and more importantly narrow operating bandwidth. Therefore, it is desirable 
to achieve full logic functionality in a simple and compact photonic system which is stable, robust and suitable 
for monolithic integration, while at the same time is capable for wavelength multiplexed parallel computations 
(which helps to realize the full potential of optical computing).

Optical Neural Networks (ONNs) uses photons instead of electrons for computation, which enables sur-
mounting the inherent limitations of electronics and improves the energy efficiency, processing speed and com-
putational throughput. In ONNs, the neuron functionality and interconnectivity can be implemented with optical 
and photonic devices and the nature of light propagation. Here an on-chip diffractive optical neural network 
(DONN) is utilized to perform optical logic operations. In this configuration, the encoded light at the input layer 
is decoded through the hidden layers (1D-metasurfaces). The 1D-metasurfaces, named as metalines, are trained 
to scatter the encoded light into one of two small specified areas at the output layer, one of which represents 
logic state "1" and the other stands for "0". It is possible to train a single diffractive optical neural network to 
realize all seven basic logic operations. As a proof of principle, three logic operations (NOT, AND, and OR) are 
demonstrated in a single DONN at the wavelength of 1.55 µm. Furthermore, wavelength-independent operation 
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by seven wavelengths (over 60 nm bandwidth in the silicon-on-insulator platform) is also demonstrated, which 
leads to wavelength division multiplexed parallel computation.

Design and modeling
This section starts with the design principle of the multifunctional optical logic gate (“Design principle” section). 
Thereafter in “Architecture design” section, the optical architecture utilized for implementing the on-chip diffrac-
tive optical neural network is introduced. Subsequently, the theoretical model used to train the diffractive optical 
neural network on the computer is described in “Modeling” section. “Design considerations” section discusses the 
reasons of existing errors in the theoretical modeling of the system and possible solutions to mitigate the errors.

Design principle. Figure 1 summarizes the principle of our optical logic operations. An optical deep learn-
ing framework in which the neural network is physically composed of multiple layers of diffractive 1D-metasur-
faces (metalines) is utilized to optically perform basic logic operations through the interference of transmitted 
light. Analogous to artificial neural network, a diffractive neural network composed of one input layer, at least 
one hidden layer and one output layer. The input signals will be loaded onto the corresponding input waveguides 
and propagated through the tapers into the slab waveguide. The input layer is regarded as the plane at which the 
tapers meet the slab waveguide. The hidden layers (metalines) are designed to decode the encoded input light 
and form the image of the calculated output at the output  layer20. Metalines are composed of arrays of subwave-
length meta-atoms, which can be independently parameterized by an arbitrary number of variables ( wm ). Each 
meta-atom behaves like an independent neuron in the neural network and interconnects to other meta-atoms 
of the adjacent layers through the diffraction of  light20. After light exits the final metaline (the last hidden layer), 
it propagates a definite distance until it reaches the output layer of the network. The distance between two suc-
cessive metalines and the distance between the last metaline and the output layer are also the design parameters. 
The output layer of the network consists of two detector regions (corresponding to the computing results "0" and 
"1") arranged in a linear configuration. For binary optical logic operations, the output gain only two values, "0" 
and "1", which can be considered as a classification task in machine  learning20.

For our architecture, the physical structural parameters that accomplish the diffraction and prediction are 
designed in advanced. Initially, the parameters of the neural network are trained on the computer and then these 
parameters can be transferred to the physical structure.

As a proof of principle, we train the network such that it can perform NOT, AND and OR operations, but the 
network can be trained such that it is able to perform all seven logic operations. For such a network, seven input 
waveguides are required. Two waveguides for input A (one waveguide corresponding to "0" and one waveguide 
corresponding to "1"), two waveguides for input B, and three waveguides for control signals indicating NOT, 
AND, and OR (see Table 1). If it was desired that the network to be trained and perform as all seven logic opera-
tors, then seven waveguides should have been devised for control signals (one for each logic operation). For 
simplicity, it is assumed that when an input is applied to one of the waveguides, its value at the exit of the taper 
corresponding to that waveguide (or equivalently at the input layer) is "1".

Architecture design. The optical architecture used in this work is based on an SOI (silicon-on-insulator) 
platform which consists of several metalines; each metaline consists of a series of meta-atoms21. Each meta-atom 
in the metalines (hidden layers) is represented by a subwavelength slot (Fig. 2a) and the geometrical parameters 
of the slot are design parameters (some of them can be set as learnable parameters in training process). There-
fore, each slot can be regarded as a weight element that connects to its adjacent layers through diffraction and 

Figure 1.  Schematic of on-chip diffractive optical neural network trained to perform optical logic operations 
AND, NOT and OR. Thera are seven input waveguide-tapers, three of which are for control signals AND, NOT 
and OR. Metalines (1D-metasurafces) are the diffractive neural network hidden layers. Meta-atoms on each 
metaline act as neurons. There are two detectors at the output layer corresponding to the computing results “0” 
and “1”. The propagation direction is along x-direction.
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interference of the in-plane waves. By adjusting the width and length (and height) of each slot, the fully control 
over transmitted amplitude and phase delay of a meta-atom can be achieved.

A silicon-on-insulator platform with a 250 nm silicon top layer and a 2 µm buried oxide layer is chosen. The 
lattice constant of the metalines is fixed to 500 nm (approximately one third of the wavelength) and the width 
and height of slots are constantly chosen as 140 nm and 250 nm, respectively. By changing the slot length between 
100 nm and 2.3 µm, the transmission phase can be continuously tuned from 0-to-2π, while the transmission 
amplitude is higher than 0.96 (Fig. 2b). The design wavelength is 1.55 µm. The results presented in Fig. 2b are 
achieved using the commercial software package Lumerical FDTD, while FDTD ports with a fixed distance of 
10 µm along x-direction are utilized to calculate the S-parameters of a meta-atom. The injection axis of the ports 
is x-axis and the fundamental TE mode is selected for excitation. The x–y view of the electric field intensity profile 
across the middle plane of the silicon slab (z = 0) and x–z view of the electric field intensity profile across the 
middle plane of the slot (y = 0) for TE wave tunneling through a 2 µm-length slot in a meta-atom are illustrated 
in Fig. 2c,d, respectively.

During the training process, the lengths of slots are considered as learnable parameters and the training can 
proceed based on both transmission phase and amplitude of meta-atoms. However, for simplifying the design 
process in this article, the simultaneous adjustment of amplitude and phase of meta-atoms is avoided and only 
phase modulation is taken into account with transmission efficiency being set to 1, which doesn’t appreciably 
affect the accuracy of the resulting design due to near-1 transmission amplitude of meta-atoms.

Modeling. Forward propagation. The multiscale nature of metasurfaces, which the whole metasurface has 
macroscale dimensions and its subwavelength scattering elements have nanoscale length scales, make using 
full-wave simulation tools to be computationally expensive or even prohibitive due to memory requirements. 
Locally periodic approximation that assumes the metasurface is locally periodic (i.e., is periodic over any small 
region) can be a high-speed alternative that calculate the field across the plane right after the metasurface, by 
using small full-wave simulations to compute the field transmission phase and amplitude for each scattering ele-
ment (meta-atom). Thereafter, by using near-to-far field  transformation22,23, or scalar-wave  approximation24,25, 
or spatial domain electromagnetic  propagation26, the fields can be propagated between metasurface layers. In 
this article, near-to-far field  transformation22,23 is utilized to propagate the fields.

As our optical neural network is physically composed of multiple layers of diffractive 1D-metasurfaces (meta-
lines) in the SOI platform, it can be assumed as a two-dimensional problem.

The wave-number that light travels in the silicon slab waveguide is k = neff .
2π
�

 , where neff  is the effective 
refractive index of the silicon slab waveguide associated with the fundamental TE mode. It is assumed that each 
metaline is composed of N meta-atoms and the input electric field ( Ein,�j ) to the meta-system is pixelated to N 
pixels. Thus, Ein,�j is an N × 1-dimensional vector. Each meta-atom on a single metaline layer introduces a phase 
and amplitude modulation on the input electric field at that meta-atom. By using full-wave simulations to obtain 
the phase and amplitude modulation of each meta-atom (as is done in “Architecture design” section), the electric 
field along the line right after each metaline can be achieved as:

where Ein,�jm  is the input electric field to the m’th metaline, and Eout,�jm  is the electric field along the line right after 
the m’th metaline, and T�j

m and φ�j
m are diagonal matrices containing the transmission amplitudes and phases of 

meta-atoms on layer m at the wavelength �j . Now that the near-field output of each layer ( Eout,�jm  ) is known, the 
far-field output can be calculated through a near-to-far field transformation:

(1)E
out,�j
m = T

�j
m exp(iφ

�j
m )E

in,�j
m

(2)E
in,�j
m+1(�y) = −

∫
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2G(�y, �y′)E

out,�j
m ( �y′)d �y′

Table 1.  The optical I/O table for optical logic gate operations performed by diffractive optical neural network 
(DONN).

Input A Input B

AND NOT OR Detector1 Detector2W0 W1 W0 W1

1 0 1 0 1 0 0 1 0

1 0 0 1 1 0 0 1 0

0 1 1 0 1 0 0 1 0

0 1 0 1 1 0 0 0 1

1 0 0 0 0 1 0 0 1

0 1 0 0 0 1 0 1 0

1 0 1 0 0 0 1 1 0

1 0 0 1 0 0 1 0 1

0 1 1 0 0 0 1 0 1

0 1 0 1 0 0 1 0 1
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Figure 2.  (a) Schematic of a metaline and a meta-atom consisting of a subwavelength slot which the length 
of the slot is a learnable parameter, (b) by changing the slot length between 100 nm and 2.3 µm, while keeping 
the slot width and height constantly as 140 nm and 250 nm, the transmission phase can be continuously tuned 
in the 0-to-2π range, while the transmission amplitude is higher than 0.96, (c) x–y view of the electric field 
intensity in a meta-atom with a 2 µm-length slot across the middle plane of the silicon slab (z = 0), (d) x–z view 
of the electric field intensity in a meta-atom with a 2 µm-length slot across the middle plane of the slot (y = 0).
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where Ein,�jm+1 is the far-field output of m’th metaline that is the input electric field of (m + 1)’th metaline, 
G(�y, �y′) = − ik

4 H
(1)(kr)n̂ · �r

r is the Maxwell Green’s function (where H(1) is the Hankel function of the first kind, 
k = neff .

2π
�

 , �r = �y − �y′ , r = |�r| and n̂ = x̂ is the surface unit-normal vector). This integral can be changed to 
summation and then converted to matrix multiplication as:

where Gij = G(�yi , �y′j) , E
out,�j
m (j) = E

out,�j
m ( �y′j) and Ein,�jm+1(i) = E

in,�j
m+1(�yi) . Multiple Fresnel-like reflections of the 

intermediate metaline layers are neglected due to the near-1 transmission amplitude of our meta-atoms. At the 
output layer of the network, the output electric field ( Eout,�j ) can be calculated following a series of matrix–vector 
multiplications as described above. Eout,�j is the function of the learnable parameters 

{

w1,w2, ...,wM
}

 of the M 
metalines. Once Eout,�j is computed, the output intensity can be calculated as Iout,�j = Eout,�j∗Eout,�j.

Backpropagation. For backpropagation, a cost function is specified in terms of the squared errors between a 
desired set of output intensity distributions and realized set of intensity distributions at a given iteration:

where the squared error is summed for J input wavelengths, K input field distributions at a given wavelength, 
and N sample points along the output line. The cost function is iteratively minimized by adjusting the learnable 
parameters 

{

w1,w2, ...,wM
}

 . For back-propagating the errors in the network to update these learnable parame-
ters, the adjoint method, in which the gradient of the cost function with respect to all learnable parameters can be 
computed using only two full-field  simulations24, is utilized, the details of which is given in supplementary note 1.

Design considerations. One important issue in an optical neural network design is its final experimental 
inference capability. Most of the diffractive optical neural networks proposed up to now, show high percentage 
of consistency between numerical predictions and experimental  verifications26–30. These DONNs are mainly 
designed for  classification26–28,30. In the tasks of classification and regression, some amount of error is tolerable. 
However, logic gates should be highly immune from errors. So, for our design, the matching between numerical 
testing results and experimental testing results should be 100% for accurate and precise performance of multi-
functional logic gate.

In26, two main problems which result in the difference between numerical predictions and full-wave elec-
tromagnetic simulations, are recognized. One problem is that the effective refractive index of an identical slot 
at different positions along the metaline is different, because the light inputs the slot at different locations with 
different angles. The other problem is the existence of mutual interference between adjacent slots of different 
lengths when the light inputs them at the same angle. The solution to these problems are also suggested  in26. For 
the first problem, if the incident light enters the slots at a smaller angle, then a more stable effective refractive 
index can be achieved for all the slots along the metaline. For the second problem, in order to reduce the influ-
ence of mutual interference between adjacent slots, a slot group composed of multiple identical slots is used to 
approximate a neuron value.

For our architecture with lattice constant of 500 nm, width and height of the slots as 140 nm and 250 nm 
and an arbitrary-chosen value of 2 µm for slot length (within the range of 100 nm–2.3 µm), we calculate neff−slot 
(effective refractive index of the slot) for a slot, when the incident light enters the slot from diverse angles (see 
Fig. 3). The effective refractive index of the slot can be calculated  from26:

(3)E
in,�j
m+1 = GE

out,�j
m

(4)C =

J
∑

j=1

K
∑

k=1

N
∑

s=1

(

I
�j ,fk
s − I

des,�j ,fk
s

)2

Figure 3.  Effective refractive index of a slot with 2 µm length as a function of incident light angle.
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where Lslot is the length of the slot, neff−slab is the effective refractive index of the slab waveguide, k0 is the 
wavenumber of light in the slots and �φi is the phase delay generated by the slot. As is seen in Fig. 3, for all the 
incident angles of light to the slot which are less than 20˚, the effective refractive index of the slot remains nearly 
constant. Therefore, the distance between the metalines should be high enough, such that the incident light angle 
to the meta-atoms is less than 20˚.

Also for our architecture, the neff−slot calculated by the phase delay generated by a slot group with a different 
number of slots is shown in Fig. 4. It can be seen that when the number of slots increases in a slot-group, the 
effective refractive index of the slot calculated by the phase delay generated by the slot groups tends to be more 
stable. Also, it can be inferred from Fig. 4 that when the slot group includes two identical slots, the calculated 
effective refractive index is very close to the final stable value. It should be mentioned that for generating Fig. 4, 
a slot array with 20 randomly-generated slot lengths is chosen. The effective refractive index is calculated for a 
slot with 1.964 µm slot length (marked in red in Fig. 4).

Results
In this part, on-chip optical Boolean logic operations (AND, OR, and NOT) are first numerically demonstrated 
at the wavelength of 1.55 µm and thereafter the achieved results are verified using 2D FDTD and 2.5D FDTD 
variational solver of Lumerical Mode Solution. The meta-system consists of five metalines (hidden layers), with 
each metaline containing 100 meta-atoms (neurons). While the length of each metaline is 100 µm, the distance 
between two successive layers is 300 µm, and after light exits the fifth metaline, it propagates 300 µm until it 
reaches the output line of the network with two linearly-arranged detection regions which are representative of 
logic states "0" and "1". The length of each detection region is 4 µm and the center-to-center distance between 
the two regions is 12 µm. Also, it is assumed that the distance between the input layer and the first metaline is 
zero, while the thickness of each metaline is 10 µm.

As was stated in “Design considerations” section, for a design to perform accurately as a multi-functional 
logic gate, it is necessary that the full-wave simulation results provide 100% fit to the numerical testing results. 
Therefore, according to Fig. 3, the distance between the metalines should be such that the incident light angle 
to the meta-atoms along the metaline to be less than 20°, which means that

Therefore, for this design, it is assumed that the distance between metalines as well as the distance between 
the fifth metaline and the output line is 300 µm. Also according to Fig. 4, each neuron value in this design is 
approximated as a slot group composed of two identical slots, in order to reduce the influence of mutual inter-
ference between adjacent slots.

Training is performed using 10 input combinations (4 input field distributions for AND, 4 input field distri-
butions for OR, and 2 input field distributions for NOT) and for each input combination, the desired intensity 
distribution Ides,�j ,fk is defined as a rectangle centered over appropriate output detection region with 

∑

s over det ection region

I
des,�j,fk
s = 1 at the output layer of DONN. The optimization problem involves 500 design 

variables (100 variables per metaline). The lengths of slots (variables) are initially set to 1.1 µm in the optimiza-
tion and due to fabrication constraints, the minimum slot length is specified as 100 nm and the maximum slot 

(5)neff−slot =
�φi

Lslot · k0
+ neff−slab

(6)Distance between layers ≥

(

100 µm

tan(20◦)
= 274 µm

)

Figure 4.  Effective refractive index of a slot group with different number of identical slots. For generating this 
figure, a slot array with 20 randomly-generated slot lengths is used. The effective refractive index is calculated 
for slot groups associated with the slot colored in red with the slot length of 1.964 µm.
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length is set as 2.3 µm in order that the transmission phase changes within 0-to-2π range (with minimum feature 
size of 100 nm, the fabrication of metalines is feasible utilizing current deep UV photolithography technique 
used in silicon photonics foundry). For a specific input, when the output signal is accurately distributed such 
that the total intensity upon the expected detector corresponding to that input has significant value comparing 
to the other detector, the classification can be considered successful. Using the mathematical framework described 
in “Modeling” section, the lengths of slots (and correspondingly the transmission phase of meta-atoms) are 
adjusted in search for minimum of the cost function which is defined as the squared errors between the desired 
set of output intensity distributions and realized set of intensity distributions at a training iteration. Figure 5a 
describes the numerical performance of the designed all optical logic gate. These results are verified with Lumeri-
cal 2D FDTD (Fig. 5b) and 2.5D FDTD variational solver of Lumerical Mode Solution (Fig. 5c). It should be 
mentioned that both numerical simulations and 2D FDTD simulations are two-dimensional and the effective 
refractive index of the silicon slab waveguide is used as the refractive index of background material in the simula-
tions. However, 2.5D FDTD simulations consider the 3D nature of the diffractive optical neural network (DONN) 
structure (Lumerical 2.5D varFDTD method offers comparable accuracy and versatility to that of 3D FDTD, 
while only requiring the simulation time and memory of a 2D FDTD  simulation31). As is seen in Fig. 5, 2D FDTD 
results and 2.5D FDTD results are very near to each other, although not completely identical. Therefore, it can 
be stated that 2D modeling of the structure considering effective refractive index of the silicon slab waveguide 
makes few discrepancies in the full-wave electromagnetic results. However, there is a significant difference 
between the predicted results by numerical simulations and full-wave electromagnetic simulations. The discrep-
ancy between the numerical results (Fig. 5a) and Full-wave electromagnetic simulations (Fig. 5b,c) is dominantly 
due to the local periodic approximation that is used in the numerical modeling. Locally periodic approximation 
is alternatively utilized in many numerical modeling of metasurface-optics22–26,32,33, because of large memory 
requirements of full-wave simulators. Also, the assumption of unit-transmission-amplitude for all meta-atom 
geometries along metalines can cause some small discrepancies between the two results (the reason that we 
mention “small discrepancies” is that the transmission amplitude of all meta-atoms is very near to 1). Further-
more, multiple Fresnel-like reflections of the intermediate layers of the optical system is neglected in our 

Figure 5.  The logic operation of the numerically-trained diffractive model with five diffractive layers, (a) 
numerical results, (b) Lumerical 2D FDTD results, and (c) Lumerical Mode Solution 2.5D FDTD simulation 
results.
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numerical simulations, however, due to near-to-1 transmission amplitude of meta-atoms, the reflection from 
intermediate metalines is not significant.

Because of computational restrictions of full-wave simulators such as Lumerical, here we choose a very com-
pact structure with as few neurons as possible to make the structure simulable with such a commercial package 
for the purpose of verification. In this case, the contrast ratios between the measured intensities of two designated 
regions drops. Higher contrast ratios can be achieved utilizing higher number of neurons in each metaline.

It is noteworthy to mention that it is possible to train the diffractive optical neural network to perform any 
other logic operations like NAND, NOR, XOR and XNOR or even all the seven basic logic operations at the same 
time. Depending on the number and complexity of the tasks that the neural network is trained for, the number of 
neurons, the number of diffractive layers, and the distance between layers may subject to change. Furthermore, 
it is possible to design the multifunctional logic gate such that it can perform other functions as well which ease 
the integration of the gates with other devices.

Also, we have demonstrated wavelength division multiplexed parallel computation at seven different wave-
lengths (1520, 1530, 1540, 1550, 1560, 1570, and 1580 nm). Figure 6 shows the λ-dependent transmission phase 
response of meta-atoms versus slot length when the slot width is fixed at 140 nm. Lumerical FDTD is exploited 
to calculate the λ-dependent transmission phase of meta-atoms. The distance between FDTD ports is again 
set to be 10 µm along the x-direction. Again, training is performed using 10 input combinations at seven dif-
ferent wavelengths in the 1520–1580 nm range. In this case, the cost function should be computed for 7 input 
wavelengths and 10 input field distributions at a given wavelength and 100 sample points along the output line 
according to Eq. (4).

Principally in training, wavelength-dependent phase response of the meta-atoms (Fig. 6) and therefore wave-
length-dependent phase response of the metalines and the wavelength-dependent refractive index of silicon 
and thus the wavelength-dependent effective refractive index of the guided light confined in the silicon slab 
should be taken into account. Ides,�j ,fk is defined as before for each wavelength. A separate forward and backward 
propagation is performed for each of the seven wavelengths. The gradients computed for each wavelength are 
summed to obtain the overall gradient of the cost function with respect to all of the design variables. All other 
design parameters are like the ones in the training of the single-wavelength DONN of Fig. 5. The numerical 
performance of the wavelength-independent DONN at 1520–1580 nm range as an all-optical multi-functional 
logic gate is depicted in Fig. 7. This provides the capability to perform simultaneously different operations for 
each wavelength channel by varying the input conditions which means that totally independent parallel logic 
operations is possible up to the number of input channels with a single  gate12. Due to huge computational time 
required to verify all these results, they haven’t been verified with 2.5D FDTD variational solver of Lumerical 
Mode Solution.

Discussion
Design verification. Because of computational restrictions encountered in a single simulation of our meta-
system using full-wave simulation tools as was described in “Modeling” section, it was tried to choose an optical 
gate design that is as compact as possible. However, the challenge was designing an optical logic gate with 100% 
consistency between its numerical performance and the performance it shows when simulated with a com-
mercial full-wave electromagnetic software. On the path we took to achieve full compliance between the two 
simulation results, we numerically trained a number of diffractive networks and verified their performance with 
Lumerical 2.5D FDTD. Table 2 reports the results of these investigations.

It can be inferred from the results reported in Table 2 that approximating a neuron value by a slot group 
composed of two identical slots doesn’t necessarily lead to better matching between the numerical results and 
full-wave simulation results. The main reason is that the number of meta-atoms in the metasystem composed 
of slot groups is twice less than the metasystem composed of individual slots. Also, according to Fig. 4, in our 

Figure 6.  The wavelength-dependent phase shift of a meta-atom versus slot-length, fixing the slot width and 
height at 140 nm and 250 nm respectively, calculated by Lumerical FDTD.
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Figure 7.  The logic operation of the numerically-trained diffractive model with five diffractive layers at seven 
different wavelengths in the 1520-1580 µm range. The design parameters of this diffractive model is similar to 
the design depicted in Fig. 5.
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chosen architecture, using a slot group of two identical slots doesn’t make a significant difference in the effective 
refractive index of the slot comparing to when using an individual slot. So, this was not unexpected.

This issue is evident when comparing designs 1 and 2, designs 3 and 4, designs 6 and 7, as well as designs 13 
and 14, which only differ in the number of slots in a meta-atom (and therefore the number of meta-atoms in 
each metaline). In addition, despite the fact that both designs 8 and 9 show 100% consistency between numerical 
testing results and 2.5D FDTD results, design 8 shows better consistency especially in terms of contrast ratios 
between logical values “0” and “1” comparing to design 9. Also, by comparing designs 2 and 4, designs 6 and 
8, and designs 7 and 9 in Table 2, it can be deduced that increasing the distance between the layers from 200 to 
300 µm results in better fitting of the numerical and full-wave simulation results. For a more detailed discussion 
on the design verification, please refer to supplementary note 2 and supplementary Table S1.

Design performance. Falling under the category of diffractive neural networks, the presented design has 
most of the advantages that multi-functional optical logic gate design proposed  in20 based on diffractive neural 
network actually has, that are mainly the non-requirement to precise control of the input light beams which 
reduces the instability of optical logic circuits and the capability of complete logic functionality in a single optical 
network (all seven logic operations) which makes the logic gates easy for device fabrication and system integra-
tion (see Table 3 for more details).

Other than the advantages offered by the multi-layered metasurface-based architecture, the presented archi-
tecture benefits from its CMOS foundary-compatible silicon photonics platform, fabrication compatible with 
very matured silicon technology, simple configuration and compactness, and operation wavelength of 1550 nm. 

Table 2.  The characteristics of a number of diffractive neural networks that operate as a multi-functional logic 
gate and the matching between their numerical testing results and full-wave simulation results.

Design
Number of 
layers

Number of 
neurons in each 
layer

Number of slots 
in each neuron

Length of the 
layers (µm)

Distance 
between layers 
(µm)

Distance 
between the last 
layer and output 
layer (µm)

Length of 
detection 
regions (µm)

Center to 
center distance 
between 
detection 
regions (µm)

Percentage 
of matching 
between 
numerical 
predictions 
and full-wave 
simulations 
(%)

1 3 200 1 100 200 200 4 12 90

2 3 100 2 100 200 200 4 12 70

3 3 200 1 100 300 300 4 12 90

4 3 100 2 100 300 300 4 12 80

5 5 200 1 100 50 50 4 12 80

6 5 200 1 100 200 200 4 12 90

7 5 100 2 100 200 200 4 12 70

8 5 200 1 100 300 300 4 12 100

9 5 100 2 100 300 300 4 12 100

10 3 200 1 100 200 200 4 32 80

11 3 200 1 100 200 200 4 22 90

12 5 200 1 100 50 50 4 32 60

13 5 200 1 100 200 200 4 22 90

14 5 100 2 100 200 200 4 22 80

Table 3.  Comparison between our design and the multifunctional optical logic gate based on DONN 
presented  in20. a For a brief discussion on the size of the device, please refer to supplementary note 3. b Due to 
low latency (~ 18.3 ps) and fast response of our  design34, state-of-the-art high-speed photodetectors with up to 
50 GHz photodetection rate are applicable to our architecture. By assuming 20 GHz photodetection rate, the 
bit rate of our design, will be 20Gbps. For a brief discussion on the possible photodetection schemes, please 
refer to supplementary note 4.

Ref.
Device 
architecture Gate

Operation 
wavelength Dimensions Bit rate

Number of 
neurons

Contrast ratio 
(dB)

Operation 
bandwidth

20 Diffractive optical 
neural network

AND, OR, NOT 
(with the capabil-
ity to be trained 
for all seven logic 
operations)

17.6 mm 301 mm × 421 mm × 1420 mm – 2520  > 9.6 –

This work
On-chip diffrac-
tive optical neural 
network

AND, OR, NOT 
(with the capabil-
ity to be trained 
for all seven logic 
operations)

1.55 µm 100 µm × 1850 µma 20  Gbpsb 500
 < 10.82 (Based on 
2.5D FDTD simu-
lation results)

60 nm (capable 
to be trained for 
larger bandwidths)
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These make our design suitable for monolithic integration with other silicon-based photonic and electronic 
integrated circuits.

Also, the low-loss nature of this configuration results in low power consumption (for more details on the 
loss of system please refer to supplementary note 5) and its low-latency leads to high computational speed (see 
Table 3). Furthermore, the broadband Boolean logic operability of our design (over 60 nm in free-space wave-
length) have been demonstrated and its capability for wavelength multiplexed parallel computation, which realize 
the full potential of optical computation, is studied. Although in our work, the diffractive network was trained 
for 60 nm bandwidth operation, higher-bandwidth logic gates are easy to be trained.

The main weakness of the presented design is its poor binary contrast. But it should be considered that for 
the purpose of full-wave electromagnetic verifications, it was tried to design a structure as compact as possible. 
Our design is composed of 500 neurons which is one fifth of the number of neurons in the proposal  of20 that has 
2520 neurons for multifunctional logic gate that functions as AND, NOT and OR. Therefore, it is expected that 
the binary contrast highly improves by using larger number of neurons.

Finally, the comparison of our logic gate with some recently reported researches in terms of architecture, 
dimensions, operation wavelength, operation bandwidth, contrast ratio, etc. is summarized is Table 4. The main 
advantage of our design over other  works1–15,17–19,35–37 is that a single structure with the same structural and 
geometrical parameters can be used for all logic operations. Furthermore, comparing to the logic gate proposals 
named in Table 4, the other benefits offered by our logic gate are its on-chip design, operation wavelength of 
1.55 µm, capability for broadband operation which is suitable for wavelength division multiplexing, and high 
computational speed (up to 50 Gbps).

Conclusion
In conclusion, a simple, integrable, low-loss, high-speed and broadband on-chip multi-functional optical logic 
gate capable of performing AND, NOT, and OR functions have been demonstrated using a diffractive optical 
neural network which is composed of cascaded on-chip 1D-metasurfaces. Due to broadband operation of the 
proposed logic gate, it is capable for wavelength multiplexed parallel computation, which helps to realize the 
full potential of optical computing. While the proposed logic gate shows poor binary contrast, a larger network 
composed of higher number of neurons can be trained to surmount this problem.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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